7,427 research outputs found

    Optimization of Occlusion-Inducing Depth Pixels in 3-D Video Coding

    Full text link
    The optimization of occlusion-inducing depth pixels in depth map coding has received little attention in the literature, since their associated texture pixels are occluded in the synthesized view and their effect on the synthesized view is considered negligible. However, the occlusion-inducing depth pixels still need to consume the bits to be transmitted, and will induce geometry distortion that inherently exists in the synthesized view. In this paper, we propose an efficient depth map coding scheme specifically for the occlusion-inducing depth pixels by using allowable depth distortions. Firstly, we formulate a problem of minimizing the overall geometry distortion in the occlusion subject to the bit rate constraint, for which the depth distortion is properly adjusted within the set of allowable depth distortions that introduce the same disparity error as the initial depth distortion. Then, we propose a dynamic programming solution to find the optimal depth distortion vector for the occlusion. The proposed algorithm can improve the coding efficiency without alteration of the occlusion order. Simulation results confirm the performance improvement compared to other existing algorithms

    Estimation of signal distortion using effective sampling density for light field-based free viewpoint video

    Get PDF
    In a light field-based free viewpoint video (LF-based FVV) system, effective sampling density (ESD) is defined as the number of rays per unit area of the scene that has been acquired and is selected in the rendering process for reconstructing an unknown ray. This paper extends the concept of ESD and shows that ESD is a tractable metric that quantifies the joint impact of the imperfections of LF acquisition and rendering. By deriving and analyzing ESD for the commonly used LF acquisition and rendering methods, it is shown that ESD is an effective indicator determined by system parameters and can be used to directly estimate output video distortion without access to the ground truth. This claim is verified by extensive numerical simulations and comparison to PSNR. Furthermore, an empirical relationship between the output distortion (in PSNR) and the calculated ESD is established to allow direct assessment of the overall video distortion without an actual implementation of the system. A small scale subjective user study is also conducted which indicates a correlation of 0.91 between ESD and perceived quality

    Objective quality metric for 3D virtual views

    Get PDF
    In free-viewpoint television (FTV) framework, due to hard-ware and bandwidth constraints, only a limited number of viewpoints are generally captured, coded and transmitted; therefore, a large number of views needs to be synthesized at the receiver to grant a really immersive 3D experience. It is thus evident that the estimation of the quality of the synthesized views is of paramount importance. Moreover, quality assessment of the synthesized view is very challeng-ing since the corresponding original views are generally not available either on the encoder (not captured) or the decoder side (not transmitted). To tackle the mentioned issues, this paper presents an algorithm to estimate the quality of the synthesized images in the absence of the corresponding ref-erence images. The algorithm is based upon the cyclopean eye theory. The statistical characteristics of an estimated cy-clopean image are compared with the synthesized image to measure its quality. The prediction accuracy and reliability of the proposed technique are tested on standard video dataset compressed with HEVC showing excellent correlation results with respect to state-of-the-art full reference image and video quality metrics. Index Terms — Quality assessment, depth image based rendering, view synthesis, FTV, HEVC 1

    Towards real-time stereoscopic image rectification for 3D visualization

    Get PDF
    This paper describes a method for stereoscopic rectification with geometric distortion minimisation, to generate suitable image pairs for 3D viewing applications. The current state of the art technique is not optimal as it lacks appropriate mathematical constraints. We present a new approach that enforces the same distortion minimisation criterion with more computational e±ciency whilst also achieving superior distortion removal. Detailed mathematical expressions have been developed that fully constrain the system to facilitate the use of faster and more accurate non-linear optimisation algorithms. Appropriate rectification transforms can then be defined at speeds suitable for real-timeimplementation
    corecore