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Abstract. This paper describes a method for stereoscopic rectification
with geometric distortion minimisation, to generate suitable image pairs
for 3D viewing applications. The current state of the art technique is not
optimal as it lacks appropriate mathematical constraints. We present
a new approach that enforces the same distortion minimisation crite-
rion with more computational efficiency whilst also achieving superior
distortion removal. Detailed mathematical expressions have been devel-
oped that fully constrain the system to facilitate the use of faster and
more accurate non-linear optimisation algorithms. Appropriate rectifi-
cation transforms can then be defined at speeds suitable for real-time
implementations.
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1 Introduction

Image rectification has long been a standard technique to facilitate 3D stereo-
scopic image viewing and the techniques encompassing stereoscopic 3D image
analysis. Rectification creates a simplified configuration where the epipolar lines
in the image pair are aligned either vertically or horizontally, and constitutes
a vital preprocessing step in the production of 3D stereoscopic imagery. These
image pairs create the illusion of depth by providing each eye with a different
viewpoint of the same scene. This illusion cannot effectively be generated unless
the same objects seen by each eye are at the same vertical height. Such a con-
figuration can only occur when the epipolar lines of the image pair are aligned
horizontally thus requiring stereoscopic rectification.

The promise of generating real time high quality stereoscopic images for 3D
viewing is the motivation for this work. The specific focus is on unconstrained
camera systems where the relative viewpoints between the stereo image pairs are
constantly changing and thus a different rectification is required for each image
pair. Several situations arise where such a real-time system is needed. Of specific
interest is the synthesis of stereoscopic 3D video content from a monocular video
sequence, which can be particularly relevant to Augmented Reality (AR) appli-
cations. Accurate, distortion free rectification can be applied in any AR system
that can already extract the geometry from a monocular video sequence and
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knows where/how to overlay the augmented graphics onto the scene, but also
wishes to display the information on a 3D display. Such a system will require
to rectify the stereo image pairs in real time, and this paper proposes a method
that can achieve this.

Rectification involves subjecting the image pair to a different projective transfor-
mation (planar homography) for each image. The images are warped during the
transformation and since the criterion to mathematically constrain these homo-
graphies are not unique [1], several distortion effects arise that do not affect the
alignment of the epipolar lines but do interfere with obtaining images suitable
for 3D viewing. An accurate minimisation strategy is essential due to the high
sensitivity of the rectification transforms. A minute variation in any of the trans-
form’s entries can cause variations of tens of pixels in the rectifying images which
is sufficient to disrupt the 3D viewing experience. This proposed work presents
a novel approach to a rectification strategy that achieves geometric distortion
minimisation. With a fully constrained system, the developed mathematical re-
lationships allow for the proposed work to achieve greater accuracy than the
current state of the art, with significantly lower computational time costs.

1.1 Related Work

The main approaches to stereoscopic rectification can be grouped into plane-
based rectification (Projective) and line-based rectification (Polar). Projective
rectification transforms the entire image from one plane to another, whereas
polar rectification transforms each epipolar line differently. Projective methods
that do not need a full camera matrix use epipolar geometry to define the pla-
nar homographies. Works that need the calculation of a fundamental matrix
include [1–3]. Others need only point correspondences between the image pairs
to obtain the required transformations [4]. A variety of rectification techniques
have arisen from the fundamental works that underpin epipolar geometry. What
distinguishes many of these derived methods from each other is the metric that
is used to define the rectifying transformation. They exploit the non-uniqueness
of the rectification theory [1, 5] to define homographies using their own criterion
to improve stereo matching and/or visual appearance.

Robert et al. [6] were amongst the pioneers to consider the distortional effects of
rectification on stereo images. They reduce the amount of distortion by consider-
ing the transformations that best preserve orthogonality about the image centres.
Hartley’s approach [1] is to find the appropriate homography by minimising the
overall disparity (in both x and y directions) between the corresponding recti-
fied points of the stereo image pairs. Although these techniques certainly result
in rectifications that improve stereo matching, the results may still be visually
distorted and thus not suitable for direct stereoscopic 3D visualization.
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Loop and Zhang [2] consider a stratified decomposition of the rectification and
decompose each homography into projective and affine components. They con-
strain affine qualities on the homographies to reduce the distortion. However
as skew, scale and aspect ratio are invariant to affine transforms, it is unclear
that the metric of ‘closest to affine’ provides the optimal distortion removal for
3D visualization. Isgrò and Trucco’s method [7] requires disparity minimisation
along the x-axis to generate a unique solution. Similarly to Hartley, it is suitable
for 3D reconstruction but this modification of the x-axis disparity can greatly
distort the image and affects stereoscopic viewing in cases where original x-axis
disparity must be maintained. Gluckman and Nayar [8], consider the effects of
resampling that impede both stereo matching and 3D visualization. They seek
to minimize both the loss of pixels (under-sampling) and the creation of new
pixels (over-sampling). This is achieved by minimizing the change in the local
area of the images during the transformations, by ensuring that the value of
the determinant of the resulting transformation’s Jacobian be as close to one as
possible.

A method that provides more control over the resampling effects of the rec-
tification transforms is proposed by Mallon and Whelan [3]. Their rectification
is a variation on Hartley’s method [1], but which also proposes a novel distor-
tion minimisation criterion. By analysing the singular values of each transform’s
Jacobian, they attempt to maintain the orthogonality and perspective of the
original image by defining homographies that result in the Jacobian’s two sin-
gular values also being as close to one as possible.

1.2 Proposed Approach

This work will only consider uncalibrated projective rectification due to the se-
vere distortions that result from polar rectifications which make the resulting
rectified images unsuitable for 3D viewing. Using an uncalibrated rectification
technique is preffered as it facilitates a more general implementation for 3D
stereo view synthesis. From the various distortion minimisation criterion found
in the literature, Mallon and Whelan’s [3] adequately addresses the requirements
for 3D viewing. In their paper a comparison is made between their method and
the two fundamental works of Hartley [1] and Loop and Zhang [2]. Those re-
sults show that [3] better preserves the orthogonality and aspect ratio of their
rectified images, which are precisely the criterion we currently use to generate
the stereoscopic views. They however implement their distortion minimisation
with a non-optimal strategy that greatly hinders a real-time application and
also affects accuracy. The strategy currently in use is loosely constrained math-
ematically and thus they are required to use the Nelder-Mead simplex search
method to obtain the appropriate terms for their homographies. Nelder-Mead
is an unconstrained non-linear minimisation algorithm that is not as efficient as
other alternative techniques [9, 10].



4 Tony Marrero Barroso, Aubrey K. Dunne, John Mallon, Paul F. Whelan

The contribution of this work is to implement the distortion removal criteria
of [3] in a more accurate and efficient strategy that can enable real-time imple-
mentations. To achieve this goal, a detailed study has been conducted into the
mathematics of the distortion minimisation process. This in turn has resulted in
analytical equations which precisely constrain the system and which enable the
use of minimisation algorithms that use exact derivatives in order to converge
more efficiently than the Nelder-Mead simplex method.

2 Distortion Minimisation

We propose to modify the distortion minimisation criterion of [3], however the
actual epipolar rectification step is adapted from them in its entirety. Their pro-
jective homographies are closely derived from Hartley’s technique [1], and are
solely based on an analysis of the Fundamental matrix (F) which is assumed to
be already known. In epipolar rectification the fundamental matrix does not en-
capsulate any information with regard to the x coordinate of the rectifying homo-
graphies (H and H′). In [11] it is demonstrated that the x component of a point
is not used by the epipolar constraint. Thus the first row of any such rectifying
homography is undetermined. This resulting property is utilised in [3], to define
unique first rows (A and A′) without invalidating the epipolar rectification con-
straints while minimising shearing/skewness and aspect/scale distortions in the
images. The final image transformations become K = AH and K′ = A′H′, and
it is their implication on the image pixels that will be discussed here. The reader
is referred to [3] for more details on how to arrive at these homographies.

The resampling effects of the rectification transformation on the image can
be quantified by analysing the local area about an image point. The change
in local area about a point pi, is given by the determinant of the Jacobian J
of the transformation of K upon the point pi [12]. A more robust approach is
performed in [3] by analysing the singular values of J instead of its determinant.

J(K, pi) =

[
∂x̄i

∂xi

∂x̄i

∂yi
∂ȳi

∂xi

∂ȳi

∂yi

]
(1)

∂x̄i

∂xi
=

k11(k32yi + k33zi)− k12(k31yi)− k13(k31zi)

(k31xi + k32yi + k33zi)2
(2)

∂x̄i

∂yi
=

k12(k31xi + k33zi)− k11(k32yi)− k13(k32zi)

(k31xi + k32yi + k33zi)2
(3)

∂ȳi
∂xi

=
k21k32yi + k21k33zi − k31k22yi − k31k23zi

(k31xi + k32yi + k33zi)2
(4)

∂ȳi
∂yi

=
k22k31xi + k22k33zi − k32k21xi − k32k23zi

(k31xi + k32yi + k33zi)2
(5)

Where:
k11 = (a11ℎ11 + a12ℎ21). k12 = (a11ℎ12 + a12ℎ22) (6)
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An ideal transform completely preserves the resampling of the local area about pi
if both singular values are equal to one. Let ¾1,2 be the first and second singular
values of the 2 × 2 Jacobian matrix J. Then a transform resulting in ¾1,2 > 1
induces the creation of extra pixels (over-sampling), and ¾1,2 < 1 results in the
loss of pixels due to compression (under-sampling), about the local area of the
point pi. Both these effects can impede stereo matching and 3D visualisation.
Over-sampling can smooth out image texture that is required for dense stereo
matching while under-sampling can cause aliasing and loss of information. To
implement the chosen distortion minimisation criterion, one must search for the
optimum values of the affine pair a11 and a12 which result in singular values that
are closest to one. This search is done by minimising the cost function in Equation
7 which maintains the orthogonality and perspective of the original image while
minimising the resampling effects of the transformation. Equation 7 has been
shown to be convex [3], thus facilitating non-linear minimisation algorithms.
The parameter a13 is an x direction shift and does not affect distortion, thus it
is not taken into account during the distortion minimisation step.

f(â11, â12) =

n∑

i=1

[(¾1 − 1)2 + (¾2 − 1)2] (7)

3 Developing the Mathematical Constraints

The goal of this proposed work is to develop a more efficient minimisation strat-
egy, one that can utilise exact derivatives contrary to that of [3] which imple-
ments the unconstrained Nelder-Mead algorithm and obtains the singular values
using SVD algorithms. Recall that the minimisation distortion criterion being
used is that of Equation 7. We thus constrain the system by describing a valid
mathematical model that relates the singular values of the Jacobian in Equation
1 to the rectification homography K. This enables the search for the unknown
parameters of the affine matrix A that minimises the distortion effects of the
rectification. There are several ways to acquire the singular values of a matrix
and the method selected needs to be in the form of a mathematical expression.
The preferred analytical relationship that was investigated is expressed in Equa-
tion 8, where the singular values (¾i) of J are related to the square root of the
eigenvalues (¹i) of the matrix JTJ.

¾i =
√
¹i(JTJ) (8)

JTJ =

⎡
⎢⎣

(
∂x̄i

∂xi

)2

+
(

∂ȳi

∂xi

)2 (
∂x̄i

∂xi

∂x̄i

∂yi

)
+
(

∂ȳi

∂xi

∂ȳi

∂yi

)
(

∂x̄i

∂xi

∂x̄i

∂yi

)
+
(

∂ȳi

∂xi

∂ȳi

∂yi

) (
∂x̄i

∂yi

)2

+
(

∂ȳi

∂yi

)2

⎤
⎥⎦ =

[
® !
! ¯

]
(9)

Substituting Equations 2, 3, 4 and 5 into JTJ, letting Ri = (k31xi+k32yi+k33zi)
and developing the expressions leads to:

® =
1

R4
[k2

11®1 + k2
12®2 + k11k12®3] +

[
∂ȳi

∂xi

]2
(10)
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¯ =
1

R4
[k2

11¯1 + k2
12¯2 + k11k12¯3] +

[
∂ȳi

∂yi

]2
(11)

! =
1

R4
[k2

11!1 + k2
12!2 + k11k12!3] +

[
∂ȳi

∂xi

∂ȳi

∂yi

]
(12)

Where:
®1 = R2

i − 2Rik31xi + k231x
2
i . ®2 = k231y

2
i . ®3 = 2k231xiyi − 2Rik31yi.

¯1 = k232x
2
i . ¯2 = R2

i − 2Rik32yi + k232y
2
i . ¯3 = 2k232xiyi − 2Rik32xi

!1 = k31k32x
2
i −Rik32xi !2 = k31k32y

2
i −Rik31yi

!3 = R4
i −Rik31xi −Rik32yi + 2k31k32xiyi

Following on from Equation 8, the eigenvalue characteristic equation of JTJ
is defined as:

¹2 + (−®− ¯)¹+ (®¯ − !2) = 0 (13)

After solving with the general Quadratic Formula and subtituting into Equa-
tion 8, the expression that explicitly relates the rectifying transformation to the
singular values thus becomes:

¾1,2 =

√
1

2

(
®+ ¯ ±

√
(−®− ¯)2 − 4(®¯ − !2)

)
(14)

This is the equation to obtain the singular values of J(K, pi) (the Jacobian of
the transformation), about the local area of point pi. It is used in conjunction
with the cost function in Equation 7 to perform the non-linear minimisation and
acquire k11 and k12. The simultaneous Equation 6 then is solved to obtain the
unknown parameters of the affine matrix A. Similarly to [3], a vector P consist-
ing of image points pi is defined (arranged into a grid encompassing the entire
image). Singular values for each point pi are then obtained with Equation 14 so
that the error of the cost function can be calculated and summed according to
Equation 7. To implement the new minimisation algorithms, partial derivatives
of the cost function are then obtained with respect to a11 and a12. Depending on
which non-linear minimisation is used these derivatives are utilised differently,
but all ensure a more efficient and accurate convergence to that of the uncon-
strained Nelder-Mead simplex search method utilised by the current state of the
art rectification implementing the same distortion minimisation criterion.

Since the size of the vector P directly influences the time required to calculate
the cost function of Equation 7, a study was conducted on the effect that the
size of P has on the accuracy of the minimisation. Figure 1(a) displays this
analysis and shows that a small number of image points is sufficient. Apart from
the quantity of points, the location of these points around the image is also of
equal importance, with an optimum configuration being one that arranges these
points equally spaced throughout the image.
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4 Experimental Results

Using the constraints defined in Equation 14, we implement three non-linear
minimisation algorithms and compare them with two state of the art tech-
niques common throughout the research community. The classical techniques
of Gradient Descent, Gauss-Newton and Levenberg-Marquardt, are implemented
in C++ to achieve optimum performance. These are compared with a numerical
Levenberg-Marquardt adaptation in C of the Minpack optimisation toolkit [13],
and with the Nelder-Mead simplex method of Numerical Recipes in C [9]. The
implementated Nelder-Mead fully recreates the method used in [3] in that the
singular values for the cost function are also obtained by SVD using algorithms
from standard mathematical libraries. Minpack’s L-M technique utilises Equa-
tion 14, but its derivatives are not required as this version of Minpack performs
numerical differentiation. Our algorithms are thus directly compared with the
state of the art in [3] (which is the main objective of this work), and also com-
pared against Minpack’s numerical technique. In this way it is demonstrated
that the exact analytical derivatives of the developed constraints provide an
improvement in the accuracy and computational efficiency of the minimisation.

4.1 Results Overview

The objective of the experiments is to demonstrate the accuracy and speed of
the proposed minimisation techniques and compare them against the Nelder-
Mead and Minpack alternatives. Each minimisation algorithm requires an initial
estimation for the unknown vector it is estimating, the algorithms will thus con-
verge with varying degrees of speed depending on the distance that the initial
estimations are from the required values of the unknown parameters. The accu-
racies of convergence will depend on the method itself and its inherent settings.
The settings for all algorithms have been optimised for this specific task and all
tolerances have been set as equal as possible.

To demonstrate and compare the convergent behaviour of each algorithm
under equal conditions, only one rectifying homography is minimised. Each al-
gorithm is initiated with varying initial estimations and the accuracy and speed
of each convergence are recorded and compared. The summary of the numerical
results is shown in Table 1, which presents the mean values of all the performed
convergences1. The plots of the individual convergence results are shown in Fig-
ure 2, while Figure 1(b) compares the entire convergence profiles for only one
initial condition. The first row of Figure 2 shows the convergence accuracy re-
sults of each algorithm with varying initial conditions. The (x,y) axes represent
the values of the initial estimates used for a11 and a12 in each convergence test.
The vertical axis represents the accuracy error of the minimisation once the al-
gorithms have completely converged. The bottom row of Figure 2 compares the
computational efficiency of each algorithm. It shows the time taken per conver-
gence under varying initial conditions.

1 Executed on a 2.40 GHz CPU with 3GB of RAM.
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Table 1. Average values for the convergence tests of each algorithm.

Algorithm Accuracy Error Cost Function Time
(%) Evaluations (ms)

Gradient Descent (G-D) 6.125 7 0.065
Gauss-Newton (G-N) 3.625 17 0.113
Levenberg-Marquardt (L-M) 4.920 16 0.110
Minpack’s L-M 4.180 54 0.141
Nelder-Mead 7.133 60 0.785
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Fig. 1. (a) Effect of the number of points used by the cost function on the minimisation
accuracy; (b) Single comparitive convergence between all the algorithms using the intial
conditions of (1,0).

4.2 Discussion

Each algorithm converged to minimum values of approximately 0.7 for a11 and
0.1 for a12, having started the estimation from initial estimates ranging from -1.5
to 1.5. It was found that if the values of a11 and a12 were close to the extremes
of the limits chosen, then the resulting homographies would have caused images
of size (640x480) to be sheared and distorted by close to 2000 pixels in the
horizontal directions. The limits chosen are thus more than sufficient to simulate
the bounds that our proposed minimisations will in reality be operating between.
Each algorithm proved to be extremely robust since they converged under all
conditions.

Table 1 shows the average results of all the convergence tests in order to
enable a definitive comparison and see which method is superior under a general
set of conditions. Our three proposed algorithms all perform superior under both
accuracy and computational efficiency to that of the Nelder-Mead method, thus
achieving the desired objective of advancing the current state of the art method.
Figure 1(b) illustrates more accurately just how inefficient Nelder-Mead’s con-
vergence is compared to the other minimisation approaches.
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Fig. 2. Accuracy of Convergence for: (1,1)Gradient Descent; (1,2)Gauss-Newton;
(1,3)Levenberg-Marquardt; (1,4)Minpack’s L-M method; (1,5)Nelder-Mead method.
Time of Convergence for: (2,1)Gradient Descent; (2,2)Gauss-Newton; (2,3)Levenberg-
Marquardt; (2,4)Minpack’s L-M method; (2,5)Nelder-Mead method.

A significant improvement is particularly made in the computational efficiency
when the proposed strategy is used, with the Gradient Descent obtaining a
mean convergence 12 times faster than that of the mean time of Nelder-Mead,
and two times faster than that of Minpack’s L-M. Due to the convexity of the
cost function [3], a simple algorithm such as the Gradient Descent can still
perform exceptionally well compared to the other more robust methods. The
mean accuracy errors in Table 1 show that there is minimal accuracy differ-
ences between the algorithms and the convergence plots in Figure 2 illustrate
that our algorithms converge under all conditions. This validates the mathemat-
ical constraints that have been developed and shows the algorithms are robust
and converge consistently. Figure 2(1,5) demonstrates that the accuracy of the
Nelder-Mead minimisation is more inconsistent and is another reason for why
the proposed strategy is superior. Despite Gradient Descent achieving a mean
convergence time only twice as fast as that of the Minpack L-M, Gradient De-
scent’s minimum time was 10 times faster than Minpack’s minimum. The use
of the exact derivatives of the developed mathematical constraints are therefore
justifiable considering a difference in accuracy of only 2% between the Gradient
Descent and that of the Minpack’s L-M. As previously stated, the full range of
conditions used in the convergence tests are extreme and are presented solely
to convey the robustness of the proposed methods. The bottom row of plots in
Figure 2 show that when the given initial estimates are within reasonable bounds
of the cost function minima, our proposed methods perform significantly more
efficiently than what the averaged data in Table 1 suggests.

5 Conclusion

A new approach has been proposed to achieve the distortion minimisation crite-
rion of Mallon andWhelan [3], and by developing exact mathematical constraints
it has enabled the use of a more accurate and computationally efficient strategy.
The convergence properties of the proposed model were compared against the
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recognised minimisation methods in the field. With the proposed strategy and
using the full derivatives of the developed mathematical constraints, a signifi-
cant computational improvement of a factor of 12 has been obtained. A small
improvement in accuracy has also been achieved which ensures a more natural 3D
viewing experience. The objectives of this work have therefore been successfully
achieved as this strategy advances the current state of the art that implements
the same distortion removal criterion. Our strategy can now be used to facilitate
systems requiring real-time stereoscopic rectification.
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