3 research outputs found

    Air Force Institute of Technology Research Report 1999

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems and Engineering Management, Operational Sciences, and Engineering Physics

    Simulation Of Random Set Covering Problems With Known Optimal Solutions And Explicitly Induced Correlations Amoong Coefficients

    Get PDF
    The objective of this research is to devise a procedure to generate random Set Covering Problem (SCP) instances with known optimal solutions and correlated coefficients. The procedure presented in this work can generate a virtually unlimited number of SCP instances with known optimal solutions and realistic characteristics, thereby facilitating testing of the performance of SCP heuristics and algorithms. A four-phase procedure based on the Karush-Kuhn-Tucker (KKT) conditions is proposed to generate SCP instances with known optimal solutions and correlated coefficients. Given randomly generated values for the objective function coefficients and the sum of the binary constraint coefficients for each variable and a randomly selected optimal solution, the procedure: (1) calculates the range for the number of possible constraints, (2) generates constraint coefficients for the variables with value one in the optimal solution, (3) assigns values to the dual variables, and (4) generates constraint coefficients for variables with value 0 in the optimal solution so that the KKT conditions are satisfied. A computational demonstration of the procedure is provided. A total of 525 SCP instances are simulated under seven correlation levels and three levels for the number of constraints. Each of these instances is solved using three simple heuristic procedures. The performance of the heuristics on the SCP instances generated is summarized and analyzed. The performance of the heuristics generally worsens as the expected correlation between the coefficients increases and as the number of constraints increases. The results provide strong evidence of the benefits of the procedure for generating SCP instances with correlated coefficients, and in particular SCP instances with known optimal solutions

    Developing New Multidimensional Knapsack Heuristics Based on Empirical Analysis of Legacy Heuristics

    Get PDF
    The multidimensional knapsack problem (MKP) has been used to model a variety of practical optimization and decision-making applications. Due to its combinatorial nature, heuristics are often employed to quickly find good solutions to MKPs. While there have been a variety of heuristics proposed for the MKP, and a plethora of empirical studies comparing the performance of these heuristics, little has been done to garner a deeper understanding of heuristic performance as a function of problem structure. This dissertation presents a research methodology, empirical and theoretical results explicitly aimed at gaining a deeper understanding of heuristic procedural performance as a function of test problem characteristics. This work first employs an available, robust set of two-dimensional knapsack problems in an empirical study to garner performance insights. These performance insights are tested against a larger set of problems, five-dimensional knapsack problems specifically generated for empirical testing purposes. The performance insights are found to hold in the higher dimensions. These insights are used to formulate and test a suite of three new greedy heuristics for the MKP, each improving upon its successor. These heuristics are found to outperform available legacy heuristics across a complete spectrum of test problems. Problem reduction heuristics are examined and the subsequent performance insights garnered are used to derive a new problem reduction heuristic, which is then further extended to employ a local improvement phase. These problem reduction heuristics are also found to outperform currently available approaches. Available problem test sets are shown lacking along multiple dimensions of importance for viable empirical testing. A new problem generation methodology is developed and shown to overcome the current limitations in available problem test sets. This problem generation methodology is used to generate a new set of empirical test problems specifically designed for competitive computational tests. This new test set is shown to stress existing heuristics; not only does the computational time required by these legacy heuristics increase with problem size, but solution quality is found to decrease with problem size. However, the solution quality obtained by the suite of heuristics developed in this dissertation are shown to be unaffected by problem size thereby providing a level of robust solution quality not previously seen in heuristic development for the MKP. This research demonstrates that the test problems can have a profound, and sometimes misleading, impact on the general insights gained via empirical testing, provides six new quality heuristics, and two new robust sets of test problems, one focused on empirical testing, the other focused on competitive testing
    corecore