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Abstract 
 

 

The multidimensional knapsack problem (MKP) has been used to model a variety 

of practical optimization and decision-making applications.  Due to its combinatorial 

nature, heuristics are often employed to quickly find good solutions to MKPs.  While 

there have been a variety of heuristics proposed for the MKP, and a plethora of empirical 

studies comparing the performance of these heuristics, little has been done to garner a 

deeper understanding of heuristic performance as a function of problem structure.  This 

dissertation presents a research methodology, empirical and theoretical results explicitly 

aimed at gaining a deeper understanding of heuristic procedural performance as a 

function of test problem characteristics.  This work first employs an available, robust set 

of two-dimensional knapsack problems in an empirical study to garner performance 

insights.  These performance insights are tested against a larger set of problems, five-

dimensional knapsack problems specifically generated for empirical testing purposes.  

The performance insights are found to hold in the higher dimensions.  These insights are 

used to formulate and test a suite of three new greedy heuristics for the MKP, each 

improving upon its successor.  These heuristics are found to outperform available legacy 

heuristics across a complete spectrum of test problems.  Problem reduction heuristics are 

examined and the subsequent performance insights garnered are used to derive a new 

problem reduction heuristic, which is then further extended to employ a local 

improvement phase.  These problem reduction heuristics are also found to outperform 

currently available approaches.  Available problem test sets are shown lacking along 
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multiple dimensions of importance for viable empirical testing.  A new problem 

generation methodology is developed and shown to overcome the current limitations in 

available problem test sets.  This problem generation methodology is used to generate a 

new set of empirical test problems specifically designed for competitive computational 

tests.  This new test set is shown to stress existing heuristics; not only does the 

computational time required by these legacy heuristics increase with problem size, but 

solution quality is found to decrease with problem size.  However, the solution quality 

obtained by the suite of heuristics developed in this dissertation are shown to be 

unaffected by problem size thereby providing a level of robust solution quality not 

previously seen in heuristic development for the MKP.  This research demonstrates that 

the test problems can have a profound, and sometimes misleading, impact on the general 

insights gained via empirical testing, provides six new quality heuristics, and two new 

robust sets of test problems, one focused on empirical testing, the other focused on 

competitive testing. 
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DEVELOPING NEW MULTIDIMENSIONAL KNAPSACK HEURISTICS BASED 

ON EMPIRICAL ANALYSIS OF LEGACY HEURISTICS 

 
 

I.   Introduction 

 1.1   General Discussion 

Obtaining an exact solution to an integer programming problem in real practice is 

sometimes less practical in comparison to an easily computed method of acquiring near-

optimal solutions via heuristics.  As problem formulations get large, finding exact 

solutions often requires excessive computing time and storage space.  These large 

problem formulations often involve parameters that are abstractions of reality so an 

optimal solution may not have as much value as one would hope.  Considering the 

imprecision of real-world problem data and that a precise solution in reality may not be 

desired because of the time and effort required to achieve it, obtaining a near-optimal 

solution in a reasonable amount of time may better satisfy a real world practitioner.   

The knapsack problem (KP) is an integer programming problem with wide 

application in many areas.  Its general form, the multidimensional knapsack problem 

(MKP), has frequently been used to model various decision-making processes such as 

manufacturing in-sourcing (Cherbaka et al., 2004), asset-backed securitization (Mansini 

and Speranza, 2002), combinatorial auctions (DeVries and Vohra, 2000; Rothkopf et al., 

1995), computer systems design (Ferreira et al., 1993), resource-allocation (Johnson et 

al., 1985), set packing (Fox and Scudder, 1985), cargo loading (Shih, 1979), project 

selection (Peterson, 1967), cutting stock (Gilmore and Gomery, 1966), and capital 
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budgeting (early examples include Lorie and Savage, 1955; Manne and Markowitz, 1957; 

Weingartner, 1966).   

The multidimensional knapsack problem involves multiple resource constraints.  

The standard knapsack problem, with one constraint, is known to be NP-hard (Garey and 

Johnson, 1979), hence the 0 – 1 MKP is also an NP-hard problem (Frieze and Clarke, 

1984).  An efficient heuristic provides a good solution, not necessarily optimal, using a 

reasonable amount of time and resources.  Heuristics are generally efficient in terms of 

solution quality, computer resource requirements and computer solving time.  However, 

it should also be mentioned that, according to Magazine and Chern (1984), finding a 

polynomial-time approximation for the MKP is itself an NP-hard problem. 

Many researchers have developed heuristic methods to solve MKPs.  These 

heuristic approaches vary in how they treat the problem and how they select items for 

inclusion in the knapsack.  Little, if anything, has been done to understand how heuristic 

procedural differences affect performance.  This dissertation provides empirical analyses 

of heuristics for MKPs and examines how various heuristics function according to 

particular test problem characteristics.  New heuristics are introduced based on the 

knowledge gained from the empirical analysis of MKPs.     

  1.2   Knapsack Problems 

Suppose there are n items.  The jth item, j = 1,…, n, has a cost aj and a value cj.  

An item is either picked or rejected.  There is a resource limit of b available for which the 

items compete.  The problem of choosing a subset of items to maximize the sum of the 

values while not exceeding the resource constraint is the 0 – 1 knapsack problem, 

2 
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This problem is called the knapsack problem because of the analogy to a hiker’s 

problem of deciding what to put in a knapsack given a weight or volume limitation on the 

knapsack.   

In general, problems of this sort may have m constraints.  These problems are 

referred as the multidimensional knapsack problem (MKP) (Nemhauser and Wolsey, 

1988).  With the MKP, item selection must simultaneously satisfy all m constraints. 

The MKP is of the following form: 
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where ,  and all .  Additionally at least one  for each j.   0>jc 0>ib 0≥ija 0>ija

Another well-known knapsack problem is the multi-knapsack problem.  The 

multi-knapsack problem deals with m distinct knapsacks with n given items.  The m 

knapsacks have capacities bi, i = 1, 2, …, m.  Each item has a profit cij and a cost aij 

associated with each knapsack.  The problem is to choose m disjoint subsets from the n 

items, such that the sum of the value of the selected items is maximized while the cost of 
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the selected items do not exceed the capacity of any knapsack i, for each 

.  The multi-knapsack problem can be formulated as follows: { mi ...,,2,1∈ }

Maximize  
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Commonly  for any ij, however, (5) – (8) is the more general form.  The 

multi-knapsack problem is not a focus of this research; only MKPs are studied in this 

dissertation. 

ijj cc =

1.3   Overview of the Dissertation Research 

Many researchers have developed heuristic methods for MKPs.  Most 

competitively test their heuristic against other heuristics or against some common 

problem set.  Often, selected heuristics outperform other heuristics on specific problem 

sets while they do not perform well on other problem sets.  Even though modern heuristic 

approaches, such as tabu search, genetic algorithms, and simulated annealing (Reeves, 

1995) are often employed to obtain a good, albeit sub-optimal, solution in a reasonable 

amount of time, these algorithms are often applied to MKPs without exploiting 
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knowledge of problem characteristics and are thus not optimized for solution 

performance.  

Few researchers focus on why their approach does well on some problems but not 

so well on other problems.  In short, little has been done to determine why a heuristic 

performs as it does, despite a call by Hooker (1994) to do exactly this type of research. 

The objective of this research is to develop new heuristics and/or improve legacy 

heuristics for MKPs based on understanding and defining what makes a “best” heuristic.  

In other words, why do some heuristics work well and other heuristics not work so well?  

This is difficult to answer since performance varies by type of problem and problem 

characteristics.  This research focuses on constraint tightness, correlation between the 

objective function and constraints, and inter-constraint correlation.  The 2KP is examined 

first and then the 5KP is studied to answer the question.   

Chapter II briefly introduces various solution approaches for MKP and how they 

solve MKP.  The methods presented in Chapter II include a branch-and-bound approach, 

dynamic programming, greedy heuristics, transformation heuristics, reduction 

approaches, tabu search, genetic algorithms, simulated annealing, and others.  Chapter II 

presents why the dissertation focuses on greedy and transformation heuristics.  

Chapter III provides a background and an empirical analysis regarding legacy 

greedy heuristics used for 2KP and 5KP.  Chapter III shows that the performances of 

heuristics are affected by various constraint slackness and correlation structures.  The 

competitive test results are examined as a function of problem characteristics.  The 

limitations of the standard benchmark problem sets and how to generate a 5KP set 

conducive to thorough empirical testing are discussed.  

5 



Chapter IV discusses the transformation heuristics based on approaches by Pirkul 

(1987) and Glover (1977).  Greedy heuristics are single pass constructive methods; if 

variables are set to some value, these values are not changed until the end of the process.  

Transformation heuristics involve local improvement methods, so each variable varies 

during the solution process in order to move toward improving solutions.  Modern 

heuristics introduced in Chapter II fall into this category.  Chapter IV presents both a 

literature review and an empirical analysis of the transformation heuristics.  The 

characteristics discussed in this chapter are combined with those of the greedy heuristics 

to develop the new types of heuristics presented in Chapter V. 

Chapter V discusses how to develop or improve heuristics based on knowledge 

gained via the empirical analysis of the performance of multidimensional knapsack 

heuristics.  Three types of heuristics are introduced:  A typed heuristic, new gradient 

heuristics, and a new reduction heuristic.   

Chapter VI shows the improved performance of the newly developed heuristics 

based on both randomly generated problem sets and benchmark problem sets.  Chapter 

VII summarizes this work's findings, outlines contributions of this work, and identifies 

areas for further research. 

1.4   Contributions of the Dissertation Research 

This dissertation research makes four major contributions.  The first is that this 

dissertation shows how the empirical science contributes to development of theory.  

Hooker (1994) indicated, “Empirical science involves theory”.  This research conducts 

the empirical analysis of heuristics and suggests a theory to develop new heuristics.  The 
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second is to develop new types of heuristics optimized for MKP solution performance 

against all kinds of MKP characteristics.  Research to date has yet to provide fundamental 

rationale for why any one heuristic outperforms another on specific types of MKP 

instances.  The third contribution finds rationale for performance differences and exploits 

that rationale to develop new heuristic approaches.  The fourth contribution provides a 

new MKP set that includes different characteristics such as constraint slackness, 

correlation structures, number of variables, and number of constraints.  The current 

standard benchmark MKP set does not provide a sufficiently diverse set of test problems.  

This means testing using this problem set may not provide enough experimental 

information regarding the solution performance of heuristics.  

The empirical analysis of the legacy greedy heuristics provides insights that lead 

to new types of heuristics intended to properly respond to constraint slackness settings 

and correlation structures.  More specifically, the results from the empirical analysis 

present  

• the evidence of lack of diversity of the standard MKP test sets; 

• method to generate a diverse set of 5KP test problems that vary desired 

problem characteristics; 

• the performance of each heuristic according to various 2KP and 5KP 

constraint slackness and correlation structures; 

• the new knowledge gained via empirical analysis that influences how to 

develop superior heuristics over all problem characteristics. 

 

7 



The new types of heuristics provide superior and robust results across an entire 

range of problem instances.   

• A typed heuristic applies insights found in the empirical analysis to the 

generalization of the choice of best heuristic.  In other words, choose a legacy 

heuristic that is mostly likely to produce the best solution among the suite of 

heuristics (a challenge first proposed by Zanakis (1977) and again by Loulou 

and Michaelides (1979)).   

• New gradient heuristic combines the merits of the better heuristics.  All 

heuristics use different penalty cost functions and handle feasibility 

differently.  The new gradient heuristic includes the favorable influential 

factors.   

• New reduction heuristic combines the new gradient heuristic into the 

transformation heuristic.  The new reduction heuristic is a robust heuristic. 
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II.   Solution Approaches for MKP 

2.1   Introduction 

The 0 – 1 MKP is an NP-hard problem (Frieze and Clarke, 1984).  An NP-hard 

problem indicates that the worst-case computation time increases rapidly with problem 

size.  Sometimes, exact algorithms such as branch-and-bound require excessively long 

run times to find an optimal solution.  Therefore, heuristic approaches are often employed 

to obtain high quality sub-optimal solutions, in a reasonable amount of time.  However, 

these algorithms are often applied without exploiting knowledge of problem 

characteristics and are thus not optimized for solution performance.  The details of exact 

algorithms and heuristics require an introduction into the basics of the corresponding 

algorithms, and these go beyond the scope of this research.  Thus, this chapter briefly 

presents diverse exact algorithms and heuristics used to solve MKPs.   

2.2   Branch-and-Bound Approach  

The branch-and-bound (B & B) approach is an exact and possibly exhaustive 

enumerative algorithm that guarantees finding the optimal solution of a MKP.  The B & 

B approach evaluates (at least implicitly) all feasible solutions and selects the best 

solution (optimum solution).  However, the B & B approach can be impractical in 

application because the number of feasible solutions could be very large.  Some existing 

heuristics include the B & B approach to improve the heuristic solution. 

Thesen (1975) presented an early paper regarding the B & B approach tailored to 

solve MKP.  In his paper, a standard B & B algorithm for MKP was studied with a focus 

on how to save memory space.  Thesen improved the tree structures of the B & B 
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algorithm.  Computational tests showed that his algorithm was much faster than the 

Geoffrion (1967) and Zionts (1972) methods based on test problems with up to 50 

variables (n) and up to 30 constraints (m).  However, Thesen’s algorithm could not solve 

a large problem (more than 50 variables) due to the exponential time complexity of the B 

& B algorithm. 

Shih (1979) introduced a modified B & B approach by generating bounds to solve 

MKP.  The general B & B approach requires an objective function value (a bound for 

objective function value at other nodes) and a choice rule for a branch variable at each 

node.  Shih used greedy heuristic attributes that guarantee optimum solution of the linear 

programming (LP) relaxation of the KP.  He found the optimal solution of the LP-relaxed 

KP by solving for each of the m single constraint relaxed knapsack problems separately, 

and then used the minimum value among m objective function values as a bound for a 

node.  Shih tested his B & B algorithm on randomly generated problems with m = 5 

constraints and n = 30 to 90 variables.  He concluded that his algorithm was faster than 

the standard B & B approach.  His B & B algorithm averaged 13.385 minutes while the 

standard B & B approach averaged more than 380.755 minutes. 

Balas and Zemel’s algorithm (1980) embedded the B & B approach based on the 

optimal solution of the LP relaxation to solve KP.  Some variables have fractional 

solutions in the optimal solution of the LP relaxation.  They approximated a subproblem 

which included these variables, and then applied the B & B approach to find the optimal 

solution of this subproblem.       

Gavish and Pirkul (1985) combined a transformation approach with the B & B 

approach.  More recently, Martello and Toth (2003) combined a greedy heuristic and a 
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transformation approach with the B & B approach.  Both algorithms reduced the problem 

size with a transformation approach and a greedy heuristic, and then applied B & B to the 

small problems. 

Even though the B & B approach has limited application to the MKP due to the 

problem’s exponential time complexity, the most important merit of the B & B approach 

is its guarantee to find the optimal solution.   

2.3   Dynamic Programming 

Two standard approaches, dynamic programming and the branch-and-bound 

algorithm, guarantee optimum solutions of MKPs.  Dynamic programming can find the 

optimum solutions of MKP by solving small subproblems of the MKP and then 

expanding this solution approach by solving another subproblem based on the previous 

solution in an iterative fashion until the complete MKP is solved.  Dynamic programming 

is also an exhaustive enumeration approach as it may consider all 0 – 1 combinations of n 

variables.  Dynamic programming’s main concept can be stated as follows: 

{ })',1(max)',( }1,0{ kkkx kfxckf
k

Abb −−+= ∈   for k = 1, …, n              (9) 
  
subject to                                 0Ab ≥− k'    and   ( ) 0',0 =bf  
 
where f (k, b′) is the total objective function value of the first k variables in solution, b′ is 

the remaining RHS vector by inclusion of first k variables, and Ak  is the constraint 

coefficient vector of the kth variable.  Equation (9) is repeated until all items are 

considered, i.e., k = 1, …, n.   The value of f (n, b′) is the optimal solution of MKP. 

Weingartner and Ness (1967) introduced a dual approach for dynamic 

programming.  In a dual approach, dynamic programming starts with all items included 
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in the knapsack, i.e., infeasible solution, while a primal dynamic programming approach 

starts with an empty knapsack.  In the dual approach, the dynamic programming 

approach proceeds to remove items until feasibility is achieved.  They also presented a 

methodology for reducing problem size through use of lower and upper bounds that were 

determined by heuristics. 

Soyster et al. (1978) introduced an enumerative technique based on the optimal 

solution of the LP-relaxed MKP.  They found the optimum solution of the LP-relaxed 

MKP and then partitioned this solution into two sets, one including all fractional 

solutions and the other including all integer solutions.  They found the optimum integer 

solution of the subproblem using an enumerative technique in which the subproblem 

consisted of only fractional valued variables.  At each iteration, the subproblem’s size 

was increased by adding one variable.  The termination criteria is that the current solution 

differs by a value of less than 1 from the previous best solution.  Thus, their algorithm is 

an approximate algorithm that dynamically decreases the number of solutions compared.   

Bertsimas and Demir (2002) presented an approximate dynamic programming 

approach for the MKP.  They initiate dynamic programming with a subproblem 

composed of the first k variables, rather than just the first variable.  They used several 

greedy heuristics to approximate the optimal value of the initial subproblem, f (k, b′) in 

Equation (9), and then extended this heuristic solution to construct the next suboptimal 

solution f (k + 1, b′) by a standard dynamic programming approach.  To choose the best 

greedy heuristic to approximate the suboptimal solution, they based a comparison of six 

different greedy heuristics, including their own adaptive fixing heuristic, on 
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computational tests.  Their own heuristic is fast and accurate.  They recommend that 

these greedy type heuristics are worthy of future investigation.   

In addition to the above references, Weingartener and Ness (1967), Psinger 

(1997) and Martello et al. (1999) employed dynamic programming to solve the KP.  They 

reduce computational time and memory space by incorporating other types of algorithms. 

This section presented exact approaches, the branch-and-bound approach and 

dynamic programming, to find the optimum solutions of MKPs.  Since there are huge 

computational difficulties associated with both approaches, researchers have tried to 

incorporate these exact algorithms with other heuristics to reduce the number of 

comparisons or the size of problems in order to improve computation time and storage 

space.  However, the inclusion of heuristics into the exact algorithms involves a tradeoff 

between the optimum solution and the approximate solution of MKP.  

2.4   Greedy Heuristics  

Many effective greedy solution procedures for the MKP have been developed; 

Senju and Toyoda (1968), Kochenberger et al. (1974), Toyoda (1975), Loulou and 

Michaelides (1979), Fox and Scudder (1985), and Lee and Guignard (1988) are 

examples.  A greedy heuristic repeatedly takes the best immediate or local step or move, 

to find a solution.  Thus, a greedy heuristic arrives at a solution by making a sequence of 

choices, each of which is made by selecting the best choice at the particular moment.  

Greedy type heuristics can be distinguished as using either a primal (Toyoda (1975), 

Loulou and Michaelides (1979), Kochenberger et al. (1974), Fox and Scudder (1985), 

Lee and Guignard (1988)) or a dual approach (Senju and Toyoda (1968)).  A primal 
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approach starts with an empty knapsack (all variables are set equal to zero), and items are 

added (set variables equal to one) according to a given rule while not violating feasibility.  

A dual approach starts with all items in the knapsack, (all variables are set equal to one), 

and then removes items from the knapsack (sets variables equal to zero) according to a 

given rule until feasibility is achieved.   

The details of greedy approaches and the solution performances of greedy 

approaches by Senju and Toyoda (1968), Kochenberger et al. (1974), Toyoda (1975), 

Loulou and Michaelides (1979), and Fox and Scudder (1985) are examined in Chapter 

III. 

Lee and Guignard (1988) presented a greedy heuristic that consisted of two 

phases:  for Phase I, their heuristic is incorporated with Toyoda’s heuristic (1975) to find 

a feasible solution and fix variables for reduction of problem sizes, and for Phase II, they 

improve the current solution using a complementing procedure from Balas and Martin 

(1980).  Computational tests indicated that their heuristic produced better solution quality 

than that of Toyoda (1975) and Magazine and Oguz (1984), but the solution quality was 

worse than the solution quality of Balas and Martin (1980).  

Greedy heuristics often are used as a base heuristic to improve the solution 

performance of exact algorithms and other heuristics.  Papers related to the greedy type 

heuristics are numerous. 

2.5   Transformation Heuristics  

KP is a special case of the MKP (m =1).  Exact algorithms and heuristics for KP 

are more studied and well developed than for MKP.  A transformation heuristic changes 
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the MKP to a KP using approaches such as Lagrangian relaxation, surrogate relaxation, 

or composite relaxation.  An example and explanation to illustrate transforming MKP to 

KP based on Lagrangian relaxation and surrogate relaxation and the detailed solution 

performance of transformation heuristics by Glover (1977) and Pirkul (1987) are 

provided in Chapter IV.  Composite relaxation is a combination of Lagrangian relaxation 

and surrogate relaxation.    

Magazine and Oguz (1984) introduced a transformation heuristic, Multi-Knap, by 

combining the dual approach of Senju – Toyoda (1968) with Everett’s generalized 

Lagrange multiplier approach (1963).  Multi-Knap transforms MKP to KP using 

Lagrange multipliers, and then selects a variable based on a profit/cost ratio of the 

transformed KP.  In their computational tests, Multi-Knap was compared to the heuristics 

of Senju and Toyoda (1968) and Kochenberger et al. (1974).  The Kochenberger et al. 

heuristic was found better than Senju – Toyoda and Multi-Knap in terms of solution 

quality.  However, from a computation time perspective, Multi-Knap was better than the 

other heuristics examined.  Volgenant and Zoon (1990) analyzed and improved Magazine 

and Oguz’s heuristic (1984) by modifying how to compute the Lagrange multipliers.  

This modification yielded an improvement in the computing time and solution quality of 

Magazine and Oguz’s heuristic. 

Gavish and Pirkul (1985) tested various relaxations of the MKP including 

Lagrangian, surrogate and composite relaxation in order to find the lowest upper bound 

for the MKP.  Their computational experiments and comparisons indicate the composite 

relaxation provides the best overall bounds.  They suggest rules for reducing the problem 

sizes based on surrogate relaxation, then solve the reduced problem using the modified 
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branch-and-bound algorithm.  Their algorithm was compared to the branch-and-bound 

method of Shih (1979) in terms of computing time, and compared to the greedy heuristic 

of Loulou and Michaleides (1979) in terms of solution quality.  Their algorithm yielded 

faster computing time and better solution quality. 

2.6   Reduction Approaches 

If the modified MKP has fewer variables and constraints than the original MKP, 

and the modified MKP can have the same optimal solution as the original MKP, it is 

clearly advantageous to reduce the size of the MKP.  The modification of MKP can occur 

two ways: (1) reducing the number of variables (fix the values of some variables before 

the actual solution procedure is started) and (2) reducing the number of constraints 

(transform MKP to KP (multi-constraints to single constraint)).  Each reduction has the 

benefit of a smaller problem instance for all solution procedures such as exact algorithms 

and heuristics. 

 Fréville and Plateau (1986, 1994) introduced a reduction approach, RAMBO, in 

terms of variable and constraint eliminations.  RAMBO fixes the value of selected 

variables and eliminates constraints by the conjunction of simple tests applied to 0 – 1 

knapsack problems derived from the original problem.  Their reduction procedure 

decreases the size of the problem, and improves the efficiency of enumerative methods.  

Their algorithm also provides upper bounds using Lagrangian relaxation and surrogate 

relaxation and lower bounds using two greedy heuristics. 

Osorio et al. (2002) presented constraint pairing as a reduction algorithm for 

MKP.  Considering all constraints of MKP usually yielded better solution quality than 
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considering a single constraint one at a time.  However, the computational effort to 

consider all constraints of MKP can be excessive.  A constraint pairing is “a compromise 

between the two extremes: examining the full constraint system on one hand, and 

examining individual constraints on the other” (Osorio et al., 2002).  Using a constraint 

pairing, they fix some variables to zero and separate the rest into two groups – those that 

tend to be zero and those that tend to be one in the optimal solution.  These reduction 

procedures increase efficiency of the branch-and-bound algorithms with fewer nodes than 

commercial software. 

2.7   Tabu Search   

Tabu search (TS) is one of the most popular modern meta-heuristics.  The concept 

of the tabu search was developed in the 1970s; however in 1986, Glover first presented 

the current form of tabu search (Glover, 1977, 1986).  There are two important elements 

in tabu search: one is the moves and the other is the tabu list.  The “moves” define a 

neighborhood which is the set of candidate solution states reachable from the current 

solution state in one set of solution characteristic changes.  The tabu list stores the last 

few solution states visited and restricts their being revisited.  The basic concept of the 

tabu search, as described by Glover (1986), is to avoid cycles by forbidding moves that 

take the solution to points in the solution space previously visited.  Figure 1 shows a 

general iteration in a tabu search. 
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                                                                                                   (Harder et al., 2004)   
                               

Figure 1.  An Iteration in a Tabu Search 

 

Glover (1986) states, “tabu search is a meta-heuristic superimposed on another 

heuristic”.  Thus, a tabu search requires a subroutine, another heuristic, to find a local 

optimum.  When this subroutine finds a local optimum, the tabu search moves from the 

current solution space to another solution space, to find another local optimum.  Many 

different tabu searches have been created by using different heuristics to find local 

optima.   

Aboudi and Jörnsten (1994) applied a tabu search to MKP using the pivot and 

complement heuristic of Balas and Martin (1980) as a subroutine.   Aboudi and Jörnsten 

defined “moves” as the better integral solution found by the pivot and complement 

heuristic, and defined “tabu list” as the last integral solution found by the pivot and 

complement heuristic.  This tabu condition is enforced by adding a constraint to the last 

formulation preventing the pivot and complement heuristic from retuning to previously 

found solutions.  To explore different solution states, they used different initial inputs for 

the pivot and complement heuristic to escape from local optimal solutions. 
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 Glover and Kochenberger (1996) introduced tabu search combined with strategic 

oscillation.  The concept of strategic oscillation was first presented in Glover (1977).  

Their strategic oscillation process alternated between a constructive phase and destructive 

phase based on the current solution’s feasibility.  They defined a “critical event” as the 

last feasible solution found after a transition between phases.  Their tabu search focused 

on those critical events which drove the search to variable depths on each side of the 

feasibility boundary in order to improve solution quality. 

Løkketangen and Glover (1998) used tabu search to solve general mixed integer 

programming (MIP) problems, while Aboudi and Jörnsten (1994) only focused on the 0 – 

1 MKP.  However, Løkketangen and Glover also conducted an empirical test of their tabu 

search on 0 – 1 MKPs.  Løkketangen and Glover used a standard bounded variable 

simplex method as a subroutine to exploit the fact that an optimal solution to the 0 – 1 

MIP problem may be found at an extreme point of the LP feasible set.  The tabu search 

by Løkketangen and Glover is as follows: 

Step 0: Begin by solving the LP relaxation of the zero-one MIP problem to obtain an 
optimal LP solution.  x* is the best MIP feasible solution found and z* is its 
objective function value. 

 
Step 1: From a current LP feasible basic solution, consider the feasible pivot moves that 

lead to adjacent basic feasible solutions. 
           (a) Isolate and examine a candidate subset of these feasible pivot moves. 
           (b) If a candidate move creates an MIP feasible solution x whose associated 

objective function value z yields z > z*, record x as the new x* and update z* 
 
Step 2: Select a pivot move that has the highest evaluation from those in the candidate 

set, applying TS rules to exclude or penalize moves based on their tabu status. 
 
Step 3: Execute the selected pivot updating the associated TS memory and guidance 

structures, and Return to Step 1. 
                                   

                                                                                           (Løkketangen and Glover, 1998) 
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To define “moves”, Løkketangen and Glover introduced four types of move 

strategy: (1) Type I, decreasing profit and decreasing infeasibility; (2) Type II, increasing 

profit and increasing infeasibility; (3) Type III, non-decreasing profit and non-increasing 

infeasibility; (4) Type IV, decreasing profit and non-decreasing infeasibility.  To define 

“tabu status,” they tracked two pieces of information, the current solution status and 

solution frequency.  Even though their approach was developed for MIPs, their 

computational testing was employed on MKP test sets.  They achieved results 

comparable to solutions obtained by their own simple greedy heuristic, which was 

developed to take advantage of the special structure of the MKP.   

Hanafi and Fréville (1998) introduced a different tabu search approach for 0 – 1 

MKPs by using the concept of greedy heuristics within a tabu search framework.  Hanafi 

and Fréville introduced an oscillation strategy which emphasizes a search on the 

boundary between feasibility and infeasibility because the optimal solution is usually 

located on the boundary or close to the boundary.  Their “moves” are exchange 0 and 1 

values of variables regardless of feasibility, and their “tabu list” stores the current best 

solution and all the transitions performed.  To drive the search into new regions of the 

search space, Hanafi and Fréville used simple greedy heuristics to select variables to drop 

or add.  If the current region is a feasible region, they add the variable with the maximum 

bang-for-buck ratio (profit/cost) to move to an infeasible region.  They showed that tabu 

search based on oscillation strategy can efficiently solve MKPs by effectively searching 

on the boundary between feasibility and infeasibility. 

The most recent references to tabu search for MKPs are Vasquez and Hao (2001) 

and Oppen et al. (2003).  Vasquez and Hao incorporate linear programming into a tabu 
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search.  Their suggestion is that the search space around the optimum of the LP relaxation 

problem of the MKP should contain high quality solutions.  Thus, they solved the LP-

relaxed MKP, used a fractional optimal solution as an initial starting solution for the tabu 

search, and then used a tabu search to explore areas around these fractional optimum 

points.  The tabu search by Oppen et al. (2003) is very similar to the Hanafi and Fréville 

(1998) heuristic as it uses a greedy heuristic within a tabu search framework.   

Tabu search for MKPs is summarized as follows:  (1) it usually requires a 

heuristic to find a good feasible starting solution, (2) it usually defines “moves” as the 

flip of variables which means assigning the opposite value to a variable (i.e., assign zero 

to a variable which has value of one), (3) it requires a general heuristic or exact algorithm 

as a subroutine to find a local optimum or evaluate a current solution, (4) it requires 

recency and frequency information for “the tabu list” where recency information stores a 

recently flipped variable to avoid cycling and frequency information stores the number of 

flips of a variable to drive the search into different solution spaces where solutions have 

not been visited. 

2.8   Genetic Algorithm 

The genetic algorithm (GA) is a class of meta-heuristics which imitate the natural 

genetic process of biological organisms.  In 1975, John Holland first introduced the 

genetic algorithm (Holland, 1975).  The genetic algorithm begins with a group of 

solutions called a population.  Each solution in the population is evaluated by the fitness 

function to select a subset of the solutions to be either used directly in the next population 

(reproduction) or transformed (mutation or crossover).  The mutation assigns an opposite 
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value to a randomly chosen variable (0 → 1, or 1 → 0).  The crossover chooses two 

solutions, and then combines these solutions to produce new solutions.  Unlike other 

meta-heuristics, the genetic algorithm includes probability to select solutions for the next 

generation.  Better solutions in the current population will have a higher probability to 

reproduce a solution for the next generation.  The best solution to date is usually 

recorded.  Figure 2 shows an overview of the genetic algorithm. 
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Figure 2.  Overview of Genetic Algorithm 

 
 

Khuri et al. (1994) introduced a genetic algorithm to solve the MKP using the 

software package GENEsYs.  Since the GENEsYs package has flexibility regarding a 

fitness function and genetic operator (such as the function for probability of reproduction, 

crossover, and mutation), Khuri et al. found the proper parameter setting for GENEsYs.   

Khuri et al. initiated the genetic algorithm with a uniform randomly generated initial 

population (size 50), a mutation probability of 1/ 50, and crossover probability of 0.6.  

For crossover, the genetic algorithm chose two solutions at random from the current 

population, chose a crossover point between ith and jth variables at random, and 

exchanged all bits after the ith variables between both solutions.  Khuri et al.  used a 

simple fitness function with a graded penalty term for reproduction.  Unlike most uses of 

genetic algorithms, infeasible solutions are allowed to participate in the search, so the 
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genetic algorithm has variation in creating the next generation.  For termination criteria, a 

total of 100 runs are used.  Khuri et al. suggested that proper parameter selection and a 

simple fitness function accommodating infeasibility made the genetic algorithm more 

effective in solving MKPs. 

Theil and Voss (1994) compared three types of genetic algorithms: (1) a standard 

genetic algorithm, (2) a modified genetic algorithm integrating simple heuristic operators 

with an integer coding, and (3) a hybrid-GA based on combining a genetic algorithm with 

a tabu search.  The modified genetic algorithm starts with a randomly generated 

population.  For infeasible solutions in the population, an ADD/DROP heuristic is 

employed to remove variables until feasibility is achieved.  The objective function is used 

as the fitness function.  If infeasible solutions are allowed, the objective function value of 

an infeasible solution is reduced by some penalty function.  Mutations include the DROP-

ADD operator which starts by dropping variables, and in the next step, other variables are 

added while maintaining feasibility.  For a hybrid-GA, the tabu operator is employed to 

avoid local optimality.  Theil and Voss compared three algorithms on 57 literature test 

problems and concluded: (1) the standard GA cannot obtain good solutions, (2) a 

modified GA got acceptable results when applied to small problems, results that were 

much better than those achieved by the standard GA, and (3) the results obtained by a 

hybrid-GA were better than results by other meta-heuristics, such as simulated annealing 

or tabu search.   

Hoff et al. (1996) discussed how to find good parameter settings and search 

mechanisms for the genetic algorithm based on empirical analysis.  Hoff et al. conducted 

empirical testing to optimize parameters such as population size, mutation operator, 
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crossover function, population type, fitness function, and new generation size.  For 

population size, they found that too small a population provides too little diversity, while 

too large a population causes the genetic algorithm to require long computing times.  

Their empirical tests found that a population size of 5n worked best, where n is the 

number of variables.  Among different mutation operators, an inverted mutation, which 

gave the opposite value to a selected variable, performed best with a mutation rate of 
n
1 .  

For a crossover function, the burst crossover was the best, in which a crossover is made at 

every bit position in turn with 0.5 probabilities, thus possibly resulting in many crossover 

points.  For population types regarding either feasibility or infeasibility, the population 

that always maintained feasibility worked best.   Hoff et al. examined three different 

fitness functions: objective function value, the fitness function by Khuri et al., and the 

objective function value minus the square root of the sum of overflow of the knapsack.  

They found that none of the above fitness functions was adapted to a feasible population 

type.  The fitness function of Khuri et al. is population type – specific, thus it did not 

perform well with a feasible population type.  The number of generations should be 50 

times the population.  Hoff et al., in their conclusion, noted how careful parameter tuning 

was very successful, and thus the genetic algorithm can yield superior results.  

Chu and Beasley (1998) combined a genetic algorithm with the greedy heuristic 

portion of Pirkul’s heuristic (1987).  Chu and Beasley’s genetic algorithm only considers 

feasible solutions.  Thus, if an infeasible solution is created, they drop variables 

according to a simple effective gradient value (Gj) of the greedy heuristic until feasibility 

is achieved.  This operation is called “a repair operator” and guarantees all solutions are 
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feasible.  Their default setting for the genetic algorithm includes the binary tournament 

selection method (two solutions randomly selected for parents from two pools), the 

uniform crossover operator (each bit in the new generation is created by copying the 

corresponding bit from one or the other parent solution), and a mutation rate equal to 2 

bits per child string.  Chu and Beasley compared their genetic algorithm performance to 

heuristics by Magazine and Oguz (1984), Volgenant and Zoon (1990) and Pirkul (1987).  

Their genetic algorithm outperformed the other heuristics in terms of solution quality. 

Raidl (1998) presented an improved genetic algorithm for the MKP by pre-

optimization of the initial population.  Raidl suggested that the solution quality of a 

genetic algorithm could be improved with an initial population of pre-optimized solutions 

determined by a greedy heuristic based on the LP-relaxed MKP and using probabilistic 

repair operators and local improvements to create the next generation.  Since the solution 

values of the LP-relaxed MKP are fractional values from 0 to 1, Raidl used these 

fractional values as probabilities for setting variables equal to one in the initial 

population.  The “repair operator” is similar to Chu and Beasley’s (1998); the only 

difference is that Raidl’s method is probabilistic based on the solution of the LP-relaxed 

MKP, while Chu and Beasley’s method is deterministic.  Computational tests indicated 

that Raidl’s genetic algorithm outperformed Chu and Beasley’s genetic algorithm on 

solution quality and faster computing time based on Beasley’s standard MKP test set. 

 Two points can summarize genetic algorithms for the MKP: First, proper 

parameter settings for the genetic algorithm are very important in obtaining better MKP 

solution quality.  Second, to improve the final solution quality of the genetic algorithm, 

25 



apply another heuristic to select better solutions in the current population or incorporate it 

in the optimization steps of the genetic algorithm to create a better next generation. 

2.9   Simulated Annealing   

 Simulated annealing is another popular modern meta-heuristic.  As with other 

meta-heuristics, simulated annealing is a local search technique designed to allow it to 

escape from local optima.  Simulated annealing imitates a physical annealing process 

applied to solids, where a material is heated into a liquid state then cooled to a 

recrystallized solid state.  Kirkpatrick et al. (1983) showed that the physical annealing 

simulation is applicable to optimization problems.  Figure 3 shows the mapping of 

physical annealing terminology to simulated annealing terminology for an optimization 

problem. 

 

Thermodynamic Simulation Combinatorial Optimization 
System State Feasible Solution 

Energy Cost 
Change of State Neighboring Solutions 

Temperature Control Parameter 
Frozen State Heuristic Solution 

                                                                                                    (Kirkpatrick et al. (1983)) 
 

Figure 3.  Physical Annealing vs. Simulated Annealing Terminology   

 

Like other meta-heuristics, simulated annealing starts with an initial feasible 

solution, evaluates candidate (neighborhood) solutions, and selects one of the candidate 

solutions that improves the objective function value or escapes from local optima.  There 

is big difference between simulated annealing and other meta-heuristics as simulated 
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annealing uses more probabilistic parameters in its approach.  This probabilistic attribute 

allows escape from a local optimum while tabu search uses a deterministic approach to 

escape a local optimum.  Figure 4 shows an overview of an iteration in simulated 

annealing. 

 

Current Solution
(x)

Randomly Pick
Neighbor Solution (y)

Select (y) 
with z(x) < z(y) or

specific probability

Current Solution
(x)

Randomly Pick
Neighbor Solution (y)

Select (y) 
with z(x) < z(y) or

specific probability
 

z: objective function value 
Figure 4.  An Iteration in Simulated Annealing 

 

Drexl (1988) applied a simulated annealing approach to MKP, an approach called 

PROEXC (probabilistic exchange).  The basic procedure of PROEXC is (1) to start with 

a random feasible solution, (2) to categorize two sets of variables: one set includes all 

variables equal to zero and the other set includes variables equal to one, (3) to randomly 

choose one variable from each set, (4) to exchange two variables if objective function 

value increases or subject to a given probability, and (5) conduct a given number of 

iterations at each temperature.  Drexl used 57 test problems to determine the best 

parameters of the simulated annealing.  Computational tests indicate PROEXC provides 

equally fast and equally good solutions compared to the heuristic of Gavish and Pirkul 

(1985). 
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2.10   Others   

Hillier (1969) introduced a heuristic for MKP based on the simplex method.  His 

heuristic consists of three phases:  Phase 1 identifies initial solutions which are the 

optimal noninteger solution obtained by the simplex method and nearby integer solutions, 

Phase 2 searches nearby integer solutions, and Phase 3 attempts to improve the feasible 

solution obtained in Phase 2. 

 Balas and Martin (1980) suggested the “pivot and complement” heuristic for 0 – 

1 KP.  It uses the fact that a 0 – 1 KP is equivalent to the associated LP with the added 

requirement that all slack variables are basic.  Their heuristic starts by solving the LP, 

performs a sequence of pivots aimed at putting all slack variables into the basis at a 

minimal cost, and finally improves solution quality using a local search based on 

complementing certain sets of 0 – 1 variables.  

Glover (1994) proposed a heuristic based on a neural network concept, “ghost 

image processes”.  The results obtained by ghost image processes were compared to 

those obtained by Senju and Toyoda’s heuristic (1968).  Glover’s heuristic yielded better 

solution quality on randomly generated problems than Senju – Toyoda’s, albeit its 

computational time was slower than Senju – Toyoda’s algorithm.  

Averbakh (1994) examined dual properties of the MKP for different probabilistic 

models.  Averbakh presented a heuristic based on Lagrangian relaxation and these 

probabilistic models.  Since Lagrangian relaxation provides upper bounds to the MKP, 

the probabilistic models provide good Lagrangian multipliers, which are the control 

parameters of the heuristic, to reduce the gap between Lagrangian relaxation solution and 

the optimal solution of MKP.     
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2.11   Summary 

The MKP is an important and difficult class of combinatorial optimization 

problem.  Various heuristics and exact methods have been developed to solve MKP.  

While, there are many variants within a given method, these methods are general and 

each method has its own preferred parameter values for specific problem characteristics.  

Although the efficiency of an algorithm has been demonstrated in computational tests, 

their use may be limited due to their specificity.  Thus, in practice, when using such 

methods to solve MKP, one encounters the dilemma of which heuristic or exact method 

to select, and then, within the selected method, which of the variants to implement. 

As shown above, it is a common and popular scheme to combine different 

heuristics: Shih (1979), Balas and Zemel (1980), and Martello and Toth (2003) combined 

a greedy heuristic with a branch-and-bound algorithm; Weingartner and Ness (1967), and 

Bertsimas and Demir (2002) dynamic programming; Magazine and Oguz (1984), and 

Volgenant and Zoon (1990) transformation approaches; Aboudi and Jörnsten (1994), 

Glover and Kochenberger (1996), Hanafi and Fréville (1998), and Oppen et al. (2003) 

tabu search; Chu and Beasely (1998) and Raidl (1998) genetic algorithms.   

Greedy heuristics provide good bounds for exact methods, find good initial 

feasible solutions, and improve solution qualities of modern heuristics.  Many researchers 

have insisted that they have improved the main method for MKP simply by using 

different greedy heuristics as a base heuristic.  Even though they have showed the 

competencies of their methods based on computational tests, the test problems are overly 

specific.  Thus, their method might fail to produce expected solution quality when 

dealing with other types of problem characteristics because heuristics for finding 
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solutions tend to be problem specific.  Therefore, in this research, greedy heuristics and 

transformation approaches are examined to better understand how they perform as a 

function of problem characteristics, thereby yielding more robust greedy and 

transformation heuristics.  Greedy heuristics are examined in the next chapter. 
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III.   Empirical Analyses of Legacy Greedy Heuristics 

3.1   Introduction 

This chapter studies the legacy greedy heuristic methods proposed by Toyoda 

(TOYODA, 1975), Senju – Toyoda (S – T, 1968), Loulou – Michaelides (L – M M1, M2, 

SW1, SW2, 1979), Fox and Scudder (FOX, 1985), and Kochenberger et al. (KOCHEN, 

1974).  The background section provides an overview of empirical analyses and the 

heuristic solution procedures for multidimensional knapsack problems.  The next section 

looks at the lack of diversity of the standard problem set, describes the characteristics of 

the benchmark problem set, and discusses its weaknesses.  Finally, empirical analyses of 

the heuristic solutions of 2KP and 5KP test problem sets illuminate the effects of 

constraint slackness and correlation structure on the performance of heuristics. 

3.2   Background 

3.2.1   Empirical Analyses of Heuristics 

Hooker (1994) suggested that the performance of algorithms be analyzed in two 

ways: one is to analyze performance analytically relying on the methods of deductive 

mathematics and the other is to analyze performance empirically using computational 

experiments.  In the operations research literature, deductive mathematical methods are 

more developed than empirical analysis.  However, the mathematical approach does not 

usually indicate how an algorithm is going to perform on typical problems.  If we want to 

know how an algorithm works on typical problems, computational experiments give 

much more insight into algorithmic performance. 
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Through empirical analysis, it can be determined how algorithms work and why 

algorithms perform well or poorly.  Thus, algorithms should be analyzed to gain insight 

into theory as insights from empirical analysis might suggest theory.  Since a heuristic 

method is an algorithm, a heuristic can be analyzed through empirical testing (Hooker, 

1994).   

Computational complexity theory classifies problems according to their solution 

difficulty based on a measure of worst-case running time.  There are two basic divisions 

of problems: those problem classes easy to solve as there exists a provable polynomial 

time algorithm for the problem class, and those problems difficult to solve as there is no 

provable polynomial time algorithm for the problem class.  The latter are referred to as 

the problems in the Class NP (Parker and Rardin, 1982). 

NP Problems are very difficult to solve and sometimes, impossible to solve in a 

reasonable amount of time.  Heuristics, however, offer a way to find reasonable solutions 

in a reasonable amount of time.  The solutions typically come with a feasibility guarantee 

but are not guaranteed optimal.  The quality of a solution can be used to compare 

heuristics.  The next section introduces greedy MKP heuristics.   

3.2.2   Legacy Greedy Heuristics for MKP 

The MKP is encountered when one has to decide how to choose items to satisfy 

multiple resource constraints.  As shown in Chapter II, many effective greedy solution 

procedures for the MKP are used independently or incorporated into exact algorithms or 

meta-heuristics to improve the performance of those approaches.  This section examines 

the greedy heuristics proposed by Toyoda (1975), Senju and Toyoda (1968), Loulou and 
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Michaelides (1979), Kochenberger et al. (1974), and Fox and Scudder (1985).  Each 

greedy heuristic uses a penalty cost (vj) to quantify the relative worth of the items.   

Toyoda’s Heuristic (TOYODA) 

Toyoda’s (1975) approach is to evaluate each item in terms of its effective 

gradient, a measure of item worth per unit cost in terms of all resources used.  Toyoda 

first normalized each constraint, so all right-hand side (RHS) values were 1 by 

multiplying the ith constraint in Equation (3) by 
ib

1 .  The Toyoda penalty cost function is 

defined as follows: 
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where  is the resource used in constraint i, and 0 ≤  ≤ 1 for i = 1,…, m where m is 

the number of constraints.  Then, the effective gradient is computed for each item as  

0
ib 0
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j

j
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c
G = ,    j = 1, …, n                                            (11) 

where  is the objective function coefficient for the jth item and the value vjc j is updated  

each iteration.  Toyoda’s method starts with an empty knapsack and then adds the item 

with the highest scoring feasible effective gradient until some knapsack constraint 

prevents further placement of items in the knapsack.   

Toyoda (1975) called this a primal effective gradient method because the solution 

is always feasible.  An overview of this approach is as follows: 

Step 1: Start with all items designated as not contained in the knapsack. 
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Step 2: Compute the effective gradient for each candidate item not currently in the 

knapsack and feasible. 

Step 3: Order the candidate items in descending order of their effective gradient 

measures. 

Step 4: Add highest scoring item to the knapsack.  

Step 5: Go to Step 2, maintaining problem feasibility across all constraints. 

Senju and Toyoda’s Heuristic (S – T) 

Senju and Toyoda’s (1968) method starts with all items designated as contained in 

the knapsack.  The heuristic then drops items (xj) according to the ascending order of a 

dual effective gradient until feasibility is achieved.  Their approach is a two-pass 

algorithm since the authors realized the computed gradients might cause the algorithm to 

“over shoot” the feasibility target.  Thus, once feasible, the Senju – Toyoda method 

attempts to restore items previously dropped.  To define their penalty cost (vj), let Pj = 

{a1j, a2j, …, amj} be the vector of constraint coefficients for item j of n items.  Let T = 

{ , i = 1, …, m} be the vector of total resources consumed in each of m constraints 

when all items are in the knapsack, and L = {b

∑
=

n

j
ija

1

1, b2, …, bm} be the vector of right – hand 

side values, so R = T – L is the surplus vector.  The Senju – Toyoda penalty cost function 

is defined as follows:  

R
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where R , the length of R, is defined as 22
2

2
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effective gradient is: ⎟
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An overview of this dual approach follows: 

Step 1: Start with all items designated as contained in the knapsack. 

Step 2: Compute a dual effective gradient for each item. 

Step 3: Order the items in ascending order according to their dual effective 

gradient measures. 

Step 4: Remove items with the lowest dual effective gradient measure until 

feasibility with respect to all constraints is achieved. 

Step 5: Re-consider removed items for inclusion if all constraints are non-binding. 

Loulou and Michaelides’ Heuristic (L – M) 

Loulou and Michaelides’ (1979) expand on Toyoda’s (1975) approach.  If two 

candidate items have an equal , select the item which consumes the least actual amount 

of the resources.  They proposed four ways to calculate the penalty cost .  To calculate 

their effective gradient, three important concepts are introduced. 

jv

jv

iji aDA + : total consumption of resource i if xj is added to the current solution (set 

       to one) where DAi is the amount of resource i consumed so far. 

)(1 iji aDA +− : amount of resource i remaining if xj is added to current solution  

    (set to one) 

∑ ∈
−

SCk ijik aa : future potential demand for resource i if xj is added to current                           

                          solution (set to one) where SC is the set of candidate variables 
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    (xj = 0,  j ∈ SC). 

The first method for calculating penalty factor  is then: jv

( ) })1/(){(,...,1 ijiijikSCkijimij aDAaaaDAMaxv −−−+= ∑ ∈= .  (13) 

The second method decreases the importance of the ratio in calculating  by 

using the square root function: 

jv

( ) })1/(){( 2/12/1
,...,1 ijiijikSCkijimij aDAaaaDAMaxv −−−+= ∑ ∈= . (14) 

The third and fourth methods are based on the first and second methods, 

respectively.  These approaches use  until Maxjv i DAi becomes “close enough” to 1 and, 

from then on, selects items according to cj values only.  This modification is called a 

switch.  The switch is actuated when some resource becomes so scarce as to suggest that 

the algorithm is close to terminating.   

Kochenberger et al. Heuristic (KOCHEN) 

Kochenberger et al. (1974) developed a primal heuristic based on the Senju – 

Toyoda heuristic.  Kochenberger et al. applied a surplus vector indicating how much 

resource remained, a concept originally introduced by Senju and Toyoda (1968).   

The outline of the KOCHEN heuristic procedure is as follows: 

Step 1: Set xj = 0, j = 1, …, n 

Step 2: Compute ixabb
n

j
jijii allfor 

1
∑
=

−= ; where ib  is remaining resource in   

 the ith constraint 
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Step 3: Compute 
i

ij
ij b

a
a = ; where ija  for all i,  j ∈ SC is the portion of remaining  

  resource i consumed if variable j is selected 

Step 4: Compute SCjaT
m

i
ijj ∈=∑

=

for 
1

. 

Step 5: Compute SCjTcc jjj ∈= for / ; jc is the primal effective gradient. 

Step 6: For jSCj c∈max , set xj = 1, remove j from SC. 

Step 7: Go to Step 2, maintaining problem feasibility across all constraints. 

Fox and Scudder’s Heuristic (FOX) 

Fox and Scudder (1985) presented a basic structure of primal and dual greedy 

heuristics for MKPs, and proposed a penalty cost heuristic based on a primal approach 

applied to a generalized set-packing model.  A generalized set-packing model is a 

specific form of a MKP with the additional requirement that cj = 1 and aij = 0 or 1, for all 

i and j.  Thus, the FOX heuristic can be applied to a pure 0 – 1 MKP with cj > 0, and all 

(at least one  for each j).  They suggest that general effective gradient rules 

require that quantities G

0≥ija 0>ija

j  be computed for each  j ∈ V as 

∑
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iji

j
j aw

c
G                                 (15) 

where V is the set of all variables, C is the set of all constraints, and wi represents a 

“weight” assigned to constraint i reflecting its “ importance” based on the relative 

“scarcity” of resource i.  In a primal heuristic, variable xk is set to 1 when Gk equals the 

maximum of Gj  over j ∈ V.  In a dual heuristic, variable xk is set to 0 when Gk equals the 
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minimum of Gj  over j ∈ V.  The weights are updated in successive iterations to reflect 

changing constraint importance or resource scarcity as variables are set to 1 or 0.   

In the FOX heuristic, the weight is defined as follows:  

⎩
⎨
⎧ =

=
otherwise0

if1 min
pp

ip
i

bb
w            for all  i         (16) 

where is the amount of resource i remaining at the end of iteration p and p
ib

{ }p
i

p bb minmin =  for all i.  Thus, in the FOX heuristic, a constraint is viewed as being 

“important” if the associated resource availability is the most “scarce”. 

The steps of the FOX heuristic are the same as those of the TOYODA heuristic 

except for the calculation of an effective gradient function.  

The heuristic methods proposed by Toyoda (TOYODA, 1975), Senju and Toyoda 

(S – T, 1968), Loulou and Michaelides (L – M M1, M2, SW1, SW2, 1979), Fox and 

Scudder (FOX, 1985), and Kochenberger et al. (KOCHEN, 1974) are analyzed in this 

chapter.   

3.2.3   Effect of Problem Characteristics on Solution Procedure Performance 

Study of the Effects of Constraint Slackness  

Greedy heuristics for MKPs usually find different solutions based on the problem 

characteristics.  Zanakis (1977) compared the performance of three heuristic methods 

(Senju – Toyoda (1968), Kochenberger et al. (1974), and Hillier (1969)).  For the 

comparison, he created a set of randomly generated 0 – 1 test problems with nonnegative 

coefficients, and also used benchmark test problems.  Zanakis controlled the number of 

variables (V), (20, 60 ,100, 200, 500 and 1000), the number of constraints (C), (20, 60, 

100 and 1000), and the degree of constraint slackness (30%, 50%, and 90%: the ratio, 
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, expressed as a percentage, is the slackness of the constraint) in the randomly 

generated test problems.   However, each constraint in a given problem had the same 

degree of constraint slackness.  He measured computer running time, error with respect to 

the best heuristic result, and relative error with respect to the true optimum of the test 

problems.  Zanakis’ results suggest all three methods have solution times that increase 

linearly up to 40-50 variables and 200 constraints, exponentially thereafter, with solution 

times increasing faster with the number of variables (V) vice the number of constraints 

(C).  Hillier’s (1969) heuristic was the most accurate, but it was much slower than the 

other two heuristics because of its use of the simplex algorithm.  The KOCHEN heuristic 

was the fastest and the most accurate with both tight (30%) and loose (90%) constraints.  

In general, the S – T heuristic was the fastest but least accurate on small and medium size 

problems.  Therefore, Zanakis suggested selecting the best heuristics based on the 

problem characteristics.  Loulou and Michaelides (1979) made a similar suggestion based 

on their research results.  Few research efforts have, however, examined or considered 

these suggestions, an exception being this work and Cho et al. (2003b). 

Fox and Nachtsheim (1990) evaluated greedy selection rules for 0 – 1 MKPs on 

their randomly generated test problems.  They used six rules (numbered I through VI) to 

calculate the penalty factor (wi).  The effective gradient (Gj) is 
∑

=
iji

j
j aw

c
G  where wi 

represents a “weight” assigned to constraint i reflecting its “importance” or the relative 

“scarcity of resource i ”, cj is the jth objective function coefficient, and aij are the 

constraint coefficients of variable xj.  A greedy rule selects the largest Gj and sets xj to 1.  
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Rules I, II and III are based on the Fox and Scudder (1985) heuristic.  The method for 

calculating the effective gradient, Gj, in Rule I is the same as in Equation (15) (Fox and 

Scudder, 1985).  Rule I is modified to create Rules II and III.  A constraint tightness 

consideration is used by these rules.  Let be the tightness of constraint i prior to the pth 

iteration.  In Rule I, , in Rule II where is the amount of resource i remaining at 

the end of iteration p, 

p
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p
i

p
i bs = p
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bs  where SC is the set of indices of variables equal to 
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The weights used are as follows: 
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for all i ∈ CT, where  and CT is the set of indices of constraints that 

could potentially become violated if some of the variables with indices in V are set to 

one. 

}{minmin
p

iCTi
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Rule IV simply sets  to one for all constraints and iterations.  Rules V and VI 

are based on Toyoda (1975), with weights as follows: 

p
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where S is the set of indices of variables set to 1.  In Rule V, Q = 0, and in Rule VI, 

{ }∑ ∈∈
=

Sj ijCTi
aQ max5.0 . 

For their empirical analysis, Fox and Nachtsheim (1990) varied four parameters to  

randomly generate 1440 test problems.  Their parameters were number of variables, 
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number of constraints, constraint matrix density, and slackness ratios (tightness slackness 

ratio, Si = 0.3 with probability 0.5 and loose slackness ratio, Si = 0.7 with probability 0.5).  

For constraint matrix density, if the constraint matrix contains enough zero entries to be 

worth taking advantage of them, the constraint matrix may be represented as a sparse 

matrix.  Fox and Nachtsheim measured the average relative efficiencies and the average 

rank of the objective function among all six rules.  They suggested that Rule IV seems to 

be the best approach in terms of relative efficiencies and rank of the objective function.  

However, in the mixed slackness ratio problems, Rule I from Fox and Scudder (1985) 

was superior because Rule IV uses the same importance and same weight for each 

constraint.  Fox and Nachtsheim concluded, “The simplest rule is the best, except when 

the constraints exhibit mixed slackness.” (Fox and Nachtsheim, 1990) 

Studies into Effects of Correlation  

Some MKPs can be quickly solved even if n is very large, while other problems 

cannot be easily solved for n equal to a few hundred.  One reason may be that the 

correlation between objective function coefficients and each set of constraint coefficients, 

and the correlation between sets of constraint coefficients effects solution procedure 

performance.  Many authors develop their randomly generated problem sets to verify 

their algorithm, but few have actually studied the effects of correlation among the test 

problem coefficients.   

Martello and Toth (1988) conducted experiments with an exact algorithm, MT2, 

solving 0 – 1 knapsack problems with three correlation levels and more than 100,000 

variables.  They reported uncorrelated and weakly correlated instances were easily 

solved.  However, the strongly correlated instances were very difficult to solve; they 
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could be solved for a small number of variables and constraints, using a dynamic 

programming algorithm that, however, would not work on larger instances due to 

excessive space and time requirements.  In short, the results of Martello and Toth for the 

0 – 1 knapsack problem indicate that problems with near perfect positive correlation 

between the objective function coefficients and the constraint coefficients are 

significantly harder to solve than the uncorrelated problems.   

Hill and Reilly (2000) measured how the coefficient correlation structure affects 

solution performance using randomly-generated sets of two-dimensional knapsack test 

problems.  For test sets, they controlled three problem generation parameters: type of 

correlation measure (Pearson or Spearman), correlation structure, and the constraint 

slackness; keeping problem size constant. 

For their study, they used CPLEX and Toyoda (1975) as solution methods.  Their 

goal was to investigate how problem structure affects solution procedure performance by 

either exact algorithm (CPLEX) or heuristic (TOYODA).  They measured the number of 

nodes for CPLEX performance and the relative error for TOYODA performance.  

Between Pearson and Spearman test problems, Spearman correlation problems were 

harder to solve.  For correlation structure, they found that the difficult problems requiring 

more CPLEX nodes have larger differences between 1CAρ , 2CAρ , and 21AAρ  where 

)2,1( =iiCAρ  is the correlation between objective function coefficients and the ith 

constraint coefficients and  21AAρ  is the correlation between the first constraint 

coefficients and second constraint coefficients.  Negative values of 21AA
ρ  yield the 

hardest problems for TOYODA.  Interestingly, the challenging problems for CPLEX 
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were easy for TOYODA as TOYODA often found optimal solutions.  For constraint 

slackness, tight constraints provide more challenging problems for both CPLEX and 

TOYODA.  The interaction between correlation structure and constraint slackness is that 

tighter constraints and constraint coefficients with a wider range of values produce more 

difficult problems.  However, in CPLEX, positive interconstraint correlation usually 

yields easy to solve  problems.  For TOYODA, tight constraints and negative 21AAρ  make 

problems harder to solve.  Their results indicate that an algorithms’ performance depends 

on the problem “characteristics”.   

3.2.4   Problem Generation 

Zanakis (1977) examined the performance of three heuristics on randomly 

generated test problems.  He suggests that number of variables, number of constraints, 

and constraint slackness ratios are considerable factors that affect the performance of 

heuristics.  The degree of constraint slackness was studied at three levels.  For each 

combination, cj and aij are generated from a uniform distribution between 0 and 40, and 

then the RHS, bi, is set to equal to  where S is the fixed slackness ratio. ∑
=

⋅
n

j
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1

Fox and Nachtsheim (1990) follow the guidelines of the experimental design from 

Lin and Rardin (1980) to develop a generalized packing problem set for comparing six 

different algorithms.  They define (1) number of constraints, m, (2) number of variables, 

n, (3) constraint matrix density, d, with aij = 0 according to the density, and (4) constraint 

slackness ratios, s.  Two different levels of m, n, d, and three different levels of s are 

recommended in the randomly generated problem set.  The values are as follows: m = 50 

or 200, n = 50 or 200, and d = 0.05 or 0.10 (5 % of the elements of the constraint matrix 
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are not zero or 10% are not zero).  Although they used the same method to create 

constraint slackness ratios as Zanakis (1977), they introduced mixed slackness ratios, 

where Si = 0.30 with probability 0.5 and Si = 0.70 with probability 0.5.  They suggest the 

use of a split plot or repeated measure design with 2×2×2×3 (m×n×d×s) factorial 

structure, and the response is the objective function value.    

Beasley (2004) provides a MKP benchmark test problem set (from Chu and 

Beasley (1998)).  Most all MKP studies employ these problems as their benchmark.  The 

data sets, labeled mkbapcb1 through mknapcb9, are synthetically generated problem sets 

with 30 problems in each file.  The test problems use the convention of equal slackness 

ratios in all constraints of a particular problem.  The ratio is varied across three constraint 

slackness ratios (0.25, 0.5, 0.75).  Within a problem set file, each ratio is applied to 10 

problems.  The test sets involve problems with 5, 10, and 30 constraints and 100, 200, 

and 500 variables.  The characteristics of these test problem sets are discussed in the next 

section. 

3.3   The Lack of Diversity of the Beasley Problem Set 

Standard problem sets are commonly used to benchmark heuristic performance.  

One such set, available at Beasley (2004), has long been the favored problem set.  In fact, 

one is hard pressed to find a more common problem set.  Benchmark problems have a 

recognized and valued role in empirical analysis, providing an objective, reusable basis of 

comparison.  Empirical analysis guidelines recognize this purpose and encourage the use 

of benchmark problems. 
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However, “standard” problems lack the diversity obtainable via a structured, 

experimental design-based, synthetic problem generation method.  This lack of diversity 

can lead to false claims of solution method generality.  Furthermore, the lack of diversity 

can lead to oversight error (Hill, 1998).  As defined, oversight error implies missing an 

important factor in an analysis of an algorithm because the researcher was unaware of the 

factor’s relevance and its presence.  This definition of oversight error is expanded to 

include a failure to recognize important algorithm performance attributes due simply to 

insufficient test problem diversity. 

Three common indicators of problem difficulty are the number of variables in the 

problem, the number of constraints in the problem, and the “tightness” of the constraints.  

Lack of diversity in the standard problem set is found in two important characteristics: 

constraint slackness and problem coefficient correlation structure.  These characteristics 

are not sufficiently varied in benchmark problems.   

Constraint slackness is defined as the ratio of the value of the right-hand side 

parameter to the sum of the constraint coefficients.  The value, Si, for i = 1, …, m 

constraints, is called the slackness of a constraint.  For the standard problems examined, 

Si=S for all constraints in a particular problem and S was varied with values of 0.25, 0.50 

and 0.75.  This means all constraints within a given problem have a similar structure with 

respect to slackness settings. 

A portion of a problem’s correlation structure is the correlation between the set of 

objective function coefficients and each set of constraint coefficients.  Hill and Reilly 

(2000) systematically varied these values, denoted as iCAρ for i = 1, 2 and found that 
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algorithm performance varied as values of iCA
ρ  varied.  The benchmark problems do not 

sufficiently vary iCAρ .  In fact, any variation of iCAρ  away from a value of approximately 

0.42 is due merely to sampling error.  Chu and Beasley (1998) induce correlation using a 

linear function.  This linear function yields a theoretical value of  42.0=iCA
ρ . 

 

Table 1.  Correlation Analysis of Standard Problems 

File min iCAρ  max iCAρ  (n,m) 
mknapcb1 0.094 0.511 (100,5) 
mknapcb2 0.163 0.461 (250,5) 
mknapcb3 0.189 0.403 (500,5) 
mknapcb4 -0.157 0.459 (100,10) 
mknapcb5 0.003 0.326 (250,10) 
mknapcb6 0.030 0.308 (500,10) 
mknapcb7 -0.256 0.437 (100,30) 
mknapcb8 -0.192 0.307 (250,30) 
mknapcb9 -0.074 0.213 (500,30) 
(n,m) represents (variables, constraints) in problems 

 

 

Table 1 summarizes the analysis of these problems.  Among the nine files 

available at Beasley (2004) containing the 270 test problems, mknapcb1.txt through 

mknapcb9.txt, each iCAρ  varies randomly and provides an insufficient range.  Not 

surprisingly, the maximum iCA
ρ  gets smaller as the problem size increases. 

Figure 5 shows the correlation range between objective function coefficient and 

five constraint coefficients in mknapcb1 and mknapcb2.  All correlation values ( iCAρ , i = 

1, …, 5) between objective function coefficients and each set of constraint coefficients 
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fall in the range from 0 to 0.5.  This range of correlation values is very narrow when 

compared to the entire correlation range -1 to 1. 
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Figure 5.  Correlation Range of iCAρ in mknapcb1 and mknapcb2 

 

Two key insights arise from this analysis.  The range of iCA
ρ  is limited in each 

problem set thereby limiting algorithm performance insight at stronger, particularly 

negative, levels of coefficient correlation.  These problems do not provide an 

experimental basis upon which to make claims of general applicability of a particular 
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solution procedure.  The second insight is that some of the randomly attained values of 

iCA
ρ  are likely strong enough to exert an influence on algorithm performance; an impact 

rarely, if ever, accounted for in empirical analyses (i.e., potential oversight error). 

Hill and Reilly (2000) determined that varied levels of constraint tightness and 

problem correlation structure within a problem have a significant influence on heuristic 

(and enumerative) procedure performance.  Thus, the original Beasley problem sets were 

modified slightly in order to show how the varied levels of constraint tightness and 

correlation structure affect the performance of heuristics.  The five legacy heuristics, 

TOYODA, S – T, L – M M1, FOX and KOCHEN were used to solve three different 

versions of the mknapcb1 problems: original, modified constraint slackness, and modified 

correlation problem sets.  The original problem set is the unmodified mknapcb1 test set.  

In the modified constraint slackness problem, constraint slackness settings are changed in 

the original problem sets so that one constraint slackness setting is tight, with a slackness 

ratio of 0.3, and the other constraint slackness settings are loose with a slackness ratio of 

0.7.  This changes the basic structure of the test problem.  In the modified correlation 

problem, the order of constraint coefficients in one of the original constraints is shuffled 

to match the order of the objective function coefficients, thus one of the correlation 

values (between the coefficients of the objective function and one of the constraints) is 

strongly positive, while the other objective function – constraint correlations are kept at 

their original, weak positive, correlation values.  The results for each problem set are 

provided in Table 2.  To compare heuristics, the number of times each heuristic returned 

the clear best solution is counted, compared to all other heuristics considered (ties are 

excluded).    
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Table 2.  Results of Greedy Heuristics on mknapcb1 Problem Set 

 Original Problem Modified Slackness Modified Correlation 
TOYODA 3 0 1 

S – T 0 27 3 
L – M  M1 0 0 11 

FOX 0 0 8 
KOCHEN 23 1 3 

Key: 
Modified Slackness 
 
Modified Correlation 
TOYODA 
S – T 
L – M M1 
FOX 
KOCHEN 

 
One constraint’s slackness is tight and others are loose (tight = 
0.3, loose = 0.7) 
One correlation coefficient is close to one (Highly positive) 
Toyoda (1975) 
Senju and Toyoda (1968) 
Loulou and Michaelides Method 1 (1979) 
Fox and Scudder (1985) 
Kochenberger et al. (1974) 

 
 

The results in Table 2 are surprising!  KOCHEN is a clear winner for the original 

mknapcb1 problem set.  S – T, however, is the best heuristic when just one constraint is 

tightened.  If one of the correlation values between the objective function coefficients and 

constraint coefficients, iCA
ρ  , i = 1, …, 5, is close to one, L – M M1 or FOX became the 

best performing heuristic among the five heuristics examined.  Therefore, simple 

perturbations to Beasley’s standard benchmark MKP set provide quite different problem 

characteristics and result in different heuristics performing well.  Such changes, simple as 

they are, mean a heuristic cannot be clearly identified as a best heuristic based on this 

benchmark problem test set.  Therefore, empirical analysis of heuristics requires a more 

diverse test set that includes various problem characteristics.       
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3.4   Approaches to the Empirical Analysis of Heuristics 

3.4.1   General Approach for Empirical Testing of Heuristics 

Barr et al. (1995) outline a general approach for conducting empirical testing of 

heuristics.  Their guidelines, and the specifics implemented, are as follows: 

1. Define the goals of the experiment: 

The goal in this research is to conduct a rigorous computational study to isolate 

and examine the performance of eight greedy heuristics: TOYODA, S – T, the four L – 

M (M1, M2, SW1, SW2), FOX and KOCHEN, based on constraint slackness and 

correlation structure.  Specifically, one purpose of this research is to gain insight into how 

constraint slackness and correlation structure affect the performance of different 

heuristics, and develop new heuristics based on insights gained.  In other words, which 

heuristic method yields the best solution under certain correlation and slackness 

conditions, why does this happen, and how might this knowledge be used to create better 

heuristics?   

2. Choose measures of performance and factors to explore: 

A factor is any controllable variable in an experiment that affects the outcome of 

the experiment.  The factors in this experiment are the constraint slackness and 

correlation structure.   

A measure is the outcome of an experiment.  The measure is the value of the 

objective function and relative error.  This is used to determine which heuristic performs 

best for each combination of the levels of the factors. 
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3. Design and execute the experiment: 

As mentioned in Section 3.2, the experiment uses problems involving a full range 

of constraint slackness and feasible correlation structures.  Two types of problems are 

used for the experiments: 2KP and 5KP test problems. 

A 2KP test problem set from Hill and Reilly (2000) has 1120 test problems.  In 

Section 3.5.1, the characteristics of the problems in this test set are described.    

The 5KP set is developed in a manner similar to that used by Hill and Reilly 

(2000).  However, Section 3.6.1 discusses the difficulty in generating 5KP test problems 

versus 2KP test problems.  Each problem in the 5KP set has 100 variables and 5 

constraints.  The greedy heuristics have a polynomial computation time (Akcay et al., 

2002) because greedy heuristics select an item at each iteration and the total number of 

iterations is less than or equal to the number of variables.  As the number of variables in 

the problem increases, solution time increases linearly.  Since the focus of the research is 

the performance of a heuristic based on constraint slackness and correlation structure, the 

number of variables is fixed to 100.  This removes performance variation due to problem 

size. 

4. Analyze the data and draw conclusions: 

Barr et al. (1995) suggest that there are at least three sources of variation one must 

recognize.  These are as follows: (1) variation among the performance of the algorithms, 

(2) variation due to problem parameters, and (3) variation within problems.  The research 

focuses on (1) and (2), with emphasis on (1), to gain new insight into why certain 

heuristics do well on certain problems.  With the new insights gained via empirical 
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testing, the conjecture is that the new heuristics should perform better than other greedy 

heuristics.   

3.4.2   Design of Experiment for Problem Generation 

One purpose of this research is to understand heuristic performance based on 

insights gained from computational tests.  Thus, the computational experiments involve 

running several heuristics on a chosen population of instances and measuring responses.  

Rardin and Uzsoy (2001) suggest that in order to construct an experimental design, one 

starts with a set of questions to answer about the heuristics under study: for instance, how 

different problem characteristics (e.g., problem size, number and nature of constraints), 

and algorithm components or parameters (e.g., stopping criteria, search neighborhoods 

and move selection) affect the performance of the heuristics being tested. 

 Any MKP instance may be characterized by the number of variables, number of 

constraints, distribution of variables, density of problem matrix, constraint slackness, 

parameter distribution, and correlation structure.  For 2KP, the test instances of Hill and 

Reilly (2000), used in Cho et al. (2003b), consider various constraint slackness and 

correlation structures with the number of variables and constraints fixed.  The 

characteristics of these 2KP problems are described in section 3.5.1 

A full factorial design is a design containing every possible combination of the 

factor levels.  A focus on constraint slackness and correlation structure means constraint 

slackness and correlation structure are the factors, and their different values are the 

levels.  Only correlation structures that yield a positive semi-definite correlation matrix 

are used. 
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Table 3 presents a sample of the 2KP computational experiment matrix.  A 

representative sample of test problem settings and heuristic results are shown.  Rows 

correspond to test instances, while columns show problem characteristics, and columns 

shaded gray present the objective function values found by the heuristics tested.   

Unlike the benchmark problems in the OR library (Beasley (2004)), which are too 

specific and do not cover all problem characteristics, this randomly generated problem set 

is general and robust, providing a better measure of the performance of the heuristics. 

 

Table 3.  Test Instances vs Heuristics Design for 2KP: A Sample 

Prob 
Num 

Rep 
Num 

C1 
Slack 

C2 
Slack CA1 CA2 A1A2 Best IP TOYODA S – T L – M M1

1 1 1 1 2 2 2 1480 1468 1468 1468 
1 2 1 1 2 2 2 1644 1631 1614 1584 
1 3 1 1 2 2 2 1497 1458 1450 1441 
1 4 1 1 2 2 2 1704 1696 1696 1610 
1 5 1 1 2 2 2 1619 1601 1601 1549 
2 1 1 2 2 2 2 1647 1626 1635 1615 
2 2 1 2 2 2 2 1787 1772 1770 1594 
2 3 1 2 2 2 2 1590 1586 1587 1552 
2 4 1 2 2 2 2 1629 1627 1628 1464 
2 5 1 2 2 2 2 1669 1663 1665 1576 
3 1 2 1 2 2 2 1732 1728 1731 1647 

 
Prob Num := problem number 
 Rep Num := replication number 
  C1 Slack := slackness of first constraint (1:= 0.3, 2:= 0.7)  
  C2 Slack := slackness of second constraint (1:= 0.3, 2:= 0.7) 
         CA1 := correlation between cj and a1j  

       ( −2:= −0.99997, −1:= −0.49999, 0:= 0, 1:= 0.49999, 2:= 0.99997 ) 
         CA2 := correlation between cj and a2j  

       ( −2:= −0.99773, −1:= −0.49887, 0:= 0, 1:= 0.49887, 2:= 0.99773 ) 
        A1A2 := correlation between a1j and a2j  

       ( −2:= −0.99752, −1:= −0.49876, 0:= 0, 1:= 0.49876, 2:= 0.99752 ) 
    Best IP := Integer optimal solution  
 TOYODA := solution by Toyoda’s heuristic 
        S – T := solution by Senju – Toyoda’s heuristic 
   L – M M1:= solution by Loulou – Michaelides’ M1 heuristic 
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3.4.3   Statistical Methods for Analyzing Results 

Relative Error 

The ultimate goal of a heuristic is to find an optimal solution.  Short of this, the 

heuristic should find a solution close to the optimal solution.  If the true optimum, or best 

known solution, is known for each test problem, a relative error measure based on 

attained objective function value can be used; that is, a small relative error indicates a 

solution close to the optimum.  The 2KP problems from Hill and Reilly (2000) include 

the optimal solutions as achieved by CPLEX software, and re-solved using Xpress.  Let 

Zi be the value of the objective function obtained by heuristic i where i = TOYODA, S – 

T, the four L – M, FOX, or KOCHEN, and let Z* be the optimal objective function value.  

Then the relative error is 

*

* )(100
Z

ZZRE i
i

−⋅
= .    (19) 

Based on the relative error, the best method excluding ties under certain 

correlation structures and constraint slackness is chosen.  Since the goal is to understand 

why certain correlation and constraint slackness levels make specific methods perform 

well (i.e., the smallest relative error), the number of times a heuristic is the best, 

excluding the number of ties, by correlation structure and constraint slackness settings is 

counted.  Relative error results are shown in Table 4.  Trends in these counts guide the 

search for insights.  If average relative errors are used to find a best heuristic, it is not 

proper to apply classical statistical methods like ANOVA and t – tests because the data 

would not satisfy the assumptions of classical analysis of variance.  Classical statistical 

methods assume that data follows a normal distribution and has constant variance.  
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However, the variance of the relative errors is very small (near 0), and the distribution is 

skewed, so the normality assumption is impractical.  A Chi-square (χ2) test and a sign test 

(nonparametric statistic) that involve counting the number of times a heuristic is best are 

alternatives to statistically distinguish which heuristic is the best heuristic.  Both statistics 

forgo the traditional assumption that underlying populations are normal.  To increase the 

power of distinction of the best heuristic, the number of ties is excluded.  Applicable Chi-

square (χ2) test and sign test are introduced in the next sections. 

 

Table 4.  Relative Error of Five Heuristics: A Sample 

Problem/ 
Rep No. TOYODA S – T L – M M1 FOX KOCHEN Best 

Method 
1/1 0.8108 0.8108 0.8108 0.4054 0.6757 FOX 
1/2 0.7908 1.8248 3.6496 1.2774 0.6691 KOCHEN 
1/3 2.6052 3.1396 3.7408 1.8036 0.7348 KOCHEN 
1/4 0.4695 0.4695 5.5164 1.5845 0.4695 TIE 
1/5 1.1118 1.1118 4.3237 0.4324 0.4324 TIE 
2/1 1.2750 0.7286 1.9429 0.7286 0.9107 TIE 
2/2 0.8394 0.9513 10.8002 0.0000 0.9513 FOX 
2/3 0.2516 0.1887 2.3899 0.9434 0.1887 TIE 

 

 

Chi-Square Test 

A goal of the research is to determine a best method among the greedy heuristics 

by each correlation structure and constraint slackness.  A Chi-square (χ2) test is used to 

determine whether or not differences exist among the heuristics.  However, this test does 

not indicate which heuristic is better than the others.  Thus, when differences are found to 
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exist, sign tests are then used to determine if a heuristic differs significantly from the 

others.  The χ2 hypothesis test is: 

C
0H  : Heuristic performances do not differ. 

(20) 
C
1H : At least one heuristic’s performance differs from others. 

The Chi-square (χ2) test requires compiling data into bins of equal intervals.  For 

this research, these bins correspond to each heuristic and the counts in each bin are the 

number of best solutions for the associated heuristic in the problem set (or subset) of 

interest where  j = 1, 2, 3, 4, 5, 6, 7, 8 corresponding to TOYODA, S – T, L – M (M1, 

M2, SW1, SW2), FOX, and KOCHEN, respectively,  

Nj = number of times heuristic j finds unique best solution, for j =1, …, 8     (21) 

Next, the expected proportion, pj, of the Nj that should fall in the jth bin if all bins 

are equally likely is computed.  Since, under , it is assumed that there is no difference 

in the eight methods, p

C
0H

j= 1/8 for j = 1, 2,  …, 8.  Finally, the test statistic is  

∑
=

−
=

8
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2
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j j

jj
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npN

χ      (22) 

where n is the number of test problems.   

All Nj are equal to or exceed 5, thus χ2 possess approximately a Chi-square (χ2) 

test probability distribution with n – 1 degree of freedom.  Since npj is the expected 

number of times the jth heuristic is best, if  is true, χC
0H 2 is expected to be small.  is 

rejected if χ

C
0H

2 is too large.  For this test, α = 0.1 is used, so the critical value is χ2
0.1,d.f.  

where the degree of freedom (d.f.) is 7. 
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Sign Test for Paired Comparison 

When the Chi-square test indicates that there are differences among heuristics, a 

sign test is used to determine whether or not one heuristic outperforms another heuristic.  

For a sign test, the hypothesis is: 

   : Two heuristics statistically have the same performance. S
0H

(23) 

   : One heuristic has statistically better performance compared to another heuristic. S
1H

If S
0H  is true, then for any test problem, each heuristic has an equal chance of 

being the best.  Therefore, the distribution of outcomes has the Binomial distribution B(N, 

0.5).  Let U be the number of times the first heuristic is best.  If  is true, then U ~ B(N, 

0.5) and is approximated by a normal distribution having mean  

S
0H

2
1×= Nμ  and standard 

deviation 2
1

2
1 ××= Nσ .  To find the significance level of the result, the following is 

calculated: 

⎟
⎠

⎞
⎜
⎝

⎛ −
>=−>≈≥

σ
μ5.0)5.0()( UZPUXPUXP −               (24) 

Since the sign test, for ,  shows a best heuristic’s perfomance is better than the 

others,  this is a one-tailed test.  α = 0.1 level of significance is used to decide whether to 

fail to reject 

S
1H

S
0H  or reject . S

0H

3.5   Empirical Analyses Based on 2KP 

This section discusses results of an empirical study of legacy greedy heuristics 

using the 2KP test problem set of Hill and Reilly (2000).  The purpose of this section is to 
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gain insight into heuristic performance, specifically what causes a heuristic to be the 

“best” performer (among some set of heuristics).  

3.5.1   Test Problem Characteristics in the Library 

The Spearman portion of the 2KP problems from Hill and Reilly (2000) is used to 

examine heuristic performance as a function of constraint slackness and problem 

correlation structure.  For each problem, the number of constraints is 2 (i.e., the 2KP), 

and the number of variables is 100.  These test problems were created using a Spearman 

rank correlation induction method due to Iman and Conover (1982).  This method creates 

values of trivariate random variables to represent the coefficients (cj, a1j, a2j) of each 

variable, and ensures the sets of values have a specified correlation structure.  The 

objective function coefficients, cj, are integer numbers uniformly distributed from 1 to 

100.  The coefficients of the first constraint, a1j, are integer numbers uniformly 

distributed from 1 to 25 while the coefficients of the second constraint, a2j, are integer 

numbers uniformly distributed from 1 to 40.  The three correlation terms are 1CA
ρ , 2CA

ρ , 

and 21AAρ  .  The terms 1CAρ  and 2CAρ  represent the correlation between objective 

function coefficients (cj) and constraint coefficients (a1j and a2j), respectively.  The term 

21AA
ρ  represents the correlation between the two constraint coefficients.  The correlation 

levels for each correlation term are set as follows:   

1CAρ   ∈ { -0.99997, -0.49999, 0, 0.49999, 0.99997}   (25) 

2CA
ρ   ∈ { -0.99773, -0.49887, 0, 0.49887, 0.99773}   (26) 

21AAρ   ∈ { -0.99752, -0.49876, 0, 0.49876, 0.99752}.  (27) 

These Spearman correlations are calculated by the following formula: 
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where jjj yxd ofrankofrank −=  and n is the number of variables.  The detailed 

concept of the Spearman correlation is presented in Section 3.5.3. 

Within each set of correlation values, the largest absolute values represent the 

extreme correlation level.  Considering each possible combination of correlation value 

implies 125 combinations.  However, of these 125, only 45 represent positive semi- 

definite correlation matrices which means that the determinant of the correlation matrix 

must be nonnegative.  Rousseeuw and Molenberghs (1994) suggest that, from elementary 

matrix algebra, it follows that a matrix is a correlation matrix if and only if it is positive 

semidefinite.  For each of these correlation structures, two composite distributions are 

used: a Type – L composite distribution (minimal independent sampling) and a Type – U 

composite distribution (maximal independent sampling) (Hill and Reilly, 2000).  The 

joint composite distribution for 11 of these 45 feasible correlations has multiple forms.  

For the Spearman subset employed, these particular correlation structure settings (11 of 

the 45 correlation structures) are replicated twice that of the other correlation structures. 

For the correlation structure, the five levels of correlation for each correlation 

term are coded as {-2, -1, 0, 1, 2}, respectively for equations (25) to (27).  For example,  

ρ = (2, 2, 2) indicates 1CA
ρ = 0.99997,  2CA

ρ = 0.99773, and 21AA
ρ = 0.99752.  Note each 

correlation level is controlled in the experiment. 

For constraint slackness, two different constraint slackness values are examined.  

A slackness code of 1 represents a slackness value of 0.30 and a slackness code of 2 
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represents a slackness value of 0.70.  The right-hand side coefficients (bi) are set using 

the relation:  

∑
∈

=
Nj

ijii aSb ,  i = 1, 2            (29) 

where Si = 0.30 or 0.70. 

Each of the four possible settings of the pair (S1, S2) is referred to as a constraint 

slackness setting.  The 1120 problems involve 180 combinations of 45 feasible 

correlation structures, four-constraint slackness settings, and 5 or 10 replications each ( 4 

× 34 × 5 + 4 × 11 × 10 = 1120: Four constraint slackness settings × feasible correlation 

structures × replications).   

3.5.2   Heuristic Performance Based on 2KP Constraint Slackness 

The overall performance of the legacy greedy heuristics is summarized in Table 5.  

To compare heuristics, the number of times each heuristic returned the best solution 

compared to all other heuristic solutions (excluding ties) is counted.  The purpose of this 

research is to gain insight into how problem characteristics affect the performance of 

heuristics.  When ties are included in counting, the discrimination power of 

nonparametric tests used for determining the best heuristics decreases.  Even though there 

are 474 ties when the 1120 problems are heuristically solved, ties are not counted because 

of the need to distinguish the features of the heuristic which yield the best objective 

function value.  Nevertheless, two statistical tests complement the loss of information by 

excluding ties: A Chi-square test verifies whether or not a heuristic statistically differs 

from the others and a sign test indicates which heuristic has better performance compared 
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to the others.  The detailed statistical results, Chi-square test and sign test, are provided in 

Tables A.1 and A.2 of Appendix A: Statistical Tests to Distinguish the Best Heuristic. 

 

Table 5.  Number of Times Best by Each Heuristic under Constraint Slackness 

Heuristics (1, 1) (1, 2) (2, 1) (2, 2) 
TOYODA 5 8 11 0 

S – T 3 57 53 0 
L – M M1 2 2 0 4 
L – M M2 4 0 1 1 

L – M SW1 4 0 0 3 
L – M SW2 0 0 0 1 

FOX 56 31 37 77 
KOCHEN 146 30 28 82 

Statistical Tests     

Chi-Square Test Reject  C
0H Reject  C

0H Reject  C
0H Reject  C

0H
Best by 

Sign Test KOCHEN S – T S – T and  
KOCHEN KOCHEN 

 (  : Heuristic performances do not differ. Reject Region: α =0.1)  C
0H

                        
 

The data in Table 5 shows the results of a comparison of one heuristic to all other 

heuristics simultaneously, while the best heuristics from the sign test are determined by 

one heuristic compared to each heuristic separately.  For example, the slackness setting 

(2, 2) shows KOCHEN and FOX differing by 5.  It means these two heuristics 

outperform the other heuristics.  However, when KOCHEN is compared to just FOX, 

KOCHEN yields 157 solutions better than FOX’s while FOX yields 85 solutions better 

than KOCHEN’s.  Thus, the sign test indicates that KOCHEN is the best performer for 

slackness setting (2, 2).   Table 5 overviews which heuristic is the best performer, and 

61 



statistical tests in Tables A.1 and A.2 confirm whether or not the best heuristic is 

statistically distinguished. 

Analysis of Equal Constraint Slackness, S1 = S2: (1, 1) or (2, 2) 

Two common types of greedy heuristics are primal and dual.  Table 5 indicates 

that KOCHEN is the best heuristic among primal heuristics when both constraints are 

tight.  The dual heuristic, S – T, produces poor performance under constraint slackness 

settings (1, 1) and (2, 2).   

The results suggest two important questions.  First, why is KOCHEN the best 

among primal heuristics?  Second, why is a dual heuristic a poor performer for equal 

constraint slackness values?   

First, to understand why KOCHEN outperforms other heuristics for equal 

constraint slackness values, the penalty cost function of primal heuristics should be 

studied.  All primal heuristics build a penalty function to find a maximum effective 

gradient based on maximum profit for minimum use of resources.  TOYODA is a 

standard primal effective gradient method.  The penalty cost function creates a single 

effective gradient number based on two limited resources.  The penalty cost function was 

introduced in Equation (10) as follows: 

u

uj
j P

PP
v

)( ⋅
=            (30) 

where Pj is the vector (a1j, a2j),  Pu is a cumulative total resource used vector, and uP  is 

the norm of Pu.  Recall a1j and a2j are coefficients in each constraint.  Therefore, vj 

depends on the direction of Pu and has no relationship to its magnitude.  In words, Pu can 

be interpreted as weights for each constraint.  For example, let Pu  =  where ),( 21 ww
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jaw 11  and , and Selected is the set of selected items.  To pick the 

next item to add, TOYODA calculates an effective gradient as follows: 
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As seen in the above equation, if w1 is larger than w2, TOYODA should choose 

the unselected item with the smallest coefficient, a1j, in the first constraint in order to 

keep the denominator small and produce the largest Gj.  Therefore, if the first constraint 

has less resource remaining, w1 is larger than w2 so TOYODA should give more weight 

to the first constraint.  However, one of TOYODA’s important characteristics is a large 

difference between the value of w1 and w2 in the early iterations, while the values of w1 

and w2 are not very different in the later iterations.  The values of w1 and w2 in the first 

iteration are based only on the coefficients, in each constraint, of the first item selected, 

so the values of w1 and w2 for the next selection are exactly the same as the constraint 

coefficients of the first item picked.  Thus, the constraint with the least resource 

remaining receives more weight than the other constraint in the early iterations.  

However, for the later iterations, both constraints receive almost equal weights because of 

the balancing of resource usage by TOYODA.  Thus, an item is selected by giving more 

influence to the most limiting constraint in the early iterations, while an item is selected 

by considering both constraints in the later iterations. 

The algorithm of KOCHEN resembles TOYODA except for the penalty cost 

function.  The penalty cost function of KOCHEN is as follows: 
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1

w
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w
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v jj
j −

+
−

=          (32) 
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where ,  i = 1, 2.  ∑
∈

=
Selectedj

iji aw

The specific characteristic of KOCHEN’s penalty cost function magnifies the 

weight given to the constraint with the least resource remaining during later iterations 

while TOYODA gives equal weight to each constraint.  For slackness setting (1, 1) 

problems, Figure 6 plots the average weight per iteration variation in vj for TOYODA 

(Equation (30)) and KOCHEN (Equation (32)). 
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Figure 6.  Performance of Weight Trend of TOYODA and KOCHEN for Setting (1, 1) 

 

Each line in each graph represents the weight trend line for each constraint.  In the 

graphs, all weights are scaled to a minimum value of 1.  Figure 6 indicates that TOYODA 

heavily weights constraints early in the solution process, while KOCHEN increases 

constraint weighting near the end of the solution process.  In general, selecting the correct 

items to add to the knapsacks during early iterations is much easier than during later 

iterations.  Early item selections involve those items with the higher marginal profit (raw 

profit to resources consumed) making their early selection fairly obvious.  As the number 
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of iterations increase, it is more difficult to select a correct item as there is less resource 

available in each of the constraints and the item choice becomes less obvious (less profits 

per increased resource cost).  Later in the solution process, as each constraint begins to 

near its limit (the used resource vector approaches the original RHS vector), improved 

performance equates to improved item selection based on the item’s influence on the 

resource-strapped constraints.  The delayed weighting of KOCHEN provides more 

effective item selection later in the solution process, so KOCHEN achieves better 

solutions.  This allows KOCHEN to more effectively use a scarce resource than 

TOYODA and to select more items as it uses constraint resources effectively, and this 

equates directly to an improved objective function value.  TOYODA’s weighting scheme 

evens out the influence of any constraint later in the process.   

Why the L – M and FOX heuristics find worse solutions than KOCHEN for equal 

constraint slackness settings is now examined.  At each iteration, L – M and FOX 

consider the most limiting constraint (the constraint with the least resource remaining), 

while TOYODA and KOCHEN consider all constraints when selecting an item.  Thus, 

FOX and L – M select an item which may have a large cj, a small aij in the most limiting 

constraint, and larger aij in the other constraints.  Larger aij increase resource usage in the 

constraints, not including the most limiting constraint, regardless of profit.  Therefore, 

FOX and the four L – M heuristics may not select as many items as other heuristics 

because of a shortage of resource remaining. 

The four L – M penalty cost functions extend the TOYODA penalty cost function.  

This study examines the four different heuristics created by Loulou and Michaelides 

(1979).  All L – M heuristics (M1, M2, SW1, SW2) use the same penalty cost function, 
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with different parameters.  Table 6 indicates that L – M M1 is generally the best 

performer.  Hereafter, only the L – M M1 heuristic is considered.  

 

Table 6.  Comparisons of the Four L – M Heuristics 

L – M Heuristic M1 Better M1 Same M1 Worse 
M2 879 100 141 

SW1 254 700 166 
SW2 892 91 137 
  

 

The penalty cost function of L – M M1for the 2KP is as follows: 
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As mentioned in section 3.2, when calculating the effective gradient, L – M always picks 

the higher value for the penalty cost between the two constraints.  The amount of 

resource consumed so far, DAi, provides the same information as Pu, giving more weight 

to a constraint with less remaining resource.    

FOX uses ,  the amount of constraint i remaining instead of Pp
ib u.  However,  

serves the role of P

p
ib

u, so FOX gives unit weight to the most limiting constraint, and gives 

zero weight to the other constraints.  In the FOX heuristic, the weight is as follows (see 

also Equation (16)):  

⎩
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if1 min
pp
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bb
w    for all  i ∈ C          (34) 
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where  is the amount of resource i remaining prior to the pth iteration,  p
ib

{ }p
iCi

p bb ∈= minmin , and C represents the set of constraint indices.  Thus, FOX selects a 

new item according to an effective gradient as follows: 
∑
∈

=

Ci
iji

j
j aw

c
G .  So, FOX  

considers the constraint with the least remaining resource when selecting an item as does 

the L – M M1.  The difference between L – M M1 and FOX is that L – M M1 also 

considers the future potential resource remaining after an item selection.  Thus, L – M 

M1 considers more factors than FOX in selecting the most limiting constraint, so L – M 

M1 should have better performance than FOX in the equal slackness setting with no 

correlation.  

To examine, why S – T is the worst performer for equal constraint slackness 

setting, Figure 7 plots the average weight values of S – T for constraint slackness setting 

(1, 1).  
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Figure 7 indicates that, when constraint slackness levels are equal, S – T gives the 

same weight to all constraints using a surplus vector, R.  This prevents S – T from 

properly giving weight during later iterations to the constraint with the least resource 

remaining.  The result is ineffective item choices and fewer items put into the knapsack.   

Table 7 shows that primal heuristics (TOYODA, KOCHEN, L – M M1 and FOX) 

yield better solutions in problems with equal constraint slackness settings than the dual 

heuristic (S – T) because these approaches vary weight vectors for the constraints 

according to resource usage.   

 

Table 7.  Comparison of the Primal Heuristics with the Dual heuristic, S –  T, in the Equal 
Slackness Setting 

vs. S – T Better than S – T Same to S – T Worse than S – T 
TOYODA 268 284 8 
L – M M1 346 20 194 

FOX 335 25 200 
KOCHEN 429 107 24 

 

 

During the iterative process, all primal heuristics adapt their weights in order to 

give more weight to the constraint with the least remaining resource.  As a result, the best 

primal heuristic, KOCHEN, considers all constraints, selects more items, and makes 

better use of the available resources.   
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Table 8.  Resource Usage in Equal Constraint Slackness Setting by Each Heuristic 

Both Const. Tight (1,1) Both Const. Loose (2,2) 
Heuristics # of Vars 

Selected 
Resource Usage 

1st Const 
Resource Usage 

2nd Const 
# of Vars 
Selected 

Resource Usage 
1st Const 

Resource Usage 
2nd Const 

TOYODA 35.7 0.876 0.896 69.1 0.921 0.928 
S – T 34.7 0.842 0.872 68.7 0.914 0.923 

KOCHEN 37.6 0.934 0.950 71.4 0.954 0.960 
L – M M1 34.7 0.948 0.958 69.1 0.952 0.957 

FOX 38.9 0.973 0.978 73.1 0.970 0.979 
Optimal 38.1 0.979 0.984 72.0 0.972 0.978 

(Ratio of Resource Usage) 
 

Table 8 supports the conclusion that primal heuristics make better use of 

resources compared to the dual heuristic (S – T).  Table 8 also indicates that KOCHEN is 

more effective than TOYODA and S – T in terms of resource usage.  Even though five 

legacy greedy heuristics (TOYODA, S – T, L – M M1, FOX, and KOCHEN) are 

analyzed, the heuristics are grouped as [TOYODA, KOCHEN], [S – T], and [FOX, L – 

M M1].  TOYODA and KOCHEN are primal heuristics that simultaneously consider all 

constraints with various weights in order to select an item.  S – T is a dual heuristic that 

simultaneously considers all constraints.  These three heuristics try to effectively use 

resources for each constraint.  Among these three heuristics, the best heuristic 

(KOCHEN) uses the most resource for each constraint and selects the largest number of 

items as shown in Table 8.  

FOX and L – M M1 focus on the constraint with the least remaining resource.  

When these heuristics consider just the tightest constraint, they may pick an item with a 

large coefficient in the less tight constraint.  Thus, FOX and L – M M1 may use more 

resources regardless of the benefit/cost ratio.  Only considering the tightest constraint 
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yields worse solutions and more resource usage when constraint slackness is equal.  

Table 8 shows that even though FOX selects the same number of items as contained in 

the optimal solutions, it selects less beneficial items because each iteration considers only 

the most limiting constraint. 

Analysis of Mixed Constraint Slackness, S1≠ S2: (1, 2) or (2, 1) 

Recall from Table 5 the advantage of S – T when slackness levels are mixed.  In 

Table 5, FOX appears comparable to KOCHEN and S – T on mixed slackness levels.  

However, the data in Table A.2 of Appendix A compares S – T directly to both 

KOCHEN and FOX and clearly shows S – T dominance over FOX in the mixed 

slackness setting and slight S – T preference to KOCHEN. 

Senju and Toyoda (1968) suggest that better solutions may be obtained when the 

right-hand side values differ greatly, but they do not examine this insight further.  To 

understand why S – T performs well in this problem instance, consider problems where 

(S1, S2) = (0.3, 0.7); the first constraint is tight and the second constraint is loose.  In the 

surplus vector of S – T, R can be interpreted as a weight vector: R = (w1, w2); w1 should 

be larger than w2 for the slackness setting (0.3, 0.7) because the tight constraint has more 

unused resource: ,  i = 1, 2    (weight in the tight constraint: 

 and weight in the loose constraint: ).  In 

empirical testing of 2KP, when a problem has mixed constraint slackness settings, the 

tight constraint is more dominant in determining solution feasibility than the loose 

constraint.  In other words, the loose constraint is typically a non-binding constraint, and 
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has remaining resource at termination.  Therefore, a heuristic should give more emphasis 

to the tight constraint.  

Consider the S – T dual effective gradient as follows: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅
=

RP
R

cG
j

jj           (35) 

where Pj is the vector (a1j, a2j),  cj is an objective function coefficient, and R is a surplus 

vector.  As shown in Equation (35), S – T uses R to weight both constraints.   

Figure 8, adapted from Senju and Toyoda (1968), depicts the surplus vector of the 

S – T heuristic.  The axes represent the sum of coefficients within each constraint, so L1 

and L2 represent right-hand side values for each constraint for slackness setting (0.3, 0.7).  

The point T represents the resource usage of the initial, infeasible, point used in the S – T 

heuristic.  The S – T heuristic drops items to force the point T into the feasible region, 

ideally along vector R. 
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The slope of R is almost horizontal with respect to the first constraint axis, as 

shown in Figure 8.  This implies favoring the first constraint, which in the current case is 

the tight constraint, over the second constraint.  It is preferable to drop items whose 

objective function coefficients are smaller compared to their projected length on the 

surplus vector R, thus favoring feasibility with respect to the tight constraint.  The 

direction of the surplus vector, R, provides the proper direction into the feasible region.  

In other words, as S – T reaches the point (L) of the feasible region, it is using the 

resources of the two constraints most effectively and favoring the tighter constraint. 

For a different view of the surplus vector, R, Figure 9 plots the average weight 

values of the S – T and KOCHEN heuristics for constraint slackness setting (1, 2).   
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Figure 9.  Performance of Weight Trend of S – T and KOCHEN for Setting (1, 2) 

 
 

S – T focuses item selection with respect to the tight constraint using surplus 

vector, R, during all iterations.  As depicted in Figure 9, S – T always gives the tight 

constraint more weight.  KOCHEN also rapidly increases the weight applied to the tight 

constraint as the number of iterations increases.  This significantly increased focus on the 
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tight constraint later in the process allows KOCHEN to achieve results similar to S – T.  

Thus, S – T and KOCHEN are effective for both (1, 2) and (2, 1) slackness settings 

because of the emphasis placed on the tight constraint. 

In contrast to the S – T dual heuristic and KOCHEN, other primal heuristics select 

items with weights that balance resource usage.  The other primal heuristics do not 

provide enough emphasis on the tight constraint in the initial iteration.  Therefore, the 

other primal heuristics may select items which have large coefficients in the tight 

constraint.  Table 9 indicates that S – T and KOCHEN select more items than TOYODA, 

which places nearly equivalent weight on each constraint.   

The L – M M1 and FOX heuristics focus on the constraint having the least 

remaining resource.  As shown in Table 9, there is not a large difference in terms of 

average number of items selected.  Even though L – M M1 and FOX always focus on the 

most limiting constraint, these heuristics choose weaker items during their early iterations 

because the tight constraint may not be the constraint with the least resource remaining in 

the early iterations due to initial variable selection.   

Even though S – T uses less resources and selects fewer items than KOCHEN and 

FOX in Table 9, S – T is the best heuristic in Table 5.  This emphasizes the importance of 

picking the best items. 
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Table 9.  Resource Usage in Mixed Constraint Slackness by Each Heuristic 

Mixed Const. Slack  (1,2) Mixed Const. Slack (2,1) 
Heuristics # of Vars 

Selected 
Resource Usage 

1st Const 
Resource Usage 

2nd Const 
# of Vars 
Selected 

Resource Usage 
1st Const 

Resource Usage 
2nd Const 

TOYODA 44.1 0.993 0.590 43.5 0.574 0.995 
S – T 45.4 0.992 0.630 44.7 0.616 0.995 

KOCHEN 45.8 0.994 0.636 45.0 0.621 0.995 
L – M M1 41.9 0.994 0.599 41.1 0.583 0.996 

FOX 45.9 0.995 0.636 45.1 0.621 0.996 
Optimal 45.8 0.998 0.656 45.0 0.640 0.998 

(Ratio of Resource Usage) 
 

 

3.5.3   Heuristic Performance Based on 2KP Correlation Structures 

Pearson vs. Spearman Correlation Coefficients 

The most commonly used measure for a linear relationship between two variables 

is the Pearson product-moment correlation coefficient.  The two variables must be 

measured by interval or ratio scale.  The values of the correlation can range from -1 to 

+1.  If there is no linear relationship between two variables, the value of their correlation 

is 0.  If there is a perfect positive relationship, the value is +1.  If there is a perfect 

negative relationship, the value is -1.  Note that the correlation coefficient measures a 

linear relationship only.  Two variables may have a correlation coefficient close to zero 

and yet have a very strong nonlinear relationship.   

The Spearman (Rank) correlation coefficient is a nonparametric (distribution-free) 

rank statistic proposed by Spearman in 1904 as a measure of the strength of the 

association between two variables.  If the coefficient is close to positive one, there is a 

fairly strong positive (linear or nonlinear) relationship between the variables.  If the 
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coefficient is close to zero, there is no relationship.  These correlation coefficients are 

based on the ranks of the observations and not on the original data values.  In this 

dissertation, correlation implies Spearman correlation since Hill and Reilly (2000) found 

that Spearman induced correlation problems were the more difficult to solve as compared 

to Pearson induced correlation values. 

Correlation Influences Heuristic Performance 

The relationships among problem coefficients can impact the ability of the 

effective gradient measures to select the best variable.  As Hill and Reilly (2000) note, 

correlation structure effects algorithm and heuristic performance.  Figure 10 shows the 

relationship between objective function and constraint coefficients according to 

correlation value.   

          ρ  = -0.9              ρ  = -0.5                ρ  = 0                ρ  = 0.5               ρ  = 0.9 
 

          

Pr
of

it 

 Cost

Figure 10.  Correlation Graphs According to Correlation Coefficients 

 

Items in the inner square have a relatively large effective gradient value (Gj) so 

these items are more likely to be selected by a greedy heuristic.  Figure 10 indicates that 

there is a sufficient number of items at ρ = -0.9 that are strong candidates for selection by 

heuristics while, for ρ = 0.9, there are few items in the inner square, making it very 

difficult for heuristics to properly select items to fill the knapsack. 
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Statement 1.  If 1KP has  and nccc >>> ...21 naaa <<< ...21 for perfect negative 

correlation, the Spearman rank correlation coefficient, Equation (28), 
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XYρ  gives a value of -1.     

Assume that n is an odd number.  Figure 11 plots the ranks of cj and aj instead of 

the original values.   
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Figure 11.  Perfect Negative Correlation Graph 

  

The cj and aj ranks become equally spaced.  There is a middle point of the line (k 

+ 1, k + 1) on the line and n = 2k + 1.       
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From Equation (28),  
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A similar proof holds for even values of n.  
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Theorem 1.  Under perfect negative correlation, the greedy heuristic for the zero-one 

knapsack problem guarantees an optimal solution.  

 

Proof:  Assume perfect negative correlation between the objective function coefficients 

( )njc j ,,2,1, K=  and the constraint coefficients ( )nja j ,,2,1, K= .  Assume without 

loss of generality the variables have been re-ordered and re-indexed so that 

.  Since perfect negative correlation is assumed, it follows that 

.  Let 

nccc >>> ...21

naaa <<< ...21 nj
a
c

G
j

j
j ,,2,1, K==  be the effective gradient values for this 

problem.   

Let A be a feasible optimal solution to the knapsack problem with Z(A) the 

corresponding objective function value.  Assume solution A is not the greedy heuristic 

solution to the knapsack problem.  Then ∃ i,  j  < n such that i < j and  and 0=ix 1=jx  

in solution A.  Under the perfect negative correlation assumption, ji GG < .  Create 

solution A′ differing from A in that 1=ix  and 0=jx  as would be set in a greedy 

heuristic solution.  Since , then A′ is feasible.  Since  then Z(A) < Z(A′) 

which implies A is not optimal and therefore a contradiction.  Thus, any optimal solution 

to the single constraint knapsack problem under perfect negative correlation is the greedy 

heuristic solution to the problem.  

ji aa < ji cc >

 

78 



Statement 2.  Under perfect positive correlation, the greedy heuristic for the zero-one 

knapsack problem cannot guarantee the optimal solution.  

Assume that items are already ordered so that nccc <<< ...21 .  Since 1=ρ  then 

.  Thus, there is a perfect linear relationship defined by an equation of the 

form:   where  is a constant.  Then the effective gradient value for the jth 

item is 

naaa <<< ...21

joj cka = ok

ojo

j

j

j
j kck

c
a
c

G 1
=== .  The effective gradient value for each item is the same:  

o
n k

GGG 1
21 ==⋅⋅⋅== .   Therefore, the greedy heuristic randomly selects items and 

may yield a solution worse than the optimal solution.  

 

Positive correlation between objective function coefficients and constraint 

coefficients make it difficult for a greedy heuristic to select items, while negative 

correlation values provide a greedy heuristic with obvious items for selection. 

In primal heuristics such as the TOYODA, L – M M1, FOX, and KOCHEN to 

realize a large effective gradient, cj should be large and vj should be small, which occurs 

when iCAρ  is near extreme negative values, so that item j consumes relatively few 

resources while profit contributed is relatively large.  Under these conditions for any 1CA
ρ  

and 2CAρ  near -1, the value of 21AAρ  is close to one, meaning resource usage in the 

constraints are closely matched in the problem.  This makes the problems easy for greedy 

heuristics to find good results.  In the 2KP, all legacy heuristics found 18 optimal 
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solutions out of the 20 test problems regardless of constraint slackness as shown in Table 

10.   

Table 10.  Number of Times Optimum Found by Heuristics under Correlation (-2, -2, 2) 

Correlation TOYODA S – T L – M M1 FOX KOCHEN 
-2, -2, 2 18 18 18 18 18 

 

Similarly, conditions of weak negative correlation between objective function 

coefficients and both constraint coefficients, and strong positive constraint coefficient 

correlation (-1, -1, 2) also possess favorable solution conditions for each heuristic.  Under 

these conditions, the choice of greedy heuristic does not matter since all do well. 

Results of Heuristic Solution Performance under Varying Correlation Structures 

This section focuses on how the performances of heuristics vary based on 

problem correlation structures.  If mixed constraint slackness is considered, the effect of 

both varied slackness and correlation structures can be seen.  Thus, only equal constraint 

slackness is considered to focus analysis on the correlation structure effects.  Table 11 

presents counts of how many times each heuristic yields the best solution (excluding ties) 

under all 45 correlation structures for problems with equal constraint slackness.  Table 12 

gives average relative error while Table 13 shows the percentage resource usage of each 

heuristic’s solution and the optimal solution.  Table A.2 of Appendix A provides the 

detailed statistical test to discriminate a best heuristic. 

80 



Table 11.  Best Performer Counts by Correlation Structure under Equal Slackness in 2KP 

Correlation 
Structure TOYODA S – T L – M M1 FOX KOCHEN 

χ2 Test 
Reject  

cH 0
Best by Sign Test Total 

Probs 

2,2,2 0 0 0 2 5 Y KOCHEN 10 
2,1,1 0 0 1 8 1 Y FOX 10 
2,0,0 0 0 1 6 3 Y FOX 10 

2,-1,-1 0 0 0 7 3 Y FOX 10 
2,-2,-2 1 0 0 7 2 Y FOX 10 
1,2,1 0 0 1 9 0 Y FOX 10 
1,1,2 0 0 0 6 1 Y FOX, KOCHEN 10 
1,1,1 0 0 0 0 7 Y KOCHEN 20 
1,1,0 0 0 0 0 6 Y KOCHEN 10 
1,0,1 0 0 0 6 4 Y FOX, KOCHEN 10 
1,0,0 0 0 0 1 19 Y KOCHEN 20 
1,0,-1 0 0 0 0 10 Y KOCHEN 10 
1,-1,0 0 0 0 5 5 Y FOX, KOCHEN 10 
1,-1,-1 0 0 0 3 14 Y KOCHEN 20 
1,-1,-2 0 0 0 0 10 Y KOCHEN 10 
1,-2,-1 0 0 0 2 4 Y KOCHEN 10 
0,2,0 0 0 0 9 1 Y FOX 10 
0,1,1 0 0 0 6 2 Y FOX 10 
0,1,0 0 0 1 1 18 Y KOCHEN 20 
0,1,-1 0 0 0 0 10 Y KOCHEN 10 
0,0,2 0 0 1 1 0 N N/A 10 
0,0,1 1 1 2 0 6 Y KOCHEN 20 
0,0,0 0 1 1 1 7 Y KOCHEN 20 
0,0,-1 0 1 0 0 8 Y KOCHEN 20 
0,0,-2 0 0 1 0 2 Y TOYODA, S - T, KOCHEN 10 
0,-1,1 0 0 0 3 4 Y FOX, KOCHEN 10 
0,-1,0 0 0 3 1 12 Y KOCHEN 20 
0,-1,-1 1 0 3 0 4 Y L-M M1, KOCHEN 10 
0,-2,0 0 0 0 4 3 Y FOX, KOCHEN 10 
-1,2,-1 0 0 0 9 1 Y FOX 10 
-1,1,0 0 0 0 3 7 Y KOCHEN 10 
-1,1,-1 0 0 1 3 16 Y KOCHEN 20 
-1,1,-2 0 0 2 0 7 Y KOCHEN 10 
-1,0,1 0 0 0 5 2 Y FOX, KOCHEN 10 
-1,0,0 0 0 3 1 13 Y KOCHEN 20 
-1,0,-1 1 0 2 0 6 Y KOCHEN 10 
-1,-1,2 0 0 1 1 0 N N/A 10 
-1,-1,1 0 0 1 4 2 Y TOYODA, KOCHEN 20 
-1,-1,0 1 0 1 0 1 Y TOYODA, S - T, KOCHEN 10 
-1,-2,1 0 0 0 3 4 Y FOX, KOCHEN 10 
-2,2,-2 0 0 0 8 1 Y FOX 10 
-2,1,-1 0 0 0 2 6 Y KOCHEN 10 
-2,0,0 0 0 0 4 4 Y FOX, KOCHEN 10 
-2,-1,1 0 0 0 4 3 Y L -M M1, FOX, KOCHEN 10 
-2,-2,2 0 0 0 0 0 N/A N/A 10 

(Reject Region: α =0.1)                         
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Table 12.  Relative Error of Each Heuristic by Correlation Structure (under (1,1) and (2,2)) 

Correlation 
Structure TOYODA S – T L – M M1 FOX KOCHEN 

2,2,2 0.765 0.921 3.146 0.700 0.418 
2,1,1 3.145 3.997 3.954 0.845 1.638 
2,0,0 4.347 5.648 4.414 2.006 1.746 

2,-1,-1 4.960 5.914 5.559 1.628 2.061 
2,-2,-2 2.439 3.353 2.606 0.787 1.090 
1,2,1 3.417 4.343 2.188 0.573 1.910 
1,1,2 0.293 0.273 2.476 0.088 0.258 
1,1,1 0.525 0.798 3.400 3.456 0.295 
1,1,0 0.627 0.907 3.722 8.116 0.244 
1,0,1 1.799 2.437 2.967 1.097 0.559 
1,0,0 2.059 3.221 2.010 4.264 0.343 
1,0,-1 2.521 5.569 2.530 7.232 0.607 
1,-1,0 2.877 4.211 2.525 1.680 0.652 
1,-1,-1 3.288 5.602 1.549 4.486 0.526 
1,-1,-2 3.916 6.662 1.193 9.593 0.496 
1,-2,-1 2.449 5.373 2.714 1.176 0.501 
0,2,0 3.803 4.905 3.833 1.126 2.098 
0,1,1 2.795 3.751 2.820 0.774 0.810 
0,1,0 3.310 4.368 2.426 3.402 0.531 
0,1,-1 3.651 5.261 2.179 7.351 0.454 
0,0,2 0.145 0.145 1.490 0.141 0.100 
0,0,1 0.800 0.805 1.936 1.853 0.365 
0,0,0 0.469 0.827 1.770 3.492 0.381 
0,0,-1 0.660 1.105 1.864 6.476 0.418 
0,0,-2 0.437 0.437 0.810 10.380 0.480 
0,-1,1 1.073 1.859 1.005 0.795 0.236 
0,-1,0 1.724 2.132 1.087 2.199 0.346 
0,-1,-1 1.666 2.042 1.002 4.926 0.509 
0,-2,0 1.843 2.950 1.192 0.553 0.379 
-1,2,-1 4.297 6.275 5.535 0.867 2.060 
-1,1,0 2.985 4.439 2.261 1.539 0.447 
-1,1,-1 3.983 7.157 1.996 4.580 0.553 
-1,1,-2 4.585 9.753 0.910 9.702 0.525 
-1,0,1 1.067 1.385 1.282 0.550 0.375 
-1,0,0 1.772 2.698 0.806 2.289 0.362 
-1,0,-1 1.428 4.087 0.888 4.620 0.408 
-1,-1,2 0.104 0.104 0.590 0.069 0.076 
-1,-1,1 0.616 0.786 0.732 0.960 0.263 
-1,-1,0 0.226 0.570 0.746 2.205 0.279 
-1,-2,1 0.667 0.929 0.425 0.365 0.188 
-2,2,-2 2.605 3.835 3.254 0.511 1.317 
-2,1,-1 2.607 5.637 3.411 1.082 0.399 
-2,0,0 1.602 2.825 1.263 0.612 0.257 
-2,-1,1 0.577 0.981 0.422 0.385 0.298 
-2,-2,2 0.003 0.003 0.011 0.011 0.003 

 
Unit: Percent 
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Table 13.  Resource Usage by Each Heuristic Solution and Optimal Solution                  
(under (1,1) and (2,2)) 

TOYODA S – T L – M M1 FOX KOCHEN OPTIMUM 
Correlation 
Structure 

1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 
2,2,2 0.998 0.977 0.998 0.973 0.997 0.981 0.999 0.996 0.998 0.985 1.000 0.997 
2,1,1 1.000 0.602 1.000 0.578 1.000 0.876 0.998 0.920 1.000 0.717 1.000 0.933 
2,0,0 1.000 0.481 1.000 0.439 1.000 0.763 0.999 0.903 1.000 0.715 1.000 0.898 

2,-1,-1 1.000 0.376 1.000 0.357 1.000 0.627 0.998 0.888 1.000 0.663 1.000 0.883 
2,-2,-2 1.000 0.298 1.000 0.250 1.000 0.476 0.998 0.751 1.000 0.484 1.000 0.715 
1,2,1 0.601 1.000 0.578 1.000 0.872 1.000 0.902 1.000 0.686 1.000 0.905 1.000 
1,1,2 0.985 0.991 0.986 0.991 0.995 0.995 0.992 0.995 0.986 0.991 0.994 0.996 
1,1,1 0.991 0.991 0.987 0.986 0.997 0.998 0.995 0.999 0.995 0.997 1.000 0.999 
1,1,0 0.989 0.993 0.988 0.988 0.997 0.998 0.997 0.998 0.996 0.998 0.998 1.000 
1,0,1 0.999 0.868 1.000 0.847 0.999 0.933 0.999 0.972 0.998 0.936 1.000 0.979 
1,0,0 1.000 0.901 1.000 0.863 0.997 0.988 0.994 0.992 0.997 0.979 0.999 0.996 
1,0,-1 1.000 0.912 0.999 0.838 0.997 0.994 0.995 0.990 0.997 0.984 0.999 0.999 
1,-1,0 1.000 0.723 1.000 0.684 0.999 0.886 0.998 0.943 1.000 0.884 0.999 0.943 
1,-1,-1 1.000 0.782 1.000 0.714 0.996 0.962 0.993 0.986 0.997 0.948 1.000 0.977 
1,-1,-2 1.000 0.816 1.000 0.736 0.994 0.982 0.993 0.987 0.996 0.990 1.000 0.996 
1,-2,-1 1.000 0.646 1.000 0.530 0.999 0.747 0.999 0.917 0.999 0.812 1.000 0.881 
0,2,0 0.456 1.000 0.424 1.000 0.740 1.000 0.858 0.999 0.597 1.000 0.875 1.000 
0,1,1 0.783 1.000 0.758 1.000 0.892 0.999 0.961 1.000 0.890 0.999 0.970 1.000 
0,1,0 0.834 1.000 0.804 1.000 0.988 0.997 0.991 0.998 0.971 1.000 0.996 1.000 
0,1,-1 0.865 1.000 0.813 1.000 0.993 0.995 0.989 0.996 0.990 0.998 0.998 0.999 
0,0,2 0.975 0.990 0.975 0.990 0.985 0.993 0.979 0.991 0.977 0.990 0.981 0.994 
0,0,1 0.976 0.988 0.973 0.989 0.995 0.994 0.994 0.996 0.989 0.993 0.998 0.998 
0,0,0 0.984 0.992 0.976 0.987 0.993 0.993 0.994 0.993 0.989 0.992 0.998 0.999 
0,0,-1 0.981 0.991 0.968 0.993 0.991 0.991 0.990 0.993 0.992 0.994 0.999 0.999 
0,0,-2 0.988 0.986 0.987 0.986 0.990 0.992 0.989 0.988 0.986 0.989 0.997 0.997 
0,-1,1 0.999 0.866 0.999 0.838 0.996 0.919 0.996 0.960 0.999 0.920 0.999 0.956 
0,-1,0 0.998 0.880 0.998 0.872 0.993 0.975 0.992 0.981 0.995 0.962 0.999 0.989 
0,-1,-1 0.997 0.926 0.997 0.913 0.992 0.990 0.992 0.984 0.995 0.977 0.999 0.998 
0,-2,0 0.999 0.793 0.999 0.744 0.998 0.872 0.996 0.956 0.998 0.913 1.000 0.946 
-1,2,-1 0.355 1.000 0.293 1.000 0.539 1.000 0.821 0.999 0.543 1.000 0.814 1.000 
-1,1,0 0.691 1.000 0.644 1.000 0.868 0.999 0.940 0.996 0.893 1.000 0.936 1.000 
-1,1,-1 0.726 1.000 0.621 1.000 0.936 0.998 0.966 0.997 0.936 0.999 0.980 1.000 
-1,1,-2 0.788 1.000 0.636 1.000 0.988 0.992 0.989 0.987 0.979 0.998 0.993 1.000 
-1,0,1 0.842 0.999 0.823 0.999 0.895 0.998 0.942 0.993 0.890 0.998 0.946 1.000 
-1,0,0 0.878 1.000 0.843 1.000 0.980 0.995 0.981 0.996 0.964 0.998 0.988 0.999 
-1,0,-1 0.909 0.999 0.814 1.000 0.988 0.994 0.979 0.993 0.974 0.996 0.991 1.000 
-1,-1,2 0.986 0.974 0.986 0.974 0.990 0.978 0.987 0.976 0.987 0.975 0.992 0.979 
-1,-1,1 0.956 0.995 0.948 0.995 0.988 0.992 0.981 0.991 0.972 0.995 0.991 0.997 
-1,-1,0 0.986 0.996 0.986 0.983 0.992 0.993 0.990 0.992 0.988 0.995 0.997 0.999 
-1,-2,1 0.998 0.876 0.999 0.868 0.993 0.939 0.993 0.961 0.995 0.924 0.998 0.963 
-2,2,-2 0.313 1.000 0.265 1.000 0.405 1.000 0.714 0.998 0.431 1.000 0.677 1.000 
-2,1,-1 0.603 1.000 0.504 1.000 0.702 1.000 0.876 0.999 0.806 1.000 0.884 1.000 
-2,0,0 0.724 1.000 0.671 1.000 0.828 0.997 0.892 0.994 0.830 0.999 0.892 1.000 
-2,-1,1 0.863 0.998 0.840 0.997 0.913 0.993 0.944 0.994 0.894 0.995 0.932 0.999 
-2,-2,2 0.971 0.955 0.971 0.955 0.971 0.954 0.971 0.954 0.971 0.955 0.971 0.957 
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Hypothesis of Heuristic Solution Performance under Correlation Structures 

In an analysis of heuristics based on correlation structures, the goal is to 

determine whether or not the solution performance of heuristics are affected by 

correlation structures.  The best performing heuristic for slackness is the one that most 

effectively weights the dominant constraint (tighter constraint).  Thus, if the correlation 

structures create a dominant constraint, as slackness settings do, the best heuristic should 

thus effectively weight the dominant constraint created by correlation structures.  Thus, 

the hypothesis for correlation structure is as follows: 

 

 
 
Hypothesis of 2KP Correlation Structure 
 

When a 2KP possesses equivalent slackness levels, problem correlation structure can 
dictate a dominant constraint. 

 
 
 

Analysis of Hypothesis of 2KP Correlation Structure 

The performance of heuristics is affected by various correlation structures as 

shown in Tables 11 and 12.  Constraints possessing positive correlation with the objective 

function are said to dominate.  As previously established, a tight constraint, in a mixed 

slackness problem, dominates a 2KP problem from a slackness perspective.  Heuristics 

should focus on the dominant constraint(s) when selecting items to place in the knapsack.   

KOCHEN and FOX are the best performing heuristics when examining results by 

correlation structure.  Table 13 data display an interesting trend.  When 1CAρ  and 2CAρ  

values are similar, resource usage values for each constraint are similar.  When the values 
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differ, the constraint with the higher positive correlation value has the higher resource 

usage.  This holds even when 21AA
ρ  is negative. 

Table 14 shows those correlation structures having similar resource usage in each 

constraint (difference is less than 3%).  Note this occurs in 26 of the 45 different 

structures and in all cases there is not a large difference between 1CAρ  and 2CAρ . 

 

Table 14.  Correlation Structures with Less Than 3% Difference in Resource Usage by 
Each Constraint and Best Performing Heuristic 

Corr 
Structure 

%Difference 
in Resource 

Usage 

Best  
Performing 
Heuristic 

Corr 
Structure 

%Difference 
in Resource 

Usage 

Best  
Performing 
Heuristic 

Corr 
Structure 

%Difference 
in Resource 

Usage 

Best  
Performing 
Heuristic 

2,2,2 0.3 % KOCHEN 0,1,0 0.4 % KOCHEN -1,1,-1 2.0 % KOCHEN 

1,1,2 0.2 % FOX, 
KOCHEN 0,1,-1 0.1 % KOCHEN -1,1,-2 0.7 % KOCHEN 

1,1,1 0.1 % KOCHEN 0,0,2 1.3 % KOCHEN -1,0,0 1.1 % KOCHEN 

1,1,0 0.2 % KOCHEN 0,0,1 0.0 % KOCHEN -1,0,-1 0.9 % KOCHEN 

1,0,1 2.1 % FOX, 
KOCHEN 0,0,0 0.1 % KOCHEN -1,-1,2 1.3 % All 

Heuristics 

1,0,0 0.3 % KOCHEN 0,0,-1 0.0 % KOCHEN -1,-1,1 0.6 % TOYODA, 
KOCHEN 

1,0,-1 0.0 % KOCHEN 0,0,-2 0.0 % TOYODA,   S- 
T, KOCHEN -1,-1,0 0.2 % TOYODA, S-

T, KOCHEN 

1,-1,-1 2.3 % KOCHEN 0,-1,0 1.0 % KOCHEN -2,-2,2 1.4 % All 
Heuristics 

1,-1,-2 0.4 % KOCHEN 0,-1,-1 0.1 % KOCHEN    

 

 

When constraints have similar values for 1CAρ  and 2CAρ , a greedy heuristic must 

balance weight on these constraints in order to use resources evenly in early iterations 

and then, in the later iterations, assign greater weight to the constraint with the least 
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resource remaining.  KOCHEN’s delayed weighting scheme accomplishes this.  Figure 

12 shows the average performance of weight variation on each constraint of TOYODA, S 

– T, and KOCHEN for correlation structure (2, 2, 2).   
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Figure 12.  Weight Trend of TOYODA, S – T, KOCHEN for Correlation Structure (2, 2, 2) 
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In Figure 12, all weight trend lines are scaled to a minimum value of 1.  Figure 12 

indicates that TOYODA and S – T give the same weight in all solution iterations, while 

KOCHEN increases weight during the later iterations.  Each resource is evenly used in 

the final solution (Only 0.3 % difference in resource usage by each constraint).   

Table 15 shows those nine correlation structures with large differences in 

percentage resource remaining between the two constraints in the optimal solution, along 

with the best performing heuristic and the difference in resource usage when the best 

performing heuristic is used.  Note the large (≥ 2) difference in coded correlation levels 

between 1CAρ  and 2CAρ .  That constraint with the higher positive correlation relationship 

with the objective function is a dominant constraint.  The FOX heuristic and KOCHEN 

heuristic perform well under these conditions.   

 

Table 15.  Correlation Structures with More Than 10% Difference in Resource Usage by 
Each Constraint and Best Performing Heuristic Results 

Corr 
Structure 

%Difference 
in Resource 

Usage 

Best  
Performing 
Heuristic 

Corr 
Structure 

%Difference 
in Resource 

Usage 

Best  
Performing 
Heuristic 

Corr 
Structure 

%Difference 
in Resource 

Usage 

Best  
Performing 
Heuristic 

2,0,0 10.2 % FOX 1,-2,-1 11.9 % KOCHEN -2,2,-2 32.3 % FOX 

2,-1,-1 11.7 % FOX 0,2,0 12.5 % FOX  -2,1,-1 11.6 % KOCHEN 

2,-2,-2 28.5 % FOX -1,2,-1 18.6 % FOX -2,0,0 10.8 % FOX, 
KOCHEN 
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Thus, when a 2KP possesses equivalent slackness levels, problem correlation 

structure can create a dominant constraint.  If neither constraint dominates by correlation 

structure, a delayed weighting scheme like KOCHEN’s is suitable.  If one constraint is 

dominant, due to correlation structure, absolute weighting on the dominant constraint as 

in FOX becomes a more suitable approach. 

3.5.4   Influence Combinations between 2KP Slackness and Correlation 

Table 16 shows the resource usage by the optimal solution in each constraint by 

mixed slackness settings over all correlation structures.   

The data in Table 16 clearly suggests constraint slackness is a dominant 

consideration in how 2KP resources are used as the higher resource usage is associated 

with the tight constraint.  Two lone exceptions are the extreme cases of ρ = (2, -2, -2) and 

S = (2, 1) and ρ = (-2, 2, -2) and S = (1, 2).  In these two cases, the combination of perfect 

negative correlation between the tight constraint and the objective function means 

resources in the loose constraint are used at the same rate.  Note, however, that even in 

these cases, the tight constraint is still filled to a fairly high level.  The resources are 

evenly used in each constraint and KOCHEN is the best performing heuristic. 
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Table 16.  Identifying Dominant Constraints by Mixed Slackness and All Correlation 
Structures in Optimal Solutions 

Slackness (1, 2) Slackness (2,1) 
Corr 

Structure 
Resource 

Usage in 1st 
Const 

Resource 
Usage in 
2nd Const 

Best Performing 
Heuristic 

Resource 
Usage in 1st 

Const 

Resource 
Usage in 
2nd Const 

Best Performing 
Heuristic 

2,2,2 1.000 0.455 FOX 0.465 1.000 N/A 
2,1,1 1.000 0.501 FOX 0.735 1.000 TOYODA, S – T, KOCHEN 

2,0,0 1.000 0.377 FOX 0.890 0.999 TOYODA, S – T, KOCHEN 

2,-1,-1 1.000 0.508 FOX 0.992 0.999 TOYODA, S – T, KOCHEN 

2,-2,-2 1.000 0.666 FOX, KOCHEN 1.000 0.983 KOCHEN 
1,2,1 1.000 0.731 S – T 0.494 1.000 FOX 
1,1,2 1.000 0.430 N/A 0.424 1.000 N/A 
1,1,1 1.000 0.601 S – T, KOCHEN 0.609 1.000 S – T, FOX, KOCHEN 
1,1,0 1.000 0.767 S – T 0.710 1.000 S – T, KOCHEN 

1,0,1 1.000 0.448 S – T, FOX KOCHEN 0.666 1.000 S – T, 
KOCHEN 

1,0,0 1.000 0.600 S – T, KOCHEN 0.776 1.000 S – T 
1,0,-1 1.000 0.749 S – T 0.876 1.000 S – T 
1,-1,0 1.000 0.496 S – T, KOCHEN 0.789 1.000 TOYODA, S – T, KOCHEN 

1,-1,-1 1.000 0.634 S – T, KOCHEN 0.909 1.000 S – T 

1,-1,-2 1.000 0.789 S – T, KOCHEN 0.968 1.000 S – T, 
KOCHEN 

1,-2,-1 1.000 0.483 S – T, KOCHEN 0.927 0.983 S – T, L – M M1 
0,2,0 1.000 0.873 TOYODA, S – T,  KOCHEN 0.396 1.000 FOX 
0,1,1 0.998 0.660 S – T, KOCHEN 0.428 1.000 FOX, KOCHEN 
0,1,0 1.000 0.751 S – T, KOCHEN 0.588 1.000 S – T, KOCHEN 
0,1,-1 0.999 0.882 S – T 0.731 1.000 S – T, KOCHEN 
0,0,2 0.999 0.455 N/A 0.412 1.000 N/A 
0,0,1 1.000 0.570 S – T, KOCHEN 0.539 1.000 S – T, FOX, KOCHEN 
0,0,0 0.999 0.655 S – T 0.655 1.000 S – T 
0,0,-1 1.000 0.790 S – T 0.760 1.000 S – T 
0,0,-2 1.000 0.860 S – T 0.907 1.000 S – T 
0,-1,1 1.000 0.412 N/A 0.644 0.999 TOYODA, S – T, FOX 
0,-1,0 0.999 0.543 S – T, KOCHEN 0.681 0.999 S – T,  KOCHEN 
0,-1,-1 1.000 0.670 S – T, KOCHEN 0.782 1.000 S – T,  KOCHEN 
0,-2,0 1.000 0.447 FOX 0.731 0.988 S – T, L – M M1, KOCHEN 

-1,2,-1 0.999 0.988 N/A 0.465 1.000 FOX 
-1,1,0 1.000 0.802 S – T, KOCHEN 0.446 1.000 S – T, FOX, KOCHEN 
-1,1,-1 1.000 0.885 S - T 0.626 1.000 S – T, KOCHEN 
-1,1,-2 0.999 0.973 N/A 0.706 1.000 S – T, KOCHEN 
-1,0,1 1.000 0.654 N/A 0.395 1.000 N/A 
-1,0,0 1.000 0.712 S – T 0.554 1.000 S – T, KOCHEN 
-1,0,-1 1.000 0.814 S – T, KOCHEN 0.611 1.000 S – T, KOCHEN 
-1,-1,2 0.998 0.427 N/A 0.471 1.000 N/A 
-1,-1,1 0.999 0.538 N/A 0.523 0.999 S – T, FOX, KOCHEN 
-1,-1,0 0.998 0.632 S – T, KOCHEN 0.623 1.000 N/A 
-1,-2,1 0.998 0.441 N/A 0.585 0.985 N/A 
-2,2,-2 0.974 1.000 KOCHEN 0.468 1.000 FOX 
-2,1,-1 0.987 0.911 S – T, L – M M1 0.435 1.000 KOCHEN 
-2,0,0 0.971 0.753 L - M M1 0.397 1.000 S – T, FOX, KOCHEN 
-2,-1,1 0.978 0.640 N/A 0.382 1.000 S – T, FOX, KOCHEN 
-2,-2,2 0.979 0.467 N/A 0.430 0.979 N/A 
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3.6   Empirical Analyses Based on 5KP 

3.6.1   Problem Generation for 5KP 

An objective of the research is to examine heuristic performance as a function of 

constraint slackness and problem correlation structure.  For 5KPs, each problem has 5 

constraints and n items.  

The correlation terms iCAρ , and ji AAρ ( i , j = 1, …, 5 and i < j ) are used in the 

experimental setting.  The terms iCA
ρ represent the correlation between objective function 

coefficients and ith constraint coefficients.  The term ji AAρ  represents the correlation 

value between the ith and jth constraint coefficients.  For constraint slackness, slackness 

ratios again equal 0.3 or 0.7. 

However, the design of experiment for 5KP requires limitations not necessary in 

the 2KP case.  A full factorial design for 5KPs involves 5 constraint slackness factors 

with 2 levels, 15 correlation structure factors with 5 levels, yielding a full factorial design 

of 976,562,500,000 combinations, without any replications.  This is impractical. 

As shown in the previous section, the solution quality of legacy heuristics is 

affected by problem characteristics such as various constraint slackness and correlation 

structures.  For 5KP experiments, an objective is to confirm whether or not heuristic 

performance on larger problems is similar to heuristic performance on the 2KP.  For 

example, will the primal effective gradient type methods ( e.g., KOCHEN ) perform best 

when all five constraint slackness settings are equal and will the dual effective gradient 

type method ( e.g., S – T ) have the best performance when the constraint slackness 

settings are mixed? 
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Figure 13 isolates greedy heuristic performance on the 2KP mixed slackness 

setting problems.  Since three types of greedy heuristics have been discussed so far: (1) 

primal heuristics that considers all constraints when doing variable selection (TOYODA, 

KOCHEN), (2) dual heuristic (S – T), and (3) primal heuristics that consider only one 

constraint when doing variable selection (L – M M1, FOX), three representative 

heuristics, TOYODA, S – T, and L – M M1, are shown in Figure 13. 
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Figure 13.  Elected Heuristic Performance under Slackness (1, 2) and (2, 1) 

 
 

Since the marginal distribution used in the 2KP (and subsequently in the 5KP) do 

not vary greatly, it is not significant which constraints are defined as tight and which are 

defined as loose.  This simplifies the experimental design and focuses the analysis effort.  

A similar argument holds when setting iCAρ . 

Experimental Design for 5KP Problem Generation  

For 5KP, two constraint levels are considered: tight and loose.  A full factorial 

design involves 25 = 32 combinations, However, 6 combinations of constraint slackness 
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considered are shown in Table 17; as before, 1 represents tight (0.3) and 2 represents 

loose (0.7) slackness setting. 

 

Table 17.  Combinations for Constraint Slackness Settings for 5KP  

Constraint Comb 1 Comb 2 Comb 3 Comb 4 Comb 5 Comb 6 
A1 1 1 1 1 1 2 
A2 1 1 1 1 2 2 
A3 1 1 1 2 2 2 
A4 1 1 2 2 2 2 
A5 1 2 2 2 2 2 

                                                                                            (1 = tight, 2 = loose) 

 

For the 5KP, again consider five levels of correlations in each range, although not 

at extreme levels, with those values being   

iCAρ   ∈ {-0.9, -0.5, 0, 0.5, 0.9}. 

The study considers 126 cases of correlation structure between the objective 

function coefficients and the coefficients of the 5 constraints.  These combinations of 

correlation represent how many constraints have various correlation with the objective 

function and are coded as {-2, -1, 0, 1, 2} and shown in Table B.1 of Appendix B. 

As seen in Table B.1, each column represents the different combinations of 

correlation between objective function and constraint coefficients.  Note, there is no 

attempt to control levels of ji AA
ρ .   However, a correlation matrix must be positive 

semidefinite (Rousseeuw and Molenberghs, 1994), which restricts the range of ji AAρ .    

The following is the definition of a positive semidefintie matrix. 
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Definition: The matrix nn×∈RA  is a positive semidefinite matrix if  

0≥⇒∈∀ AxxRx Tn                                                (36) 

for all nonzero vectors nRx∈ . 

Definition: The matrix nn×∈RA  is a positive definite matrix if  

0>AxxT                                                          (37) 

for all nonzero vectors nRx∈ . 

 

Theorem 2.  If nn×∈RA is a positive definite matrix and the column vectors of the 

matrix kn×∈RX are linearly independent, then the matrix  

kkT ×∈= RAXXB                                                  (38) 

is also positive definite.  

 

Proof:  If for the nonzero vector kRz∈  the relation  

                                                   , 

holds, then  

                                             

and from the positive definiteness of the matrix A, it follows that 

BzzT≥0

)()(0 XzAXzAXzXzBzz TTTT ==≥

0=Xz , since the 

column vectors of the matrix X are linearly independent.  From 0=Xz , it follows that 

.  Hence from conditions 0=z kRz∈ and 0≠z it follows that .  i.e., the matrix 

B is positive definite.    

0>BzzT

                                                                                                       (Tammeraid et al., 2004) 
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Theorem 3.  If the matrix nn×∈RA is positive semidefinite, then all the submatrices of A 

obtained by deleting the same number of  rows and columns of the matrix A are positive 

semidefinite. 

 

Proof:  Let nkaaaN k ≤= },,,,{ 21 K  denote the set of natural numbers satisfying the 

condition 

                                                         naa k ≤<<≤ ...1 1  

then,  X is a matrix derived from the identity matrix by taking the column-vectors with 

indices : kaa ,...,1

kn

aa k

×∈

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

= RX

L

ML

OM

MOMM

O

LM

1

00
11

001
00

 

Since the column-vectors of the matrix X are linearly independent, the matrix XTAX is 

semipositive definite by Theorem 2.  Therefore, all the submatrices of the matrix A 

obtained by deleting the same number of rows and columns of the matrix A are positive 

semidefinite.    
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All submatrices obtained by deleting an equal number of rows and columns of a 

correlation matrix must be positive semidefinite.  If we consider three variables X, Y, and 

Z, the correlation matrix has the form: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=ℜ

1
1

1

YZXZ

YZXY

XZXY

ρρ
ρρ
ρρ

                                                 (39) 

A matrix ℜ is a correlation matrix if and only if it is positive semidefinite (PSD), 

meaning that   for any column vector v (Rousseeuw and Molenberghs, 1994).  

Let X be the objective function coefficient vector, Y be the first constraint coefficient 

vector, and Z be the second constraint coefficient vector.  When 

0≥ℜ′ vv

XYρ  and XZρ  are 

specified, YZρ  is restricted by the positive semidefinite property, where the determinant 

of ℜ must be nonnegative: 

021)det( 222 ≥−−−+=ℜ YZXZXYYZXZXY ρρρρρρ .                             (40)                 

When XYρ  and XZρ  are specified, values of YZρ that ensure Equation (40) is satisfied: 

                 ( )( ) ( )( )2222 1111 XZXYXZXYYZXZXYXZXY ρρρρρρρρρ −−+≤≤−−−         (41)          

 

Theorem 4.   If a value of YZρ  is the midpoint of Equation (41), i.e., XZXYYZ ρρρ = , the 

matrix ℜ is always a positive semidefinite matrix. 

 

Proof:  When the matrix ℜ is positive semidefinite, the determinant of ℜ must be as 

follows: 

021)det( 222 ≥−−−+=ℜ YZXZXYYZXZXY ρρρρρρ  
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Substitute                                           XZXYYZ ρρρ =  

021 222222 ≥−−−+ XZXYXZXYXZXY ρρρρρρ  

01 2222 ≥−−+ XZXYXZXY ρρρρ  

( )( ) 011 22 ≥−− XZXY ρρ  

Since XYρ  and XZρ  are correlation coefficients,  11 ≤≤− XYρ  and 11 ≤≤− XZρ .  

Therefore, if XZXYYZ ρρρ = , matrix ℜ is a positive semidefinite matrix.  

 

The result of Theorem 4 provides a convenient way to set any ji AAρ once iCAρ  

and jCAρ  are specified from the set [ ]9.0,5.0,0,5.0,9.0 −− .  Use 

jiji CACAAA
ρρρ ⋅= .                                                   (42) 

Given a correlation structure between objective function coefficients and 

constraint coefficients, the following “Procedure CorrGeneration” is used to create the 

5KP problem set. 

 

Procedure CorrGeneration 

1. Specify the desired correlation matrix ℜ in terms of iCA
ρ , i = 1, …, 5. 

 
2. Calculate each ji AAρ  using jiji CACAAA ρρρ = . 
 
3. Fully specify the correlation matrix ℜ (6×6 matrix): 
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=ℜ

1
1

1
1

1
1

545352515

544342414

534332313

524232212

514131211

54321

AAAAAAAACA

AAAAAAAACA

AAAAAAAACA

AAAAAAAACA

AAAAAAAACA

CACACACACA

ρρρρρ
ρρρρρ
ρρρρρ
ρρρρρ
ρρρρρ
ρρρρρ

 

 
4. Substitute into generation routine (Procedure Iman and Cononver Approach) 

to get 5KP problem set.  
 
 

Iman and Conover (1982) suggest how to induce a Spearman correlation structure 

given by the correlation matrix ℜ among a set of random variables.  The following Iman 

and Conover approach ensures that the final Spearman correlation matrix M of the input 

vectors is close to the desired correlation matrix ℜ, while preserving the marginal 

distribution of the input vectors.   

 

Procedure Iman and Conover approach (1982) adapted for 5KP problems with 

correlation structure 

 
1. Perform Cholesky factorization of the desired correlation matrix ℜ (6×6 

matrix) to get a lower matrix P: .          TPP o=ℜ
 
2. Generate 6 random number vectors with which to randomize the Van der 

Waerden Scores (VW scores). 
 

3. Create the VW score matrix, H, using VW Scores: VW Scores =  ⎟
⎠
⎞

⎜
⎝
⎛

+
Φ−

1
1

N
i    

where i = order, N = 100, 1−Φ = the inverse CDF of the standard normal 
distribution. 

 
4. Create the sample correlation matrix T based on H.  
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5. Cholesky factorization of T to get a lower matrix by . Q TQQT o=
 
6. Create the transformation matrix S: . 1−= QPS o
 
7. Create the new matrix :  . ∗H TSHH o=∗

 
8. Extract each column vector, compute the ranks, and place these ranks into the 

rank matrix M (6 × 100 matrix). 
 
9. Generate 6 random number vectors (100 dimensions of each vector) following 

the marginal distribution of input variables (the C, A1, A2, A3, A4, and A5 
vectors) 

 
10. Sort random numbers by descending order. 

 
11. Rearrange random numbers in Step 10 following the rank (specified order) in 

the M matrix.            
 

 

For the 5KP, the number of constraints is 5 and the number of variables is 100.  

The objective function coefficients, cj, are integer numbers uniformly distributed from 1 

to 100.  The coefficients of the first constraint, a1j, are integer numbers uniformly 

distributed from 1 to 55, the coefficients of the second constraint, a2j, are integer numbers 

uniformly distributed from 1 to 35, the coefficients of the third constraint, a3j, are integer 

numbers uniformly distributed from 1 to 30, the coefficients of the fourth constraint, a4j, 

are integer numbers uniformly distributed from 1 to 45, and the coefficients of the fifth 

constraint, a5j, are integer numbers uniformly distributed from 1 to 25.  Each uniform 

distribution makes sure each constraint has a different value for its greatest coefficient.   

For the correlation structure, the five levels of correlation for each correlation 

term iCA
ρ  are coded as {-2, -1, 0, 1, 2} and slackness levels of 0.3 or 0.7 are coded as 1 

or 2, respectively. 
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The experimental design for 5KP problem generation employs the 6 constraint 

slackness settings as shown in Table 17 and varies the correlation structures among 

objective function and constraint coefficients using 126 separate correlation structures as 

shown in Table B.1 of Appendix B.  Each design point is replicated 5 times to yield a 

total of 3780 (6 × 126 × 5) test problems that effectively varied all problem 

characteristics across the entire range of values.  Thus, the various correlation structures 

are blended across each static slackness setting. 

3.6.2   Heuristic Performance Based on 5KP Constraint Slackness 

The overall performance of the legacy greedy heuristics on the newly generated 

5KP problems is summarized in Table 18.  Tables C.1 and C.2 in Appendix C provide the 

detailed statistical test results that are summarized in Table 18. 

 

Table 18.  Number of Times Best by Each Heuristic under 5KP Constraint Slackness 

Heuristics (1,1,1,1,1) (1,1,1,1,2) (1,1,1,2,2) (1,1,2,2,2) (1,2,2,2,2) (2,2,2,2,2)
TOYODA 8 15 22 22 16 5 

S – T 1 4 20 49 198 1 
L – M M1 105 92 96 109 74 60 

FOX 61 31 26 15 12 114 
KOCHEN 437 452 408 326 168 412 
Statistical 

Tests       

Chi-Square 
Test 

Reject  C
0H Reject  C

0H Reject  C
0H Reject  C

0H Reject  C
0H Reject  C

0H

Best by 
Sign Test KOCHEN KOCHEN KOCHEN KOCHEN S – T and  

KOCHEN KOCHEN 

    (  : Heuristic performances do not differ. Reject Region: α =0.1)                         C
0H
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The data reflect the various combinations of constraint slackness ratios and 

summarize how many times each heuristic is the outright best performer.  Chi-square test 

and sign test are used to examine best heuristics.  There are clearly differences in 

performance. 

  2KP empirical analysis on varied constraint slackness settings suggests that the 

better greedy heuristics give more consideration to a dominant constraint.  This allows 

heuristics to select more items for inclusion without violating the dominant constraint, 

and thus improve the objective function value attained.  The analysis of 5KP constraint 

slackness shows that a dominant constraint produces the same effect on heuristic 

performance as in the 2KP and this is stated in the following hypothesis: 

 

 

 
Hypothesis of 5KP Slackness  
 

Varied levels of constraint slackness in an MKP will dictate any dominant constraint 
(When slackness levels vary, then the tighter constraints are the dominant 
constraints). 

 
 

 

A dominant constraint is defined as that constraint whose solution feasibility 

drives the solution for the entire problem.  When there is a single dominant constraint, 

such as with (1, 2, 2, 2, 2), the S – T appears slightly favored while KOCHEN is best for 

the other constraint slackness settings examined.   

The results in Table 18 find that KOCHEN is the best performer under similar 

constraint slackness settings, which are S = (1, 1, 1, 1, 1) and S = (2, 2, 2, 2, 2) in the 5KP 
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case.  When there is one dominant constraint such as S = (1, 2, 2, 2, 2), S – T appears to 

be the slightly better heuristic.  However, three important questions arise.  First, why is 

KOCHEN the best overall performer except under specific constraint slackness setting S 

= (1, 2, 2, 2, 2)?  Second, why are S – T and KOCHEN similar for constraint slackness 

setting S = (1, 2, 2, 2, 2) but not any of the other five settings?  Third, why does the L – 

M M1 heuristic performance seem to improve in the 5KP test set as compared to the 2KP 

test set results? 

The dynamic penalty cost functions (weighting schemes) used in each heuristic 

are analyzed to help answer the questions posed.  Thus, a slackness setting S = (1, 1, 2, 2, 

2) is picked to be examined to determine why KOCHEN is best on all slackness settings 

except S = (1, 2, 2, 2, 2).  Figure 14 plots the average variation in weight vector per 

iteration for slackness setting S = (1, 1, 2, 2, 2) problems and shows three different 

weighting schemes:  TOYODA’s early weighting scheme, S – T’s constant weighting 

scheme, and KOCHEN’s delayed weighting scheme.  Each line in the graphs represents 

the weight trend line for each of the five problem constraints.  For ease of reference, all 

weights are scaled to a minimum value of 1.  As with the 2KP analysis, KOCHEN’s 

delayed weighting scheme is a better weighting scheme as item selection is more difficult 

in the later iterations.  Since fewer items can fit into tight constraints, compared to loose 

constraints, proper item choice based on tight constraints is important.  Table 19 

summarizes average resource usage by the heuristics’ solution and the optimal solution 

for setting S = (1, 1, 2, 2, 2) under correlation structure ρ = (0, 0, 0, 0, 0).  Since the focus 

is the effect of constraint slackness on heuristic performance, only 5KP problems with 

independence among problem coefficients are considered.                  
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Figure 14.  Performance of Weight Trend of Legacy Heuristics for Setting (1,1,2,2,2) 
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Table 19 shows that the dominant constraints are determined by constraint 

slackness settings.  (Table C.3 in Appendix C provides resource usage for all slackness 

settings under zero correlation) 

 

Table 19.  Resource Usage in Slackness Setting (1, 1, 2, 2, 2) under Zero Correlation. 

Heuristics # of Vars 
Selected 

Resource Usage 
1st Const 

Resource Usage 
2nd Const 

Resource Usage 
3rd Const 

Resource Usage 
4th Const 

Resource Usage 
5th Const 

TOYODA 38.4 0.976 0.993 0.516 0.530 0.522 
S – T 39.4 0.977 0.995 0.548 0.555 0.556 

KOCHEN 40.2 0.987 0.991 0.556 0.574 0.557 
L – M M1 36.4 0.988 0.993 0.510 0.543 0.521 

FOX 40.2 0.994 0.991 0.566 0.587 0.551 
Optimal 39.4 0.998 0.997 0.564 0.565 0.556 

(Ratio of Resource Usage) 
 

 

The Table 19 results show FOX has the best performance from a resource usage 

perspective; FOX consumes the resources most effectively in the tight constraints.  Thus, 

FOX can select more variables while maintaining feasibility than other heuristics; 

however, this conclusion is not supported by the results in Table 18.  This points to the 

criticality of choosing the correct item; KOCHEN picks as many items as FOX but it 

picks those items more effectively.  Thus, the delayed weighting scheme of KOCHEN, 

seen in Figure 14, is the most effective. 

To answer the second question (Why are S – T and KOCHEN similar for 

constraint slackness setting (1, 2, 2, 2, 2) but not any of the other five settings?), Figure 

15 plots the average weight values of TOYODA, S – T, and KOCHEN for constraint 

slackness setting (1, 2, 2, 2, 2).   
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Figure 15.  Performance of Weight Trend of Legacy Heuristics for (1,2,2,2,2) 
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In this type of problem, the first constraint is the dominant constraint and should 

not only have the least resources remaining during the final iterations, but also during 

almost all iterations in the solution process.  To accommodate a dominant constraint, an 

effective heuristic needs to focus variable selection with respect to that specific dominant 

constraint.  As depicted in Figure 15, S – T always gives the dominant constraint more 

weight.  However, KOCHEN rapidly increases the weight applied to the dominant 

constraint during the latter stages of the process.  This significantly increases focus on the 

dominant constraint later in the process and allows KOCHEN to achieve results similar to 

S – T.   

 

Table 20.  Resource Usage in Slackness Setting (1, 2, 2, 2, 2) under Zero Correlation. 

Heuristics # of Vars 
Selected 

Resource Usage 
1st Const 

Resource Usage 
2nd Const 

Resource Usage 
3rd Const 

Resource Usage 
4th Const 

Resource Usage 
5th Const 

TOYODA 40.8 0.998 0.564 0.564 0.542 0.55 
S – T 44.2 0.998 0.62 0.625 0.603 0.613 

KOCHEN 44.6 0.997 0.628 0.629 0.612 0.629 
L – M M1 42.2 0.996 0.599 0.613 0.593 0.615 

FOX 45.6 0.992 0.643 0.654 0.638 0.647 
Optimal 45.6 1 0.655 0.659 0.624 0.658 

(Ratio of Resource Usage) 
 

 

Table 20 summarizes resource usage of each heuristic for problem S = (1, 2, 2, 2, 

2) and ρ = (0, 0, 0, 0, 0).  Each heuristic nearly fills the tight constraint.  The FOX 

heuristic is again a best choice for overall resource usage but is not a good choice for 

obtaining a best solution.  The FOX heuristic does not always pick the proper variables to 
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set to 1 (add to the knapsack).  The constant weighting scheme of S – T and the late 

weighting scheme of KOCHEN in the solution process ensure selection of the best items 

for the knapsacks. 

To answer the third question (Why does the L – M M1 heuristic performance 

seem to improve with a 5KP test set as compared to a 2KP test set?), comparing L – M 

M1 with FOX, L – M M1 considers the future potential resource usage in each constraint 

for an item selection.  This characteristic tries to balance resource usage on all constraints 

which is similar to TOYODA’s weighting scheme.  Since there are many combinations 

between constraint slackness and correlation structures in the 5KP, considering all 

constraints for an item selection in the equal slackness settings yields a better solution 

than considering only the most limiting constraint, as in FOX, at each iteration.  Thus, as 

the number of constraints increases, L – M M1 performs better than FOX.  The 

computational tests in Chapter VI increase the number of constraints up to 25.  This 

computational test shows that L – M M1 outperforms FOX as the number of constraints 

increases. 

3.6.3   Heuristic Performance Based on 5KP Correlation Structures  

Based on the analysis of 2KP heuristics, if all constraints have similar slackness 

levels, positive correlation between objective function and constraint coefficients can 

dictate heuristic performance.  When constraint slackness levels are mixed, then positive 

correlation is not as dominant a consideration.  In all 2KP cases, the KOCHEN delayed 

weighting scheme showed the most robust performance except for the extreme 

correlation structures ρ = (2, -2, ∗) and ρ  = (-2, 2, ∗) where ∗ represents any value of 
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21AA
ρ .  For these extreme cases, the FOX absolute weighting scheme is more suitable.  

The following analysis tests this conjecture.   

 

 

Hypothesis of 5KP Correlation Structure 
 
When an MKP possesses equivalent slackness levels, problem correlation structure  
can dictate a dominant constraint. 

 
 

 

 

Table 21 shows the best performer by correlation structures under equal slackness 

in the 5KP case, Table 22 shows the average relative errors by each heuristic and Table 

23 shows the resource usage by KOCHEN under S = (1, 1, 1, 1, 1).  The resource usage 

by KOCHEN under S = (1, 1, 1, 1, 2) is provided in Table 26.  In addition, Tables C.5 

through C.8 in Appendix C provide resource usage by KOCHEN under other slackness 

settings and Table C.4 presents the detailed statistical tests to discriminate a best 

heuristic. 
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Table 21.  Best Performer Counts by Correlation Structure under Equal Slackness in 5KP 

Correlation TOYODA S – T L – M M1 FOX KOCHEN 
χ2 Test 

Reject  cH 0

Best by Sign Test Total 
Probs 

-2,-2,-2,-2,-2 0 0 2 2 2 N N/A 10 
-2,-2,-2,-2,-1 0 0 3 1 4 Y L – M M1, KOCHEN 10 
-2,-2,-2,-2,0 0 0 2 6 0 Y FOX 10 
-2,-2,-2,-2,1 0 0 2 6 1 Y L – M M1, FOX 10 
-2,-2,-2,-2,2 0 0 0 9 1 Y FOX 10 
-2,-2,-2,-1,-1 0 0 4 1 3 Y L – M M1, KOCHEN 10 
-2,-2,-2,-1,0 0 0 6 2 2 Y L-M M1 10 
-2,-2,-2,-1,1 0 0 5 3 2 Y L-M M1, FOX, KOCHEN 10 
-2,-2,-2,-1,2 0 0 0 10 0 Y FOX 10 
-2,-2,-2,0,0 1 0 0 0 8 Y KOCHEN 10 
-2,-2,-2,0,1 0 0 0 0 10 Y KOCHEN 10 
-2,-2,-2,0,2 0 0 0 8 2 Y FOX 10 
-2,-2,-2,1,1 0 0 0 0 10 Y KOCHEN 10 
-2,-2,-2,1,2 0 0 2 4 4 Y FOX, KOCHEN 10 
-2,-2,-2,2,2 0 0 0 0 10 Y KOCHEN 10 

-2,-2,-1,-1,-1 0 0 2 1 4 Y L – M M1, KOCHEN 10 
-2,-2,-1,-1,0 0 0 4 1 4 Y L – M M1, KOCHEN 10 
-2,-2,-1,-1,1 0 0 6 4 0 Y L-M M1, FOX 10 
-2,-2,-1,-1,2 0 0 0 8 0 Y FOX 10 
-2,-2,-1,0,0 0 0 0 0 9 Y KOCHEN 10 
-2,-2,-1,0,1 0 0 4 0 6 Y L – M M1, KOCHEN 10 
-2,-2,-1,0,2 0 0 0 8 2 Y FOX 10 
-2,-2,-1,1,1 0 0 0 0 9 Y KOCHEN 10 
-2,-2,-1,1,2 0 0 2 4 3 N N/A 10 
-2,-2,-1,2,2 0 0 0 0 10 Y KOCHEN 10 
-2,-2,0,0,0 1 0 1 0 7 Y KOCHEN 10 
-2,-2,0,0,1 0 0 2 0 8 Y KOCHEN 10 
-2,-2,0,0,2 0 0 1 5 4 Y FOX, KOCHEN 10 
-2,-2,0,1,1 0 0 0 0 10 Y KOCHEN 10 
-2,-2,0,1,2 0 0 3 3 4 N N/A 10 
-2,-2,0,2,2 0 0 0 0 10 Y KOCHEN 10 
-2,-2,1,1,1 0 0 0 0 10 Y KOCHEN 10 
-2,-2,1,1,2 0 0 3 0 7 Y KOCHEN 10 
-2,-2,1,2,2 0 0 0 0 10 Y KOCHEN 10 
-2,-2,2,2,2 0 0 0 0 10 Y KOCHEN 10 

-2,-1,-1,-1,-1 0 0 5 0 5 Y L – M M1, KOCHEN 10 
-2,-1,-1,-1,0 0 0 9 0 1 Y L-M M1 10 
-2,-1,-1,-1,1 0 0 2 3 5 Y KOCHEN 10 
-2,-1,-1,-1,2 0 0 2 7 1 Y FOX 10 
-2,-1,-1,0,0 0 0 1 0 8 Y KOCHEN 10 
-2,-1,-1,0,1 0 0 3 0 7 Y KOCHEN 10 
-2,-1,-1,0,2 0 0 1 9 0 Y FOX 10 
-2,-1,-1,1,1 0 0 0 0 10 Y KOCHEN 10 
-2,-1,-1,1,2 0 0 1 4 5 Y FOX, KOCHEN 10 
-2,-1,-1,2,2 0 0 0 1 9 Y KOCHEN 10 
-2,-1,0,0,0 0 0 1 0 9 Y KOCHEN 10 
-2,-1,0,0,1 0 0 3 1 6 Y KOCHEN 10 
-2,-1,0,0,2 0 0 3 6 1 Y FOX 10 
-2,-1,0,1,1 0 0 0 0 10 Y KOCHEN 10 
-2,-1,0,1,2 0 0 0 5 5 Y FOX, KOCHEN 10 
-2,-1,0,2,2 0 0 0 0 10 Y KOCHEN 10 
-2,-1,1,1,1 0 0 0 0 10 Y KOCHEN 10 
-2,-1,1,1,2 0 0 2 2 6 Y KOCHEN 10 
-2,-1,1,2,2 0 0 1 0 9 Y KOCHEN 10 
-2,-1,2,2,2 0 0 1 0 9 Y KOCHEN 10 
-2,0,0,0,0 0 1 0 0 6 Y KOCHEN 10 
-2,0,0,0,1 0 0 3 0 6 Y L – M M1, KOCHEN 10 
-2,0,0,0,2 0 0 2 4 4 Y FOX, KOCHEN 10 
-2,0,0,1,1 0 0 0 0 10 Y KOCHEN 10 
-2,0,0,1,2 0 0 2 2 6 Y KOCHEN 10 
-2,0,0,2,2 0 0 0 0 10 Y KOCHEN 10 
-2,0,1,1,1 0 0 0 0 10 Y KOCHEN 10 
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TOYODA S – T L – M M1 FOX KOCHEN 
χ2 Test 

Reject H  
Total 
Probs Correlation Best by Sign Test c

0

-2,0,1,1,2 0 0 2 2 6 Y KOCHEN 10 
-2,0,1,2,2 0 0 1 0 9 Y KOCHEN 10 
-2,0,2,2,2 0 0 0 0 10 Y KOCHEN 10 
-2,1,1,1,1 3 0 0 0 6 Y TOYODA, KOCHEN 10 
-2,1,1,1,2 0 0 1 0 9 Y KOCHEN 10 
-2,1,1,2,2 0 0 0 0 10 Y KOCHEN 10 
-2,1,2,2,2 0 0 0 0 10 Y KOCHEN 10 
-2,2,2,2,2 2 0 0 0 8 Y KOCHEN 10 

-1,-1,-1,-1,-1 0 0 1 0 2 N N/A 10 
-1,-1,-1,-1,0 0 0 7 0 1 Y L-M M1 10 
-1,-1,-1,-1,1 0 0 4 3 3 N N/A 10 
-1,-1,-1,-1,2 0 0 1 7 2 Y FOX 10 
-1,-1,-1,0,0 0 0 1 0 9 Y KOCHEN 10 
-1,-1,-1,0,1 0 0 1 0 8 Y KOCHEN 10 
-1,-1,-1,0,2 0 0 1 7 2 Y FOX 10 
-1,-1,-1,1,1 0 0 0 0 10 Y KOCHEN 10 
-1,-1,-1,1,2 0 0 2 2 6 Y KOCHEN 10 
-1,-1,-1,2,2 0 0 0 0 10 Y KOCHEN 10 
-1,-1,0,0,0 0 0 2 0 6 Y KOCHEN 10 
-1,-1,0,0,1 0 0 2 2 6 Y KOCHEN 10 
-1,-1,0,0,2 0 0 2 3 5 Y KOCHEN 10 
-1,-1,0,1,1 0 0 0 0 10 Y KOCHEN 10 
-1,-1,0,1,2 0 0 0 5 5 Y FOX, KOCHEN 10 
-1,-1,0,2,2 0 0 0 1 9 Y KOCHEN 10 
-1,-1,1,1,1 1 0 0 0 9 Y KOCHEN 10 
-1,-1,1,1,2 0 0 3 1 6 Y KOCHEN 10 
-1,-1,1,2,2 0 0 0 0 10 Y KOCHEN 10 
-1,-1,2,2,2 0 0 0 0 9 Y KOCHEN 10 
-1,0,0,0,0 1 0 0 0 7 Y KOCHEN 10 
-1,0,0,0,1 0 0 4 0 6 Y L – M M1, KOCHEN 10 
-1,0,0,0,2 0 0 4 3 2 N N/A 10 
-1,0,0,1,1 0 0 0 0 10 Y KOCHEN 10 
-1,0,0,1,2 0 0 3 1 6 Y KOCHEN 10 
-1,0,0,2,2 0 0 0 0 10 Y KOCHEN 10 
-1,0,1,1,1 0 0 0 0 10 Y KOCHEN 10 
-1,0,1,1,2 0 0 1 0 9 Y KOCHEN 10 
-1,0,1,2,2 0 0 2 0 8 Y KOCHEN 10 
-1,0,2,2,2 0 0 0 0 10 Y KOCHEN 10 
-1,1,1,1,1 2 0 0 0 8 Y KOCHEN 10 
-1,1,1,1,2 0 0 5 1 4 Y L-M M1, KOCHEN 10 
-1,1,1,2,2 0 0 1 0 9 Y KOCHEN 10 
-1,1,2,2,2 0 0 0 0 10 Y KOCHEN 10 
-1,2,2,2,2 1 0 0 0 9 Y KOCHEN 10 
0,0,0,0,0 0 0 1 0 2 N N/A 10 
0,0,0,0,1 0 0 3 0 7 Y KOCHEN 10 
0,0,0,0,2 0 0 2 3 5 Y KOCHEN 10 
0,0,0,1,1 0 0 1 0 9 Y KOCHEN 10 
0,0,0,1,2 0 0 1 2 7 Y KOCHEN 10 
0,0,0,2,2 0 0 0 0 10 Y KOCHEN 10 
0,0,1,1,1 1 0 0 0 9 Y KOCHEN 10 
0,0,1,1,2 0 0 2 2 6 Y KOCHEN 10 
0,0,1,2,2 0 0 2 0 7 Y KOCHEN 10 
0,0,2,2,2 0 0 0 0 10 Y KOCHEN 10 
0,1,1,1,1 0 0 0 0 10 Y KOCHEN 10 
0,1,1,1,2 0 0 1 0 9 Y KOCHEN 10 
0,1,1,2,2 0 0 0 0 10 Y KOCHEN 10 
0,1,2,2,2 0 0 0 0 10 Y KOCHEN 10 
0,2,2,2,2 0 0 0 0 10 Y KOCHEN 10 
1,1,1,1,1 0 0 0 0 7 Y KOCHEN 10 
1,1,1,1,2 0 0 4 0 6 Y L –M M1, KOCHEN 10 
1,1,1,2,2 0 0 1 0 9 Y KOCHEN 10 
1,1,2,2,2 0 0 0 0 10 Y KOCHEN 10 
1,2,2,2,2 0 0 0 0 10 Y KOCHEN 10 
2,2,2,2,2 0 1 0 0 8 Y KOCHEN 10 

(Reject Region: α =0.1)                         
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Table 22.  Relative Errors by Correlation Structure under Equal Slackness in 5KP 

Correlation TOYODA S – T L – M M1 FOX KOCHEN 

-2,-2,-2,-2,-2 0.546 0.546 0.183 0.191 0.292 
-2,-2,-2,-2,-1 1.595 2.083 0.396 0.828 0.360 
-2,-2,-2,-2,0 4.003 5.438 1.148 0.752 1.173 
-2,-2,-2,-2,1 5.818 8.577 1.776 1.838 1.913 
-2,-2,-2,-2,2 7.990 12.468 5.202 2.233 4.048 
-2,-2,-2,-1,-1 1.220 2.050 0.915 1.679 0.706 
-2,-2,-2,-1,0 3.338 5.518 0.971 1.916 1.238 
-2,-2,-2,-1,1 6.264 9.441 2.166 2.837 2.480 
-2,-2,-2,-1,2 7.254 10.131 5.256 1.142 4.105 
-2,-2,-2,0,0 2.121 2.410 1.767 3.609 0.563 
-2,-2,-2,0,1 5.827 8.455 2.095 5.203 1.264 
-2,-2,-2,0,2 8.406 10.807 4.813 2.351 3.709 
-2,-2,-2,1,1 3.251 6.058 3.314 5.654 0.697 
-2,-2,-2,1,2 9.192 10.794 4.487 4.074 3.775 
-2,-2,-2,2,2 4.923 9.180 4.911 4.494 2.263 

-2,-2,-1,-1,-1 1.029 1.011 0.602 2.644 0.384 
-2,-2,-1,-1,0 3.334 5.156 0.609 3.602 0.639 
-2,-2,-1,-1,1 6.177 9.629 1.432 2.578 1.949 
-2,-2,-1,-1,2 7.876 10.275 4.810 2.246 3.936 
-2,-2,-1,0,0 2.609 3.658 1.700 5.023 0.731 
-2,-2,-1,0,1 5.276 7.661 2.221 4.700 1.683 
-2,-2,-1,0,2 6.870 9.272 4.235 2.784 3.692 
-2,-2,-1,1,1 3.556 6.347 3.275 7.281 1.383 
-2,-2,-1,1,2 7.058 10.306 4.938 4.915 3.479 
-2,-2,-1,2,2 5.347 8.371 5.746 4.978 2.133 
-2,-2,0,0,0 1.015 1.584 1.993 7.227 0.506 
-2,-2,0,0,1 4.935 7.336 2.428 6.866 1.394 
-2,-2,0,0,2 10.028 13.976 5.488 4.860 4.457 
-2,-2,0,1,1 2.921 4.958 3.020 7.512 0.935 
-2,-2,0,1,2 7.983 9.801 4.626 4.848 4.112 
-2,-2,0,2,2 5.452 8.563 5.333 5.665 2.239 
-2,-2,1,1,1 2.162 3.503 4.385 8.454 0.582 
-2,-2,1,1,2 6.106 7.746 3.140 5.029 2.748 
-2,-2,1,2,2 4.915 7.778 4.950 6.347 1.834 
-2,-2,2,2,2 3.257 7.218 4.604 6.779 0.841 

-2,-1,-1,-1,-1 0.993 1.437 0.936 3.474 0.537 
-2,-1,-1,-1,0 2.904 3.181 0.652 4.310 1.163 
-2,-1,-1,-1,1 7.095 10.362 2.057 4.436 1.905 
-2,-1,-1,-1,2 8.730 11.631 5.210 3.943 4.087 
-2,-1,-1,0,0 2.288 2.964 1.822 4.625 0.922 
-2,-1,-1,0,1 5.606 7.812 2.289 4.951 1.591 
-2,-1,-1,0,2 6.944 8.756 4.258 2.545 3.719 
-2,-1,-1,1,1 2.528 4.632 3.399 6.331 1.115 
-2,-1,-1,1,2 8.593 11.022 4.378 4.383 3.572 
-2,-1,-1,2,2 5.581 9.349 4.881 5.638 2.238 
-2,-1,0,0,0 1.987 1.982 1.453 7.800 0.559 
-2,-1,0,0,1 6.453 8.588 2.490 6.696 1.677 
-2,-1,0,0,2 8.329 10.119 3.836 3.127 4.179 
-2,-1,0,1,1 3.755 5.075 3.381 8.025 1.172 
-2,-1,0,1,2 7.667 9.236 4.489 3.091 3.776 
-2,-1,0,2,2 3.948 5.881 4.223 4.463 1.945 
-2,-1,1,1,1 2.728 3.561 3.934 9.308 0.998 
-2,-1,1,1,2 6.941 8.737 4.400 5.744 3.383 
-2,-1,1,2,2 0.546 0.546 0.183 0.191 0.292 
-2,-1,2,2,2 1.595 2.083 0.396 0.828 0.360 
-2,0,0,0,0 4.003 5.438 1.148 0.752 1.173 
-2,0,0,0,1 5.818 8.577 1.776 1.838 1.913 
-2,0,0,0,2 7.990 12.468 5.202 2.233 4.048 
-2,0,0,1,1 1.220 2.050 0.915 1.679 0.706 
-2,0,0,1,2 3.338 5.518 0.971 1.916 1.238 
-2,0,0,2,2 6.264 9.441 2.166 2.837 2.480 
-2,0,1,1,1 7.254 10.131 5.256 1.142 4.105 
-2,0,1,1,2 2.121 2.410 1.767 3.609 0.563 
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Correlation TOYODA S – T L – M M1 FOX KOCHEN 

-2,0,1,2,2 5.630 8.112 5.465 5.971 1.990 
-2,0,2,2,2 2.720 5.797 3.253 5.392 1.009 
-2,1,1,1,1 1.130 1.472 1.596 7.554 0.263 
-2,1,1,1,2 4.042 6.821 1.819 6.304 1.578 
-2,1,1,2,2 8.684 10.667 5.284 5.497 4.287 
-2,1,2,2,2 3.025 6.024 2.828 9.275 1.300 
-2,2,2,2,2 8.584 10.206 4.906 5.737 3.082 

-1,-1,-1,-1,-1 4.867 6.794 4.789 5.355 1.862 
-1,-1,-1,-1,0 2.292 3.177 2.906 9.920 0.656 
-1,-1,-1,-1,1 6.604 7.821 4.017 5.729 2.928 
-1,-1,-1,-1,2 5.744 7.790 4.600 6.584 2.022 
-1,-1,-1,0,0 3.451 5.997 5.037 5.733 1.096 
-1,-1,-1,0,1 1.391 1.657 3.832 9.373 0.631 
-1,-1,-1,0,2 7.238 9.226 4.984 7.665 3.206 
-1,-1,-1,1,1 4.739 7.200 4.749 6.251 1.799 
-1,-1,-1,1,2 4.020 5.909 5.215 5.947 1.388 
-1,-1,-1,2,2 2.262 4.695 4.412 6.528 0.899 
-1,-1,0,0,0 0.840 1.137 0.839 3.628 0.371 
-1,-1,0,0,1 3.444 3.939 0.597 3.928 0.961 
-1,-1,0,0,2 6.819 10.215 1.994 4.645 2.496 
-1,-1,0,1,1 7.845 10.532 4.182 3.020 4.007 
-1,-1,0,1,2 3.208 4.695 2.608 6.079 0.713 
-1,-1,0,2,2 5.868 8.397 2.469 4.922 0.999 
-1,-1,1,1,1 9.820 12.300 4.834 4.399 3.684 
-1,-1,1,1,2 3.719 5.462 3.144 7.325 1.661 
-1,-1,1,2,2 8.753 11.462 5.461 4.877 3.899 
-1,-1,2,2,2 5.233 7.447 4.716 5.091 1.892 
-1,0,0,0,0 1.954 2.027 1.702 7.101 0.821 
-1,0,0,0,1 4.959 6.916 2.080 6.698 1.556 
-1,0,0,0,2 8.003 9.959 4.706 4.318 3.634 
-1,0,0,1,1 4.389 6.223 2.713 7.264 1.263 
-1,0,0,1,2 7.853 9.441 4.526 4.261 3.248 
-1,0,0,2,2 5.640 7.779 4.762 4.940 2.290 
-1,0,1,1,1 2.860 4.326 3.956 10.066 0.809 
-1,0,1,1,2 7.267 10.400 4.829 6.263 3.312 
-1,0,1,2,2 4.003 6.205 3.820 5.487 1.611 
-1,0,2,2,2 3.093 5.284 3.931 5.540 1.167 
-1,1,1,1,1 1.584 1.940 1.637 7.421 0.717 
-1,1,1,1,2 6.136 7.231 1.807 7.905 1.542 
-1,1,1,2,2 8.299 9.643 3.633 4.766 3.835 
-1,1,2,2,2 4.453 5.632 3.404 7.817 1.645 
-1,2,2,2,2 8.323 10.817 4.723 5.405 3.805 
0,0,0,0,0 5.086 6.509 4.643 5.668 1.971 
0,0,0,0,1 2.250 3.443 3.178 8.643 0.725 
0,0,0,0,2 7.640 8.684 4.257 5.830 3.227 
0,0,0,1,1 5.485 8.428 5.154 6.065 2.070 
0,0,0,1,2 3.421 6.537 3.967 6.654 1.502 
0,0,0,2,2 1.392 2.787 3.239 11.981 0.659 
0,0,1,1,1 6.973 8.089 3.139 6.020 3.185 
0,0,1,1,2 4.603 6.063 4.820 6.714 1.949 
0,0,1,2,2 4.685 5.674 4.686 6.349 1.356 
0,0,2,2,2 1.703 2.886 2.904 7.322 0.679 
0,1,1,1,1 0.703 0.875 1.646 8.601 0.640 
0,1,1,1,2 6.241 7.374 1.863 8.806 1.490 
0,1,1,2,2 8.130 9.148 4.293 4.325 3.735 
0,1,2,2,2 3.621 5.731 3.638 8.318 1.548 
0,2,2,2,2 8.498 10.019 5.202 6.116 4.093 
1,1,1,1,1 5.583 7.260 6.044 5.843 3.012 
1,1,1,1,2 2.098 2.605 3.236 8.802 0.853 
1,1,1,2,2 7.403 8.498 4.480 7.472 3.279 
1,1,2,2,2 5.731 7.368 3.822 7.014 2.263 
1,2,2,2,2 3.548 5.386 3.824 8.248 1.271 
2,2,2,2,2 1.503 2.114 3.855 10.426 0.688 

 
Unit: Percent
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Table 23.  Resource Usage by KOCHEN under Slackness Setting (1, 1, 1, 1, 1) 

Correlation 1st Const. 2nd Const. 3rd Const. 4th Const. 5th Const. 

-2,-2,-2,-2,-2 0.956 0.930 0.948 0.924 0.957 
-2,-2,-2,-2,-1 0.859 0.920 0.887 0.898 0.998 
-2,-2,-2,-2,0 0.794 0.797 0.774 0.792 0.999 
-2,-2,-2,-2,1 0.660 0.668 0.639 0.692 1.000 
-2,-2,-2,-2,2 0.477 0.462 0.491 0.463 1.000 
-2,-2,-2,-1,-1 0.793 0.798 0.812 0.970 0.991 
-2,-2,-2,-1,0 0.714 0.699 0.707 0.941 0.996 
-2,-2,-2,-1,1 0.626 0.652 0.654 0.812 1.000 
-2,-2,-2,-1,2 0.416 0.439 0.420 0.499 1.000 
-2,-2,-2,0,0 0.664 0.629 0.656 0.987 0.991 
-2,-2,-2,0,1 0.624 0.625 0.615 0.965 0.999 
-2,-2,-2,0,2 0.473 0.461 0.489 0.670 1.000 
-2,-2,-2,1,1 0.644 0.676 0.665 0.995 1.000 
-2,-2,-2,1,2 0.556 0.588 0.594 0.854 1.000 
-2,-2,-2,2,2 0.551 0.505 0.509 0.993 0.999 

-2,-2,-1,-1,-1 0.772 0.732 0.969 0.981 0.980 
-2,-2,-1,-1,0 0.709 0.743 0.954 0.947 0.998 
-2,-2,-1,-1,1 0.639 0.646 0.823 0.805 1.000 
-2,-2,-1,-1,2 0.466 0.479 0.605 0.564 1.000 
-2,-2,-1,0,0 0.649 0.698 0.860 0.988 0.994 
-2,-2,-1,0,1 0.604 0.603 0.775 0.918 1.000 
-2,-2,-1,0,2 0.460 0.489 0.604 0.694 1.000 
-2,-2,-1,1,1 0.612 0.599 0.766 0.986 0.998 
-2,-2,-1,1,2 0.542 0.543 0.581 0.896 1.000 
-2,-2,-1,2,2 0.558 0.563 0.634 0.997 1.000 
-2,-2,0,0,0 0.559 0.567 0.979 0.983 0.980 
-2,-2,0,0,1 0.677 0.655 0.935 0.942 0.998 
-2,-2,0,0,2 0.618 0.640 0.704 0.724 1.000 
-2,-2,0,1,1 0.630 0.619 0.906 0.996 0.988 
-2,-2,0,1,2 0.479 0.484 0.682 0.847 1.000 
-2,-2,0,2,2 0.599 0.586 0.702 0.999 0.992 
-2,-2,1,1,1 0.599 0.627 0.988 0.991 0.994 
-2,-2,1,1,2 0.534 0.534 0.856 0.848 1.000 
-2,-2,1,2,2 0.596 0.595 0.832 0.996 0.993 
-2,-2,2,2,2 0.622 0.635 0.989 0.998 0.995 

-2,-1,-1,-1,-1 0.753 0.958 0.979 0.939 0.979 
-2,-1,-1,-1,0 0.687 0.921 0.932 0.912 0.998 
-2,-1,-1,-1,1 0.672 0.837 0.856 0.885 1.000 
-2,-1,-1,-1,2 0.570 0.627 0.665 0.625 1.000 
-2,-1,-1,0,0 0.644 0.865 0.806 0.993 0.994 
-2,-1,-1,0,1 0.674 0.861 0.826 0.972 0.998 
-2,-1,-1,0,2 0.472 0.569 0.574 0.726 1.000 
-2,-1,-1,1,1 0.610 0.737 0.776 1.000 0.997 
-2,-1,-1,1,2 0.478 0.609 0.569 0.888 1.000 
-2,-1,-1,2,2 0.621 0.620 0.664 0.993 0.999 
-2,-1,0,0,0 0.624 0.848 0.976 0.993 0.993 
-2,-1,0,0,1 0.613 0.738 0.919 0.948 0.999 
-2,-1,0,0,2 0.482 0.581 0.674 0.660 1.000 
-2,-1,0,1,1 0.691 0.803 0.920 0.996 0.994 
-2,-1,0,1,2 0.432 0.559 0.680 0.837 1.000 
-2,-1,0,2,2 0.539 0.597 0.699 0.998 0.998 
-2,-1,1,1,1 0.559 0.751 0.990 0.976 0.991 
-2,-1,1,1,2 0.534 0.663 0.884 0.843 1.000 
-2,-1,1,2,2 0.659 0.716 0.877 0.987 0.999 
-2,-1,2,2,2 0.551 0.624 0.995 0.991 0.991 
-2,0,0,0,0 0.579 0.990 0.979 0.996 0.988 
-2,0,0,0,1 0.666 0.942 0.944 0.948 0.995 
-2,0,0,0,2 0.622 0.715 0.716 0.731 1.000 
-2,0,0,1,1 0.602 0.918 0.877 0.997 0.990 
-2,0,0,1,2 0.596 0.767 0.757 0.897 1.000 
-2,0,0,2,2 0.652 0.718 0.742 0.998 0.995 
-2,0,1,1,1 0.600 0.872 0.988 0.993 0.997 
-2,0,1,1,2 0.549 0.759 0.843 0.848 1.000 
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Correlation 1st Const. 2nd Const. 3rd Const. 4th Const. 5th Const. 

-2,0,1,2,2 0.567 0.770 0.809 0.994 1.000 
-2,0,2,2,2 0.687 0.753 0.997 0.993 0.995 
-2,1,1,1,1 0.647 0.983 0.986 0.979 0.986 
-2,1,1,1,2 0.613 0.879 0.858 0.835 1.000 
-2,1,1,2,2 0.703 0.895 0.847 0.996 0.999 
-2,1,2,2,2 0.789 0.863 0.989 0.996 0.987 
-2,2,2,2,2 0.692 0.983 0.977 0.978 0.993 

-1,-1,-1,-1,-1 0.961 0.989 0.960 0.968 0.963 
-1,-1,-1,-1,0 0.900 0.926 0.935 0.895 0.996 
-1,-1,-1,-1,1 0.807 0.824 0.780 0.799 1.000 
-1,-1,-1,-1,2 0.547 0.589 0.584 0.555 1.000 
-1,-1,-1,0,0 0.887 0.891 0.924 0.999 0.998 
-1,-1,-1,0,1 0.811 0.869 0.874 0.975 1.000 
-1,-1,-1,0,2 0.680 0.688 0.711 0.729 1.000 
-1,-1,-1,1,1 0.763 0.757 0.778 0.993 0.993 
-1,-1,-1,1,2 0.638 0.673 0.643 0.865 1.000 
-1,-1,-1,2,2 0.634 0.637 0.620 1.000 0.992 
-1,-1,0,0,0 0.831 0.838 0.995 0.974 0.975 
-1,-1,0,0,1 0.804 0.769 0.952 0.961 0.996 
-1,-1,0,0,2 0.602 0.607 0.709 0.765 1.000 
-1,-1,0,1,1 0.759 0.771 0.910 0.992 0.997 
-1,-1,0,1,2 0.635 0.602 0.733 0.890 1.000 
-1,-1,0,2,2 0.628 0.638 0.681 0.994 0.999 
-1,-1,1,1,1 0.787 0.809 0.989 0.990 0.996 
-1,-1,1,1,2 0.600 0.624 0.854 0.892 1.000 
-1,-1,1,2,2 0.608 0.634 0.821 0.999 0.988 
-1,-1,2,2,2 0.582 0.621 0.992 0.989 0.995 
-1,0,0,0,0 0.861 0.982 0.970 0.985 0.967 
-1,0,0,0,1 0.732 0.946 0.939 0.929 1.000 
-1,0,0,0,2 0.629 0.768 0.735 0.734 1.000 
-1,0,0,1,1 0.751 0.895 0.900 0.995 0.993 
-1,0,0,1,2 0.641 0.767 0.749 0.885 1.000 
-1,0,0,2,2 0.650 0.681 0.740 0.998 0.995 
-1,0,1,1,1 0.738 0.911 0.989 0.997 0.991 
-1,0,1,1,2 0.615 0.693 0.873 0.856 1.000 
-1,0,1,2,2 0.745 0.831 0.885 0.998 0.994 
-1,0,2,2,2 0.658 0.703 0.987 0.993 0.988 
-1,1,1,1,1 0.748 0.987 0.983 0.986 0.990 
-1,1,1,1,2 0.689 0.899 0.870 0.881 1.000 
-1,1,1,2,2 0.627 0.865 0.817 0.996 0.995 
-1,1,2,2,2 0.759 0.874 0.994 0.991 0.994 
-1,2,2,2,2 0.629 0.989 0.990 0.983 0.994 
0,0,0,0,0 0.962 0.967 0.956 0.982 0.974 
0,0,0,0,1 0.897 0.901 0.949 0.927 0.998 
0,0,0,0,2 0.703 0.712 0.736 0.729 1.000 
0,0,0,1,1 0.881 0.872 0.878 0.982 0.993 
0,0,0,1,2 0.750 0.730 0.761 0.902 1.000 
0,0,0,2,2 0.761 0.706 0.772 0.996 0.993 
0,0,1,1,1 0.874 0.886 0.988 0.985 0.989 
0,0,1,1,2 0.741 0.815 0.904 0.897 1.000 
0,0,1,2,2 0.773 0.701 0.846 0.995 1.000 
0,0,2,2,2 0.721 0.723 0.995 0.994 0.993 
0,1,1,1,1 0.882 0.977 0.994 0.994 0.973 
0,1,1,1,2 0.770 0.860 0.879 0.868 1.000 
0,1,1,2,2 0.749 0.842 0.861 0.991 0.998 
0,1,2,2,2 0.769 0.872 0.991 0.992 0.984 
0,2,2,2,2 0.783 0.992 0.997 0.990 0.993 
1,1,1,1,1 0.987 0.978 0.961 0.975 0.978 
1,1,1,1,2 0.884 0.919 0.882 0.890 1.000 
1,1,1,2,2 0.872 0.847 0.867 0.995 0.998 
1,1,2,2,2 0.860 0.902 0.996 0.996 0.988 
1,2,2,2,2 0.866 0.992 0.984 0.997 0.988 
2,2,2,2,2 0.991 0.988 0.990 0.982 0.993 

 
 

 113



Analysis for Hypothesis of 5KP Correlation Structure 

There are five different coded correlation values for the five constraints: {-2, -1, 

0, 1, 2}.  Coded correlation value 2, iCA
ρ  = 0.9, makes the ith constraint the dominant 

constraint.  A constraint with iCAρ  = 0.9 has its resources used up earlier than other 

constraints.  Table 23 supports the statement that constraints possessing positive 

correlation with the objective function coefficients have a higher percentage of resources 

used.  Table 13 showed this information for the 2KP.  

Based on the analysis of 2KP correlation structures where constraints have similar 

correlation values (less than a difference of 1 among coded correlation value for each 

constraint pair), resources are used evenly in the optimal solution, and KOCHEN is the 

best performing heuristic.  Table 24 shows those correlation structures having similar  

difference (less than 3% difference) in resource usage between the smallest resource 

remaining constraint and the second smallest resource remaining constraint in the optimal 

solution, along with the best performing heuristic.  This means there are at least two 

dominant constraints for the associated correlation structure.   
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Table 24. Correlation Structures Having Similar Resource Usage (Less than 3% Difference) 
Between the Smallest and the Next Smallest Constraint and Best Performing Heuristic 

Correlation 
Structure 

Best 
Performing 
Heuristic 

Correlation 
Structure 

Best 
Performing 
Heuristic 

Correlation 
Structure 

Best 
Performing 
Heuristic 

Correlation 
Structure 

Best 
Performing 
Heuristic 

-2,-2,-2,-2,-2 ALL -2,-1,-1,-1,1 KOCHEN -2,1,2,2,2 KOCHEN -1,1,1,1,1 KOCHEN 

-2,-2,-2,-1,-1 L – M M1, 
KOCHEN -2,-1,-1,0,0 KOCHEN -2,2,2,2,2 KOCHEN -1,1,1,1,2 L-M M1, 

KOCHEN 

-2,-2,-2,-1,0 L-M M1 -2,-1,-1,0,1 KOCHEN -1,-1,-1,-1,-1 ALL -1,1,1,2,2 KOCHEN 

-2,-2,-2,-1,1 L-M M1, FOX, 
KOCHEN -2,-1,-1,1,1 KOCHEN -1,-1,-1,-1,0 L-M M1 -1,1,2,2,2 KOCHEN 

-2,-2,-2,0,0 KOCHEN -2,-1,-1,1,2 FOX, 
KOCHEN -1,-1,-1,0,0 KOCHEN -1,2,2,2,2 KOCHEN 

-2,-2,-2,0,1 KOCHEN -2,-1,-1,2,2 KOCHEN -1,-1,-1,0,1 KOCHEN 0,0,0,0,0 ALL 

-2,-2,-2,1,1 KOCHEN -2,-1,0,0,0 KOCHEN -1,-1,-1,1,1 KOCHEN 0,0,0,0,1 KOCHEN 

-2,-2,-2,1,2 FOX, 
KOCHEN -2,-1,0,0,1 KOCHEN -1,-1,-1,1,2 KOCHEN 0,0,0,1,1 KOCHEN 

-2,-2,-2,2,2 KOCHEN -2,-1,0,1,1 KOCHEN -1,-1,-1,2,2 KOCHEN 0,0,0,1,2 KOCHEN 

-2,-2,-1,-1,-1 L – M M1, 
KOCHEN -2,-1,0,1,2 FOX, 

KOCHEN -1,-1,0,0,0 KOCHEN 0,0,0,2,2 KOCHEN 

-2,-2,-1,-1,0 L – M M1, 
KOCHEN -2,-1,0,2,2 KOCHEN -1,-1,0,0,1 KOCHEN 0,0,1,1,1 KOCHEN 

-2,-2,-1,0,0 KOCHEN -2,-1,1,1,1 KOCHEN -1,-1,0,1,1 KOCHEN 0,0,1,1,2 KOCHEN 

-2,-2,-1,0,1 L – M M1, 
KOCHEN -2,-1,1,1,2 KOCHEN -1,-1,0,1,2 FOX, 

KOCHEN 0,0,1,2,2 KOCHEN 

-2,-2,-1,1,1 KOCHEN -2,-1,1,2,2 KOCHEN -1,-1,0,2,2 KOCHEN 0,0,2,2,2 KOCHEN 

-2,-2,-1,1,2 ALL -2,-1,2,2,2 KOCHEN -1,-1,1,1,1 KOCHEN 0,1,1,1,1 KOCHEN 

-2,-2,-1,2,2 KOCHEN -2,0,0,0,0 KOCHEN -1,-1,1,1,2 KOCHEN 0,1,1,1,2 KOCHEN 

-2,-2,0,0,0 KOCHEN -2,0,0,0,1 L – M M1, 
KOCHEN -1,-1,1,2,2 KOCHEN 0,1,1,2,2 KOCHEN 

-2,-2,0,0,1 KOCHEN -2,0,0,0,2 FOX, 
KOCHEN -1,-1,2,2,2 KOCHEN 0,1,2,2,2 KOCHEN 

-2,-2,0,0,2 FOX, 
KOCHEN -2,0,0,1,1 KOCHEN -1,0,0,0,0 KOCHEN 0,2,2,2,2 KOCHEN 

-2,-2,0,1,1 KOCHEN -2,0,0,1,2 KOCHEN -1,0,0,0,1 L – M M1, 
KOCHEN 1,1,1,1,1 KOCHEN 

-2,-2,0,1,2 ALL -2,0,0,2,2 KOCHEN -1,0,0,0,2 ALL 1,1,1,1,2 L –M M1, 
KOCHEN 

-2,-2,0,2,2 KOCHEN -2,0,1,1,1 KOCHEN -1,0,0,1,1 KOCHEN 1,1,1,2,2 KOCHEN 

-2,-2,1,1,1 KOCHEN -2,0,1,1,2 KOCHEN -1,0,0,1,2 KOCHEN 1,1,2,2,2 KOCHEN 

-2,-2,1,1,2 KOCHEN -2,0,1,2,2 KOCHEN -1,0,0,2,2 KOCHEN 1,2,2,2,2 KOCHEN 

-2,-2,1,2,2 KOCHEN -2,0,2,2,2 KOCHEN -1,0,1,1,1 KOCHEN 2,2,2,2,2 KOCHEN 

-2,-2,2,2,2 KOCHEN -2,1,1,1,1 TOYODA, 
KOCHEN -1,0,1,1,2 KOCHEN   

-2,-1,-1,-1,-1 L – M M1, 
KOCHEN -2,1,1,1,2 KOCHEN -1,0,1,2,2 KOCHEN   

-2,-1,-1,-1,0 L-M M1 -2,1,1,2,2 KOCHEN -1,0,2,2,2 KOCHEN   

 

Table 24 agrees with the analysis of 2KP correlation structures.  If there are at 

least two constraints with similar objective function – constraint correlation values 

(within a difference of 1 in coded correlation values), the successful heuristic should 
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balance the weight on these constraints in order to use evenly resources in early 

iterations, and then increase the weight on the constraint with the least resource 

remaining in the later iterations.   Thus, KOCHEN is expected to be the best performing 

heuristic.  Table 24 indicates KOCHEN is the best performing heuristic for 106 of the 

109 correlation structures.  Therefore, if the correlation structure has at least two high 

correlation values, or all correlation values are the same, a delayed weighting scheme is 

the most appropriate. 

Figure 16 shows the weighting trend of KOCHEN for different correlation 

structures.   
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Figure 16.  Weight Trend of KOCHEN according to Correlation Structure 
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The correlation structure (2, 2, 2, 2, 2) indicates that all constraints relate similarly 

to the objective function so each resource will be almost completely used.  For this 

situation, KOCHEN gives the same weight to each constraint in almost all iterations, and 

then places the most weight on the constraint with the least resource remaining in the last 

few iterations.  This characteristic allows KOCHEN to put more items into the knapsack.  

For correlation structures ρ = (-2,-2,-2, 2, 2) and ρ = (-1,-1, 0, 1, 1), the weights on the 

two dominant constraints increase rapidly in later iterations.  Thus, KOCHEN selects 

items by comparing objective function coefficients with two dominant constraint 

coefficients.  For correlation structure ρ = (-2,-2,-2,-2, 2), KOCHEN places more weight 

on the fifth constraint from the middle number of iterations until termination.   

For the extreme case ρ = (-2, -2, -2, -2, 2), the fifth constraint is the dominant 

constraint and should have the least resource remaining in the final iterations.  Table 25 

shows those correlation structures having larger differences (more than 10% difference) 

in resource usage between the smallest resource remaining and the second smallest 

resource remaining, along with the best performing heuristic.  In both instances, the FOX 

heuristic performs best.  

 

Table 25.  Correlation Structures with More Than 10% Difference in Resource Usage by the 
Least Constraint and the Second Least Constraint and Best Performing Heuristic 

Correlation 
Structure 

Best Performing 
Heuristic 

Correlation 
Structure 

Best Performing 
Heuristic 

-2,-2,-2,-2,2 FOX -2,-2,-2,-1,2 FOX 
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Thus, the Hypothesis concerning 5KP correlation structure is confirmed, and the 

analysis for this hypothesis agrees with the analysis of 2KP correlation structures.  This 

means that if there are some higher correlation values, KOCHEN is the best performing 

heuristic.  However, if there is one dominant constraint created by the correlation 

structure, FOX’s absolute weighting is more suitable. 

3.6.4   Influence Combinations between 5KP Slackness and Correlation  

Table 26 supports the conjecture that constraint slackness is the dominant 

consideration in how resources are used for the 5KP.  The extreme combinations, which 

are perfect positive correlation between loose constraints and objective function and 

negative correlation between tight constraint and objective function, are exceptions to the 

conjecture of slackness domination (for example ρ = (-2, -2, -2, -2, 2) and S = (1, 1, 1, 1, 

2)).  The combination of perfect positive correlation between the loose constraint and the 

objective function allows the loose constraint to be filled at the same rate as the tight 

constraint.  Note, the correlation structure dictates a dominant constraint among tight 

constraints.  For example, the combination of positive correlation between the tight 

constraint and the objective function makes the tight constraint a dominant constraint.  

These results support the hypothesis of 5KP correlation structure: Problem correlation 

structure can dictate a dominant constraint under equal slackness levels. 
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Table 26.  Resource Usage by KOCHEN under Slackness Setting (1, 1, 1, 1, 2)  

Correlation 1st Const. 2nd Const. 3rd Const. 4th Const. 5th Const. 

-2,-2,-2,-2,-2 0.916 0.938 0.927 0.954 0.425 
-2,-2,-2,-2,-1 0.915 0.922 0.972 0.943 0.563 
-2,-2,-2,-2,0 0.944 0.971 0.938 0.928 0.717 
-2,-2,-2,-2,1 0.951 0.960 0.927 0.897 0.855 
-2,-2,-2,-2,2 0.911 0.917 0.948 0.957 0.990 
-2,-2,-2,-1,-1 0.845 0.846 0.879 0.991 0.515 
-2,-2,-2,-1,0 0.852 0.889 0.941 0.994 0.657 
-2,-2,-2,-1,1 0.864 0.887 0.858 0.996 0.806 
-2,-2,-2,-1,2 0.901 0.881 0.892 0.998 0.954 
-2,-2,-2,0,0 0.831 0.771 0.846 0.997 0.568 
-2,-2,-2,0,1 0.770 0.788 0.764 0.998 0.708 
-2,-2,-2,0,2 0.846 0.858 0.843 0.998 0.828 
-2,-2,-2,1,1 0.764 0.760 0.791 1.000 0.610 
-2,-2,-2,1,2 0.723 0.730 0.749 0.999 0.698 
-2,-2,-2,2,2 0.657 0.671 0.682 1.000 0.527 

-2,-2,-1,-1,-1 0.816 0.848 0.993 0.994 0.487 
-2,-2,-1,-1,0 0.831 0.811 0.993 0.990 0.633 
-2,-2,-1,-1,1 0.837 0.807 0.983 0.990 0.800 
-2,-2,-1,-1,2 0.797 0.799 0.976 0.994 0.895 
-2,-2,-1,0,0 0.776 0.787 0.957 0.998 0.574 
-2,-2,-1,0,1 0.738 0.749 0.920 0.998 0.714 
-2,-2,-1,0,2 0.769 0.751 0.974 0.997 0.822 
-2,-2,-1,1,1 0.731 0.689 0.889 0.999 0.595 
-2,-2,-1,1,2 0.730 0.744 0.851 1.000 0.683 
-2,-2,-1,2,2 0.607 0.598 0.632 1.000 0.505 
-2,-2,0,0,0 0.713 0.716 0.995 0.996 0.543 
-2,-2,0,0,1 0.710 0.738 0.992 0.985 0.672 
-2,-2,0,0,2 0.726 0.737 0.991 0.988 0.767 
-2,-2,0,1,1 0.749 0.691 0.985 0.999 0.582 
-2,-2,0,1,2 0.751 0.720 0.978 0.996 0.669 
-2,-2,0,2,2 0.563 0.566 0.715 1.000 0.487 
-2,-2,1,1,1 0.735 0.733 0.994 0.994 0.565 
-2,-2,1,1,2 0.713 0.724 0.993 0.992 0.645 
-2,-2,1,2,2 0.546 0.567 0.840 1.000 0.499 
-2,-2,2,2,2 0.659 0.627 0.994 0.999 0.497 

-2,-1,-1,-1,-1 0.797 0.974 0.972 0.976 0.485 
-2,-1,-1,-1,0 0.736 0.976 0.960 0.966 0.614 
-2,-1,-1,-1,1 0.765 0.980 0.985 0.975 0.746 
-2,-1,-1,-1,2 0.758 0.966 0.986 0.953 0.892 
-2,-1,-1,0,0 0.728 0.961 0.945 0.998 0.574 
-2,-1,-1,0,1 0.774 0.946 0.975 0.996 0.703 
-2,-1,-1,0,2 0.750 0.979 0.952 0.995 0.820 
-2,-1,-1,1,1 0.765 0.877 0.915 0.999 0.594 
-2,-1,-1,1,2 0.736 0.879 0.875 1.000 0.689 
-2,-1,-1,2,2 0.633 0.612 0.655 1.000 0.505 
-2,-1,0,0,0 0.730 0.874 0.988 0.987 0.535 
-2,-1,0,0,1 0.687 0.871 0.989 0.994 0.652 
-2,-1,0,0,2 0.683 0.909 0.984 0.992 0.765 
-2,-1,0,1,1 0.611 0.786 0.966 0.999 0.573 
-2,-1,0,1,2 0.721 0.846 0.976 0.997 0.658 
-2,-1,0,2,2 0.667 0.742 0.736 1.000 0.511 
-2,-1,1,1,1 0.672 0.818 0.994 0.990 0.553 
-2,-1,1,1,2 0.668 0.821 0.994 0.994 0.625 
-2,-1,1,2,2 0.596 0.668 0.876 1.000 0.514 
-2,-1,2,2,2 0.730 0.724 0.997 0.997 0.490 
-2,0,0,0,0 0.669 0.989 0.995 0.976 0.504 
-2,0,0,0,1 0.723 0.988 0.996 0.986 0.629 
-2,0,0,0,2 0.616 0.990 0.989 0.989 0.747 
-2,0,0,1,1 0.654 0.951 0.936 0.993 0.566 
-2,0,0,1,2 0.710 0.964 0.950 0.997 0.652 
-2,0,0,2,2 0.594 0.710 0.738 1.000 0.505 
-2,0,1,1,1 0.668 0.929 0.996 0.993 0.528 
-2,0,1,1,2 0.613 0.941 0.997 0.997 0.619 
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Correlation 1st Const. 2nd Const. 3rd Const. 4th Const. 5th Const. 

-2,0,1,2,2 0.634 0.754 0.857 1.000 0.500 
-2,0,2,2,2 0.660 0.746 0.997 0.999 0.498 
-2,1,1,1,1 0.711 0.997 0.991 0.995 0.532 
-2,1,1,1,2 0.773 0.994 0.987 0.986 0.610 
-2,1,1,2,2 0.597 0.892 0.867 1.000 0.494 
-2,1,2,2,2 0.735 0.913 0.999 0.997 0.491 
-2,2,2,2,2 0.609 0.994 0.994 0.994 0.477 

-1,-1,-1,-1,-1 0.966 0.990 0.961 0.981 0.441 
-1,-1,-1,-1,0 0.963 0.981 0.969 0.978 0.586 
-1,-1,-1,-1,1 0.976 0.972 0.969 0.979 0.759 
-1,-1,-1,-1,2 0.980 0.962 0.965 0.945 0.870 
-1,-1,-1,0,0 0.904 0.966 0.917 0.996 0.553 
-1,-1,-1,0,1 0.938 0.959 0.934 0.997 0.678 
-1,-1,-1,0,2 0.944 0.943 0.946 0.998 0.800 
-1,-1,-1,1,1 0.933 0.944 0.906 0.999 0.601 
-1,-1,-1,1,2 0.878 0.895 0.902 1.000 0.676 
-1,-1,-1,2,2 0.639 0.685 0.669 1.000 0.499 
-1,-1,0,0,0 0.836 0.865 0.996 0.993 0.529 
-1,-1,0,0,1 0.876 0.916 0.996 0.986 0.666 
-1,-1,0,0,2 0.891 0.870 0.999 0.983 0.765 
-1,-1,0,1,1 0.859 0.848 0.938 0.998 0.591 
-1,-1,0,1,2 0.819 0.849 0.949 0.999 0.662 
-1,-1,0,2,2 0.595 0.582 0.712 1.000 0.491 
-1,-1,1,1,1 0.800 0.795 0.991 0.995 0.543 
-1,-1,1,1,2 0.857 0.882 0.990 0.995 0.626 
-1,-1,1,2,2 0.676 0.659 0.879 1.000 0.491 
-1,-1,2,2,2 0.686 0.704 0.991 0.999 0.486 
-1,0,0,0,0 0.879 0.983 0.970 0.972 0.500 
-1,0,0,0,1 0.839 0.984 0.995 0.992 0.622 
-1,0,0,0,2 0.878 0.988 0.992 0.974 0.718 
-1,0,0,1,1 0.807 0.984 0.932 0.998 0.565 
-1,0,0,1,2 0.833 0.982 0.978 0.995 0.664 
-1,0,0,2,2 0.712 0.772 0.729 0.999 0.506 
-1,0,1,1,1 0.807 0.922 0.995 0.997 0.519 
-1,0,1,1,2 0.848 0.937 0.992 0.995 0.638 
-1,0,1,2,2 0.600 0.740 0.861 1.000 0.500 
-1,0,2,2,2 0.653 0.759 0.999 0.997 0.482 
-1,1,1,1,1 0.759 0.991 0.989 0.993 0.522 
-1,1,1,1,2 0.819 0.996 0.991 0.987 0.612 
-1,1,1,2,2 0.802 0.950 0.898 1.000 0.522 
-1,1,2,2,2 0.763 0.893 0.999 0.996 0.481 
-1,2,2,2,2 0.824 0.996 0.987 0.993 0.476 
0,0,0,0,0 0.983 0.986 0.975 0.976 0.500 
0,0,0,0,1 0.970 0.958 0.987 0.986 0.604 
0,0,0,0,2 0.970 0.978 0.974 0.989 0.743 
0,0,0,1,1 0.933 0.947 0.964 0.999 0.558 
0,0,0,1,2 0.952 0.921 0.933 0.999 0.663 
0,0,0,2,2 0.770 0.766 0.738 1.000 0.491 
0,0,1,1,1 0.897 0.913 0.992 0.997 0.528 
0,0,1,1,2 0.930 0.924 0.997 0.994 0.616 
0,0,1,2,2 0.740 0.705 0.879 1.000 0.491 
0,0,2,2,2 0.774 0.784 0.993 0.999 0.471 
0,1,1,1,1 0.899 0.986 0.984 0.988 0.505 
0,1,1,1,2 0.913 0.992 0.989 0.990 0.600 
0,1,1,2,2 0.779 0.900 0.863 1.000 0.499 
0,1,2,2,2 0.807 0.930 0.998 0.996 0.500 
0,2,2,2,2 0.808 0.991 0.997 0.994 0.469 
1,1,1,1,1 0.978 0.989 0.993 0.975 0.524 
1,1,1,1,2 0.995 0.994 0.980 0.984 0.579 
1,1,1,2,2 0.883 0.898 0.897 1.000 0.491 
1,1,2,2,2 0.914 0.920 0.997 0.998 0.491 
1,2,2,2,2 0.919 0.996 0.994 0.997 0.477 
2,2,2,2,2 0.994 0.983 0.989 0.991 0.474 
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3.7   Summary and Discussion  

The purpose of this chapter was to examine what makes one heuristic perform 

better than other heuristics.  To accomplish this goal, 1120 (2KP) and 3780 (5KP) 

problems were examined based on problem constraint slackness setting and correlation 

structure.  The research focused on which heuristic gave the best solution under varying 

conditions.  The methodology included Chi-square and sign tests to prove whether or not 

a heuristic method was significantly better than the other methods.  In the results and 

analyses sections, the best heuristic was examined.  The chapter also studied why the best 

heuristic behaved as it did as a function of problem characteristics.  Five heuristics, 

TOYODA; S – T; L – M M1; FOX; and KOCHEN, were examined under different 

combinations of constraint slackness and correlation structure.  For equal constraint 

slackness settings, KOCHEN performed the best because its delayed weighting scheme is 

the most effective.  It is very important to point out that KOCHEN gives equal weight to 

all constraints during the early iterations, and then places higher weight on the constraints 

with the least resource remaining for two reasons: to balance resource usage in equal 

slackness settings or to give more emphasis to the dominant constraint in mixed slackness 

settings.  This is why KOCHEN yields better solutions for the instance where there are at 

least two dominant constraints.  For mixed constraint slackness in the 2KP and one 

dominant constraint slackness setting S = (1, 2, 2, 2, 2) in 5KP, S – T is the best heuristic 

because its surplus vector, R, places greater weight on the tighter constraint (dominant 

constraint) during the entire solution process.    
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If correlation structures create conditions causing a dominant constraint, heuristics 

demonstrate similar performance characteristics as with slackness settings.  For the 2KP, 

if 1CA
ρ  and 2CA

ρ  have similar values, neither constraint dominates.  In this case, 

KOCHEN is the best heuristic for the same reason as in the equal constraint slackness 

settings.  However, if there is only one higher positive correlation value, such as 

9.0=iCAρ ,  this correlation structure creates a dominant constraint, similar to the mixed 

constraint slackness setting:  then FOX’s absolute weighting fills the same role as S – T’s 

surplus vector, R, in the mixed slackness setting.  Therefore, FOX is the best heuristic 

when there is one dominant constraint created by the correlation structure.   

In conclusion, KOCHEN is the best performing heuristic when at least two 

dominant constraints exist, S – T is the best heuristic when one dominant constraint is 

created by constraint slackness, and FOX is the best heuristic when one dominant 

constraint is created by the correlation structure.   
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IV.   Empirical Analysis of Legacy Transformation Heuristics 

4.1   Introduction 

Legacy greedy heuristics can be viewed as path structured algorithms.  A greedy 

heuristic makes a sequence of choices until feasibility constraints prevent further choices.  

However, a greedy heuristic cannot change the selection of the item after a choice is 

made.  Local improvement procedures change current solutions to try and improve the 

solution. 

Glover (1977) and Pirkul (1987) combine the merits of greedy heuristics and local 

improvement using a multiplier method and surrogate constraints to transform the MKP 

into a single constraint knapsack problem.  A class of surrogate constraint heuristics also 

provides approximate, near optimal solutions to integer programming.  These solutions 

provide a bound to the original MKP.  This chapter examines the heuristic methods of 

Glover (1977) and Pirkul (1987) analyzed against both the 1120 problem 2KP test set and 

3780 problem 5KP test set.  

4.2   Background 

Two transformation approaches are “surrogate relaxation” and “Lagrangian 

relaxation”.  The result is either a one dimensional knapsack problem or an unconstrained 

knapsack problem, respectively, both of which should be easier to solve than the original 

higher dimensional problem.   

The following 2KP example illustrates Lagrangian relaxation: 

Maximize                           (43)                               ∑
=

=
n

j
jj xcZ

1
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subject to                                                         (44)                               ∑
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≤
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Assume that the above problem is relatively easy to solve if the second constraint 

is removed.  The Lagrangian relaxation problem moves the second constraint into the 

objective function to obtain: 

Maximize                                    (47)                               

subject to                                                                              (48)  
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 The unconstrained objective function with binary variables follows: 
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It is clear that all feasible solutions for the original MKP, Equations (43) – (46) 

are also feasible solutions to the Lagrangian relaxation (47) – (49) because the solution of 

the Lagrangian relaxation requires satisfaction of only one of the constraints.  While the 

optimal solution of the Lagrangian relaxation (one dimensional knapsack problem) may 

not be feasible in the original MKP, it can provide an upper bound for the MKP.  

Nemhauser and Wolsey (1988) suggest that Lagrangian relaxation provides tighter 

bounds to the IP than the linear programming relaxation meaning ZIP  ≤  ZLR (λ∗) ≤ ZLP, 
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where λ∗ is the optimal Lagrangian multipliers found by solving  

and Z

)(min)(
0

λλ
λ LRLR ZZ
≥

∗ =

LP is the optimal objective function value of the linear programming relaxation. 

In surrogate relaxation, the original set of constraints are replaced with a single 

constraint, a nonnegative linear combination of the original constraints.  Glover (1968) 

defined the surrogate problem as follows:  

       
Njx

bxA
xcZ
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S

∈∀∈
≤

=

}1,0{
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max)(

μμ
μ

           (51) 

where μ is a positive multiplier vector of size m.   The formulation of the surrogate 

relaxation of the 2KP of (43) – (46) is as follows: 

   Maximize                                                             (52)                              

subject to                                (53)  
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1
2211
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   njix ji ,...,2,12,11or0,0 ===≥μ       (54) 

The solution of the surrogate relaxation also produces an upper bound on the 

MKP optimal solution.  The best bound using this scheme is determined by locating a set 

of multipliers μ* such that 

)(*)( μμ
μ SS ZMinZ =                    (55) 

If μ* is known, then *)(μSZ provides better bounds than both the LP-relaxation 

and the Lagrangian relaxation (Glover, 1968).  The surrogate relaxation problem of 

Equations (43) through (46) is a 0 – 1 knapsack problem, which is easier to solve than the 

original MKP. 
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4.3   Glover’s Surrogate Constraint Heuristic 

Glover (1977) proposes a heuristic using surrogate relaxation for obtaining near-

optimal solutions to integer programming problems.  Glover introduces the framework 

for the surrogate constraint heuristic, defined as a sequence of four steps: 

Step 1: Generate the surrogate constraint using dual variables of the relaxed 

problem 

Step 2: Determine a feasible starting solution. 

Step 3: By reference to the surrogate constraint, periodically or regularly updated, 

establish measures of the goodness of increasing and decreasing the value 

of each variable. 

Step 4: Sequentially change – increase or decrease – the values of the variables, 

singly or in blocks, in accordance with their goodness measure, and keep 

track of the best solution found in the process. 

Glover also suggests temporarily allowing infeasible solutions by the use of an 

oscillating assignment heuristic to solve the 0 – 1 surrogate KP.  The oscillating 

assignment heuristic is a combination of the dual gradient approach of Senju and Toyoda 

(1968), and a primal gradient approach, (Kochenberger et al.,1974).  The oscillating 

assignment heuristic integrates these two different gradient approaches depending on 

whether or not the current solution is feasible.  When a current solution is infeasible, 

remove variables (set them equal to zero) until feasibility is achieved.  By contrast, 

variables are forced to one to move from the feasible region into the infeasible region.  

Details of the oscillating assignment heuristic are summarized as follows (Glover, 1977): 

Step 1: Form the KP using surrogate multipliers 
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 Index variables by decreasing 
j

j

A
c

)(μ
 

Fix variables equal to one according to the order; if fixing a variable equal 

to one violates any of the constraints, fix that variable equal to zero and 

continue 

Define X 0 as the current solution. 

 Define S1={j |  = 1} and S0={j |  = 0}   0
jx 0

jx

 SM1= S1\{most recent move into S1} 

SM0= S0\{most recent move into S0} 

Step 2: Generate next solution: 

 L0 = L1 = 0 

 U0 = ∞ or average {SM0} 

                    if smallest index move creates an infeasible solution 

 U1 = ∞ or average {SM1} 

                     if largest index move creates a feasible solution 

If X 0 feasible, S1 ∪ arg min{j∈ SM0| L0 < aj < U0}   

 If X 0 infeasible, S0 ∪ arg max{j∈ SM1| L1 < aj < U1} 

Step 3: Generate a trial solution: 

 If X 0 feasible then: temporarily transfer arg max{cj | j∈ SM0 and transfer 

feasible} to S1.  Repeat until feasibility destroyed by any move 

If X 0 infeasible then: temporarily transfer arg min{cj | j∈ SM1 and transfer 

feasible} to S0.  If single transfer does not yield a feasible solution, select 
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smallest cj and repeat.   If ties occur for smallest cj pick largest index.   

Once feasibility attained apply X 0 feasible rule above 

Step 4: Max iterations reached then STOP; Else go to Step 2. 

 

Glover’s oscillating assignment heuristic (GLOVER) can be applied using dual 

variables easily acquired from the LP relaxation.  Glover’s oscillating assignment 

heuristic is programmed in various iteration counts [1, 2, 3, 4, 5, 10, 15, 20, 25, 50, 100, 

150 and 200] to evaluate the solution performance of the GLOVER.  Glover’s heuristic 

performance is examined using average relative error. 

This oscillating assignment approach is an early basis for tabu search’s strategic 

oscillation feature.  In summary, when proceeding from inside the feasible region to a 

point where no improving move exists, except one that violates feasibility, the heuristic 

follows a path that goes outside the feasible region.  By contrast, proceeding from an 

infeasible point discards the stopping rule of the dual approach upon entering the feasible 

region, in favor of continuing to go deeper along a path dictated by the surrogate 

constraints.  Thereupon, the procedure reverses, working back toward the periphery, 

taking a trajectory designed to obtain improving solutions.  Figure 17 plots the change in 

average relative error as a function of the number of iterations in all problems of the 2KP 

test set (four slackness settings).   
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Figure 17.  Relative Error Convergence according to Number of Iterations 

 

Figure 17 shows how much Glover’s local improvement scheme decreases 

average relative error (improves solution) as one increases the number of iterations, 

plotted by the four slackness settings.  Figure 17 indicates that Glover’s oscillating 

assignment solution converges to its best solution after 50 iterations.  For slackness, S = 

(1, 1), the average relative error in the first iteration is 0.54 while the average relative 

error in the 50th iteration is 0.18, an improvement of 36%.    

The results reported in Table 27 show the average relative errors by Glover’s 

oscillating assignment heuristic (GLOVER) for iteration 1 and iteration 50, and by the 

best heuristic among the five legacy greedy heuristics, TOYODA, S – T, L – M M1, 

FOX, or KOCHEN.   
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Table 27.  Average Relative Error of GLOVER vs. Best Legacy 

GLOVER  Slackness 
1 iteration 50 iterations 

Best Legacy 

(1, 1) 0.538 0.175 0.654 
(1, 2) 0.198 0.075 0.167 
(2, 1) 0.166 0.069 0.132 2KP 

(2, 2) 0.133 0.062 0.139 
(1,1,1,1,1) 1.123 0.469 2.804 
(1,1,1,1,2) 0.865 0.335 1.689 
(1,1,1,2,2) 0.635 0.221 1.034 
(1,1,2,2,2) 0.477 0.147 0.588 
(1,2,2,2,2) 0.277 0.105 0.289 

5KP 

(2,2,2,2,2) 0.231 0.114 0.539 
                                                                                                                     (Unit: Percent) 

 
 

Table 27 indicates that GLOVER with 50 iterations yields better solutions than 

the best solution found by any of the legacy heuristics, TOYODA, S – T, L – M M1, 

FOX and KOCHEN.  In 88.7 % (1089 of 1120 (2KP) and 3256 of 3780 (5KP) test 

problems) of the problems Glover’s heuristic solution, with 50 iterations, is within half a 

percent of the optimum.  In addition, GLOVER found the optimum solution in 518 of 

1120 2KP problems and 1072 of 3780 5KP problems.  However, GLOVER should not be 

compared directly with legacy heuristics because GLOVER includes the improvement 

phase.  GLOVER first gets a feasible solution using a greedy method, and then conducts 

the oscillating assignment procedure to improve the quality of the solutions.  Legacy 

heuristics do not include an improvement phase. 

The performance of GLOVER is affected by constraint slackness settings.  Table 

27 shows that GLOVER works better on loose slackness settings than on tight slackness 

settings.  This is because the algorithm generates more choices of variables to be selected 

when all constraints are loose.  GLOVER works better on negative correlation structures 
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than on positive correlation structures because positive correlation structures restrict 

resources as do tight constraint slackness settings. 

Most importantly, the results on the 1st iteration by GLOVER have better or 

similar values to the results by the best legacy heuristic.  The 1st iteration of GLOVER is 

a greedy heuristic solution.  The 1st iteration of GLOVER changes MKP into KP using 

surrogate multipliers, and then picks items following a decreasing order of bang-for-buck 

ratios (benefit/cost) while maintaining feasibility.  Dual variable values in the solution of 

LP relaxation are used as the surrogate multipliers.  Dual variables are an estimate of how 

critical a resource is to a problem, which is related to constraint slackness and correlation 

structure.  The dual variables (surrogate multipliers) can be said to include information 

regarding constraint slackness and correlation structure.  For example, in S = (2, 1), the 

loose constraint is a non-binding constraint, so the dual variable of this constraint equals 

zero.  Thus, GLOVER’s 1st iteration focuses on the dominant constraint (tighter 

constraint) using surrogate multipliers as the best legacy heuristic uses its penalty cost 

function.  The results for GLOVER’s 1st iteration support the empirical analysis of legacy 

greedy heuristics in Chapter III where the best heuristic focused on the dominant 

constraints.   

4.4   Pirkul’s MKHEUR Heuristic 

Pirkul (1987) introduces a local improvement search using surrogate multipliers 

similar to those in Glover’s heuristic.  Pirkul used the dual variables associated with each 

constraint in the linear programming relaxation as surrogate multipliers.  Pirkul’s 

heuristic procedure, MKHEUR, uses a surrogate constraint and benefit/cost ratios to 
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determine which variables are fixed equal to one in the first iteration.  The improvement 

phase then systematically swaps values of the selected variables to improve the current 

solution.  Details of MKHEUR are as follows: 

Step 1: Determine a set of surrogate multipliers using dual variables from the 

linear programming relaxation.   

Step 2: Calculate 
j

j

A
c

)(μ
 ratios, sort and renumber the variables according to the 

decreasing value of these ratios.    

Step 3: (a). Fix variables equal to one according to the order determined in  

                  Step 2.  

            (b). If fixing a variable equal to one causes violation of one of the original     

                  constraints, fix that variable equal to zero and continue.  Denote the  

                  feasible solution determined in this step as x . 

Step 4: For each variable fixed equal to one in x , fix the variable equal to zero 

and repeat Step 3 (b) to define a new feasible solution (The number of new 

feasible solutions are equal to the number of variables fixed equal to one 

in  x ).  

Step 5: Return the best solution (the largest objective function value) found.   

 

Step 3 of  MKHEUR resembles GLOVER’s 1st iteration.  Since a number of 

different feasible solutions are identified in Step 4 depending on the number of variables 

equal to one, MKHEUR considerably improves the quality of the solution in Step 4 by 
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finding the best solution when comparing all feasible solutions to each other.  Procedure 

MKHEUR is based on a local search procedure superimposed on a greedy approach.   

A set of computational experiments was conducted to evaluate the performance of 

MKHEUR.  Table 28 shows the number of comparisons conducted by MKHEUR 

according to 2KP constraint slackness setting, and the relative improvement from the first 

feasible solution to the final solution (the minimum relative error found among all 

feasible solutions).  Note that the number of comparisons is equal to the number of 

variables fixed equal to one in x , Step 4 of MKHEUR. 

    

Table 28.  Local Improvement by Pirkul MKHEUR 

Slackness Average 
# of Comparisons 

Initial Relative Error 
(Average) 

Final Relative Error 
(Average) Improvement  

(1, 1) 38.4 0.538 0.090 0.448 

(1, 2) 46.6 0.198 0.032 0.166 

(2, 1) 45.8 0.166 0.022 0.144 

(2, 2) 72.5 0.133 0.018 0.115 

 

 

Table 28 shows a local improvement from the first solution to the best solution.  

The number of comparisons increases by slackness setting (1, 1) to (2, 2).  This is 

reasonable as loose constraints admit more variables with a value equal to one.  Thus, 

slackness S = (2, 2) should have the maximum number of variables equal to one, after the 

first iteration.  MKHEUR is affected by various constraint slackness and correlation 

structure settings.  MKHEUR works better on loose slackness settings than on tight 
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slackness settings.  There are fewer variables set to one in the presence of tight 

constraints, so an improper choice of variables leads to a larger relative error in tight 

constraint settings.  Overall, the improvement phase of MKHEUR improves the objective 

function value by approximately 0.22.  The detailed results for various correlation 

structures by MKHEUR are shown in Tables D.1 and D.2 in Appendix D. 

 

Table 29.  Average Relative Errors of Pirkul’s Heuristic vs. GLOVER and Best Legacy 

 Slackness Pirkul MKHEUR GLOVER  
(50 iterations) Best Legacy 

(1, 1) 0.090 0.175 0.654 
(1, 2) 0.032 0.075 0.167 
(2, 1) 0.022 0.069 0.132 2KP 

(2, 2) 0.018 0.062 0.139 
(1,1,1,1,1) 0.264 0.469 2.804 
(1,1,1,1,2) 0.192 0.335 1.689 
(1,1,1,2,2) 0.142 0.221 1.034 
(1,1,2,2,2) 0.094 0.147 0.588 
(1,2,2,2,2) 0.063 0.105 0.289 

5KP 

(2,2,2,2,2) 0.045 0.114 0.539 
                                                                                                                       (Unit: Percent) 

 
 
 

Table 29 compares MKHEUR, GLOVER and the best legacy heuristic.  The 

results in Table 29 indicate that the procedure MKHEUR is most effective in solving 

problems with different slackness structures.  Thus, the improvement phase of MKHEUR 

appears better than the oscillating assignment procedure (improvement phase) of 

GLOVER.  In 95.7 % of problems, the Pirkul heuristic solution is within half a percent of 

the optimum, while GLOVER’s level was 88.7%.  MKHEUR found the optimum 

solution in 777 of the 1120 2KP problems and 1502 of the 3780 5KP problems.  
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Why is MKHEUR better than GLOVER?  The maximum number of iterations of 

MKHEUR is 83 iterations for 2KP problems while GLOVER conducts 50 iterations for 

the same problems.  Glover suggests conducting a larger number of iterations to identify 

a large set of different feasible solutions.  However, the GLOVER heuristic repeats 

solutions.  Thus, even if GLOVER has many iterations, the number of unique solutions 

identified is restricted.   On the contrary, MKHEUR creates a different solution at every 

iteration.  Thus, MKHEUR examines more solutions than GLOVER.  

Pirkul points out that the effectiveness of MKHEUR is dependent on the ability of 

the surrogate constraint to capture aggregate consumption levels of the resources.  Table 

29 supports that the dual variables provided by the linear programming relaxation are 

very effective as surrogate multipliers.  Although MKHEUR has the maximum relative 

error when all constraints are tight, S = (1, 1, 1, 1, 1), the average objective function 

value is still 99.74 % of optimum.   

4.5   Summary 

Two important findings are presented in this chapter.  One finding is that an 

improvement phase is very effective and necessary to increase the objective function 

value after a simple greedy heuristic is applied.  GLOVER improved the relative error by 

0.32 from its first relative error 0.52 to final relative error 0.20, and MKHEUR improved 

the relative error by 0.41 from its first relative error 0.52 to final relative error 0.11.  Even 

though a greedy heuristic yields an objective function value very close to the optimum, 

simple perturbations of solution can increase the objective function value.    
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The other finding is that the associated dual variables of the linear programming 

relaxation have information regarding constraint slackness and correlation structures.   

Thus, dual variables are very useful as surrogate multipliers.  Even if GLOVER and 

MKHEUR do not conduct an improvement phase, their first solutions are sometimes 

higher than the best solution of legacy greedy heuristics because dual variables can 

function as effective penalty weights of greedy heuristics.  Since the KP is easier to solve 

than a MKP, dual variables are effective in transforming MKP to KP. 
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V.   New Heuristics Development Based on Empirical Analysis 

5.1   Introduction 

This chapter presents several new greedy heuristic approaches exploiting previous 

empirical study insights.  Three new types of heuristic approaches are introduced.  First, a 

typed heuristic is developed based on pre-processing a particular problem and using 

problem-specific knowledge to gain computational efficiencies.  Second, new gradient 

heuristics are developed by combining the characteristics deemed important for a best 

performance.  Third, new reduction heuristics are developed by additionally combining 

advantageous characteristics from the transformation heuristics. 

5.2   A Typed Heuristic  

The typed heuristic (TYPE) involves pre-processing a problem and picking a 

likely “best performer.”  Both Hooker (1994) and Loulou and Michaelides (1979) suggest 

making heuristic choices based on computed problem characteristics.  Loulou and 

Michaelides (1979) term such an approach a typology approach.  Pre-processing a 

combinatorial problem involves relatively little computational overhead.  TYPE pre-

processes a problem to determine problem characteristics (constraint slackness, problem 

size, and correlation structure), and chooses a heuristic most likely to produce a best 

solution among the suite of heuristics, TOYODA, S – T, the four L – M (M1, M2, SW1, 

SW2), FOX, and KOCHEN, considered.   

Based on the previous empirical analysis, the best heuristic among five different 

heuristics, TOYODA, S – T, L – M M1, FOX, and KOCHEN was determined based on 

constraint slackness and correlation structure.   

 137



 Tables 30 reviews constraint slackness, correlation structures, and the best 

heuristics under 2KP problem set results and Table 31 reviews the 5KP problem set 

results. 

 

Table 30.  2KP Constraint Slackness, Correlation Structure and Best Heuristic 

SLACKNESS  (1, 1) (1, 2) (2, 1) (2, 2) 
(2, 2, 2) KOCHEN FOX FOX KOCHEN 

(2, 1, 1) 

(2, 0, 0) 

(2, -1, -1) 

(2, -2, -2) 

FOX FOX KOCHEN  FOX 

(1, 2, 1) 

(0, 2, 0) 

(-1, 2, -1) 

(-2, 2, -2) 

FOX KOCHEN FOX FOX 

 
C 
O 
R 
R 
E 
L 
A 
T 
I 
O 
N 
 

Other Correlation 
Structures KOCHEN S – T S – T KOCHEN 

 
 
 

Based on Table 30, KOCHEN is applied for equal constraint slackness while S – 

T is applied for mixed constraint slackness if there are not extreme levels of correlation.  

However, when considering the correlation structure, FOX is applied for CA1 = 2 ( 1CA
ρ  

=0.999) or CA2 = 2 ( 2CAρ = 0.999) for equal constraint slackness settings, or for a 

combination of high positive correlation and a tight constraint.  When a high positive 

correlation is associated with a loose constraint in the mixed slackness settings, both the 

tight and the loose constraints behave similarly, thus KOCHEN is applied.  In other 

words, extreme levels of correlation trump heuristic choice based on constraint slackness. 

 138



 

Table 31.  5KP Constraint Slackness, Correlation Structures and Best Heuristic 

SLACKNESS 
 (1,1,1,1,1) (1,1,1,1,2) (1,1,1,2,2) (1,1,2,2,2) (1,2,2,2,2) (2,2,2,2,2) 

(-2, -2, -2, -2, 2) 

(-2, -2, -2, -1, 2) 

(-2, -2, -1, -1, 2) 
(-2, -1, -1, -1, 2) 
(-1, -1, -1, -1, 2) 

FOX KOCHEN KOCHEN KOCHEN KOCHEN FOX 

(-2, -2, -2, 2, 2) 
(-2, -2, -1, 2, 2) 

(-2, -1, -1, 2, 2) 

(-1, -1, -1, 2, 2) 

KOCHEN FOX KOCHEN KOCHEN KOCHEN KOCHEN 

(-2, -2, 2, 2,2) 

(-2, -1, 2, 2,2) 

(-1, -1, 2, 2,2) 

KOCHEN KOCHEN FOX KOCHEN KOCHEN KOCHEN 

(-2, 2, 2, 2, 2) 

(-1, 2, 2, 2, 2) 
KOCHEN KOCHEN KOCHEN FOX KOCHEN KOCHEN 

(2, 2, 2, 2, 2) KOCHEN KOCHEN KOCHEN KOCHEN FOX KOCHEN 

C 
O 
R 
R 
E 
L 
A 
T 
I 
O 
N 

Other Correlation 
Structures KOCHEN KOCHEN KOCHEN KOCHEN S – T KOCHEN 

 
 

Strategies based on Table 31 agree with the 2KP strategies based on Table 30.  

This typology was coded and run against the 2KP and 5KP problem sets.  The results of 

TYPE are presented below.  Note, TYPE does not run all heuristics and return the best 

solution, but selects a single heuristic to run based on the generalized rules for selection.   

Figure 18 shows the type rule set employed and Figure 19 shows the flowchart of the 

TYPE heuristic. 
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 If all slackness are equal then 
  If only one correlation with objective function  
               is strongly positive then 
     
                        Run FOX 
        Else 
     Run KOCHEN 
 
 Else If at least two slackness are tight then  
       If only one correlation with objective function  
               is strongly positive under the tight slackness then 
                    
                        Run FOX 
            Else 
    Run KOCHEN 
 
  
      Else If only one constraint slackness is tight then  
           If only one correlation with objective function  
               is strongly positive under the tight slackness then 
                         
                        Run FOX 
 
        Else If correlation with objective function  
               is strongly positive under the loose slackness then 
  
    Run KOCHEN 
            Else 
              
                        Run S – T  
     

 

Figure 18.  Pseudo-Code That Lays Out Type Rule Set Employed 
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Figure 19.  Flowchart of TYPE heuristic 
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Analysis of Results of TYPE Heuristic  

The performance of TYPE heuristic by constraint slackness is summarized in 

Table 32 and graphed in Figure 20.  Unlike previous data, this data includes ties to 

demonstrate overall TYPE performance compared to the legacy heuristics. 
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Figure 20.  Comparison of TYPE Heuristic under Various Constraint Slackness 

 
 
 
 
 

 142



Table 32.  Number of Times Equal to Best by TYPE under Constraint Slackness 

 Slackness TYPE TOYODA S – T L – M M1 FOX KOCHEN 
(1, 1) 176 5 3 11 56 156 
(1, 2) 74 9 58 11 31 30 
(2, 1) 77 11 53 6 37 31 2KP 

(2, 2) 119 0 0 15 79 88 
(1,1,1,1,1) 415 8 1 105 61 437 
(1,1,1,1,2) 422 15 4 92 31 452 
(1,1,1,2,2) 390 22 20 96 26 408 
(1,1,2,2,2) 312 22 49 109 15 326 
(1,2,2,2,2) 199 16 198 74 12 168 

5KP 

(2,2,2,2,2) 421 5 1 60 114 412 
 

 

The TYPE heuristic has slightly better or similar performance than the prior best 

heuristic, but more importantly, overall consistent performance for various constraint 

slackness settings.  As the problem sets consider a full range of correlation structures, 

confidence is high that demonstrated results can be achieved for all MKP.     

The TYPE heuristic performs particularly well against correlation structure in 

both the 2KP and the 5KP problems.  Among 45 feasible correlation structures of 2KP, 

the TYPE heuristic is the best (including ties) in 32 correlation structures.   The TYPE 

heuristic is the best performer for 69 out of 126 correlation structures in 5KP.  The key 

trend is the consistent level of performance of the TYPE heuristic.  The detailed data, 

breaking performance out by each of the correlation structures in the 2KP and 5KP 

problem sets, is provided in Tables E.1 and E.2, respectively, in Appendix E.   

Table 33 shows, from a different comparative point of view, the comparison 

between the TYPE heuristic and each legacy greedy heuristic in terms of percentage of 

solutions better than, equal to, or worse than a specified legacy heuristic over the 2KP 

and 5KP problem sets combined.   
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Table 33.  Comparison of TYPE Heuristic with Test Heuristics 

TYPE vs. TYPE Better TYPE Same TYPE Worse 
TOYODA 84.7 9.3 6.0 

S–T 70.4 22.6 7.1 
L–M M1 78.8 4.0 17.3 

FOX 78.0 16.7 5.3 
KOCHEN 10.6 79.4 9.9 

                                                                                                                        (Unit: Percent) 
 
 

Table 33 results indicate that the TYPE heuristic meets or exceeds the 

performance of the greedy legacy heuristics an average of 90.9% of the time.  The TYPE 

approach provides improved performance over any particular heuristic both in terms of 

obtaining best solutions and reducing the occurrence of worst solutions.  Clearly, the 

TYPE heuristic performs very well.  

5.3   New Gradient Heuristic  

All heuristics use penalty factors to consider constraints.  The previous empirical 

studies uncovered influential factors in heuristic performance.  New gradient heuristics 

are developed that include these influential factors.  This section presents three new 

gradient heuristic approaches that exploit the insights of the empirical study.  These 

heuristics are labeled as new gradient heuristics version 1 through version 3 (NG V1, NG 

V2, NG V3) according to the chronological order of development.   NG V1 heuristic 

improves the solution trajectory through the feasible region.  NG V2 heuristic modifies 

the delayed weighting scheme of KOCHEN to be suitable for any constraint slackness 

settings.  NG V3 is the final new gradient heuristic and combines the merit of NG V1 and 

NG V2.  NG V3 improves the effective gradient function using the lognormal distribution 
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in order to respond well to various combinations of constraint slackness setting and 

correlation structures.  

5.3.1   New Gradient Heuristic Version 1 (NG V1)  

The first new primal effective gradient heuristic is NG V1.  KOCHEN was the 

best performer for equal constraint slackness except when correlation structures 

contained strong positive correlation values.  In this case, FOX was the best performer.  

The dual effective gradient method, S – T, was the best when the constraint slackness 

levels were mixed in the 2KP or slackness settings (1, 2, 2, 2, 2) in the 5KP.  The 

characteristics of KOCHEN and S – T are combined with the FOX heuristic to create a 

primal heuristic with an improved trajectory through the feasible region.   

The following algorithm is a general explanation of NG V1.  NG V1 differs in 

defining the penalty cost function in step 3 of TOYODA.  Using the notation of Toyoda 

(1975): Ij = item j, j = 1, …, n;  T = Set of all items; Tu = set of items accepted so far;  TD 

= set of items not in Tu, T \ Tu (i.e., Ij ∉ Tu ⇒ Ij ∈ TD);  Tc = set of candidate items;  Ci = 

total resource required by the set of accepted items in ith constraint, i.e., ;  

Z = objective function value; is the cumulative total resource used vector where  

= (C

∑ ∈
=

TuI iji
j

aC

UP UP

1, …, Cm);  ri is the surplus resource of each constraint, surplus vector, R,  as used in 

S – T heuristic, i.e., R = (r1, …, rm), i
Nj

iji bar −= ∑
∈

;  S is the slackness ratio vector of the 

right hand side of constraint i to the sum of the coefficients in that constraint, i.e., 

∑
∈

=

Nj
ij

i
i a

bS ; vector of RHS values, B = (b1, …, bm);  Aj =  vector of constraint 
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coefficients of variable j, Aj = (a1j, …, amj); the value of item (objective function 

coefficient) is c j;  xj ∈ {0, 1}.   

 Step 1:  Initialization. 

  Tu = ∅, TD = T,   = (0, 0) UP

   Z = 0,  xi = 0,  Ci = 0  ,    i = 1, …, m ,   j = 1, ..., n 

  Step 2:  Assign all candidate items to Tc, candidate item set. 

   }|{ UPB−≤∈= jDjj AandTIITc  

   If  Tc =  ∅ STOP;  Otherwise go to Step 3. 

Step 3:  Compute effective gradient for items in Tc as follows: 

   (a) If  is a zero vector then:  UP
∑
=

⋅
= m

i
iji

j
j

ar

c
G

1

   

   (b) Otherwise, compute for j, j = 1, …, n 

                                  iaCSq ijii
i

allfor)}1(){(minarg −−⋅=  

                                  
( )[ ]∑

≠=

−⋅⋅+−

⋅−
= m

qii
iiijq

qjq
j

SCExpaC

aS
v

,1

)1()1(

)1(
 

                                 
j

j
j v

c
G =  

Step 4:  k = arg max { Gj | Ij ∈ Tc  and  feasible } 

Step 5:  Calculate:  Z ← Z + ck, Xk = 1,   Tu ← Tu ∪ { Ik} 

                    ←  + AUP UP k,   ikii aCC +←  for all i,   TD = T \ {Ik} 

   Go to Step 2. 
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Figure 21 shows the flowchart of the NG V1 heuristic procedure. 
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Figure 21.  Flowchart of NG V1 Heuristic 
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Each iteration selects a new item with the largest effective gradient.  NG V1 

combines merits of three legacy heuristics:  The first merit is the surplus vector, R, of the 

dual heuristic, S – T.  In Step 3, multiplying the surplus vector, ri, and constraint 

coefficients, aij, modifies the direction in the feasible space from the initial iteration 

especially when two constraints differ greatly.  The second merit is the absolute 

weighting scheme of FOX and L – M M1, which was suitable for strong positive 

correlation among coefficients.  The absolute weighting scheme focuses on a dominant 

constraint.  The multiplier Ci considers the cumulative amount added to the ith constraint.  

Choosing the constraint with the minimum value of )1( ijii aCS −−⋅  plays a similar role 

to the absolute weighting scheme.  The value of )1( ijii aCS −−⋅  represents the amount of 

resource remaining in constraint i if item j is added to the current solution (set xj = 1), 

which indicates the constraint with the least resource remaining.   The third merit is the 

delayed weighting scheme used in KOCHEN.  This weighting scheme gives similar 

weights to all constraints in the early iterations, while heavily weighting the dominant 

constraint in the later iterations.  Multiplying constraint coefficients by 
iC−1

1  rather than 

Exp(Ci ) causes consideration of the more dominant constraint.  The values of  
iC−1

1  and 

Exp(Ci ) give nearly equal weights on all constraints until late iterations, and then the 

value of 
iC−1

1  gives more weight to the dominant constraint (the constraint having the 

least resource remaining).   
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For example, in a 2KP, if the characteristic of a problem is a tight first constraint 

and a loose second constraint, r1 should be large and r2 should be small in the first 

iteration.  This allows NG V1 to pick an item with a small coefficient in the tight 

constraint.  As the number of iterations increases, the value of 
iC−1

1 grows larger than 

the value of Exp(C2 ).  With this weighting scheme, NG V1 focuses on the tight 

constraint.  NG V1 works like S – T but varies weights to the dominant constraint, while 

S – T gives constant weight to all constraints.  This weighting scheme provides a better 

direction by considering the tight constraint.  In other words, these three merits of NG V1 

provide a direction through the feasible region, a direction biased toward the dominant 

constraint, as desired.   

Analysis of the results of NG V1 Heuristic 

The deflection of the greedy heuristic solution direction is obtained by weighting 

each penalty term by the constraint slackness levels.  Consider a 2-dimensional plot of 

constraint slackness levels.  The figure formed by the regions from 0 to the right hand 

side value of each constraint on either axis forms a rectangular region of feasible 

solutions.  When constraints are similar, this figure is a square.  The S – T heuristic works 

best on the mixed constraints as the plot of solutions (each iteration) forms a direction 

favoring the corner of the rectangle (See Figure 8).  The solution sequence of most primal 

methods cuts through the feasible region at a 45 degree angle.  NG V1 adjusts its 

direction toward the rectangle corner point.  NG V1 was compared to the five legacy 

greedy heuristics over all 2KP and 5KP test problems with the results provided in Table 

34. 
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Table 34.  Comparison of NG V1 Heuristic with Test Heuristics 

NG V1 vs. NG V1 Better NG V1 Same NG V1 Worse 
TOYODA 85.9 4.0 10.1 

S – T 78.5 10.2 11.3 
L – M M1 83.0 5.9 11.0 

FOX 86.3 6.1 7.5 
KOCHEN 47.2 15.9 37.0 

         (Unit: Percent) 

 

Table 34 shows that NG V1 meets or exceeds the performance of TOYODA 90% 

of the time, S – T 89% of the time, L – M M1 89% of the time, FOX 92% of the time, 

and KOCHEN 63% of the time.  These results are particularly appealing since NG V1 

heuristic is a general purpose greedy approach not tied to pre-processing a problem.  NG 

V1 provides relatively robust performance results against problems having the diversity 

of problems expected in actual practice. 

Figure 22 and Table 35 provide the results of competitively testing NG V1 

heuristic against the legacy heuristics in terms of number of best solutions by slackness 

settings.  Ties are not counted in the data presented in Figure 22 and Table 35.  Table E.3 

of Appendix E provides the detailed data of the sign test.   
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Figure 22.  Comparison of NG V1 under Various Constraint Slackness  
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Table 35.  Number of Times Best by NG V1 under Constraint slackness 

  NG V1 TOYODA S – T L – M M1 FOX KOCHEN Sign Test 
(1, 1) 102 4 3 7 40 66  
(1, 2) 50 9 25 8 17 14  
(2, 1) 40 10 19 3 14 14  

2KP 

(2, 2) 66 0 0 10 50 39  
(1,1,1,1,1) 216 4 0 48 53 268  
(1,1,1,1,2) 228 9 2 43 26 266  
(1,1,1,2,2) 252 12 13 35 20 211  
(1,1,2,2,2) 256 13 39 49 5 132  
(1,2,2,2,2) 208 9 58 41 3 89  

5KP 

(2,2,2,2,2) 215 3 0 12 77 251  

 : NG V1 has statistically better performance compared to another heuristic, α =0.1 SH0

                :  NG V1 is statistically the best among the heuristics compared.   
 

Table 35 and Figure 22 show NG V1 seems to be the best performer for 7 out of 

10 constraint slackness settings.  The results of NG V1 by various correlation structures 

also show good performance of NG V1 as compared to the legacy heuristics (see 

Appendices E.4 and E.5).  Counting the number of times a heuristic finds the best 

solution, excluding ties, by correlation structures, NG V1 heuristic performed better than 

the previous best heuristic.  NG V1 yields the same or better performance in 28 cases out 

of 45 correlation structures in 2KP and 72 cases out of 126 cases in 5KP.  The sign test 

indicates that NG V1 is statistically the best performer in 16 cases in 2KP and 46 in 5KP.  

Tables E.4 and E.5 in Appendix E break the performance numbers out by each of the 

correlation structures in the test problem set.   

However, NG V1 does not yield better performance on all combinations between 

slackness and correlation.  Table 35 indicates NG V1 performs worse than KOCHEN 

37% of the time.  KOCHEN is still the better performer for (1, 1, 1, 1, 1) and (1, 1, 1, 1, 

2).  FOX also yields better performance in some correlation structures.  Thus, the next 
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section presents another heuristic based on KOCHEN that varies constraint weights 

differently.  

5.3.2   New Gradient Heuristic Version 2 (NG V2) 

The empirical analysis suggests that a proper constraint weighting scheme affects 

the solution quality of a heuristic.  As a solution process progresses, the better greedy 

heuristics give more weight to the constraint with the least resources remaining.  This 

allows heuristics to effectively select variables that best use the increasingly limited 

constraint resources, and ultimately select more variables for inclusion in the solution, 

and thus improve the objective function value attained.  To suitably vary the weight 

vector, the new gradient heuristic version 2 (NG V2) uses a lognormal point function to 

compute the weight vector.  The m-dimensional weight vector ( ) for NG V2 is of 

the following form: 

2NGVW

))(exp( 1
2 UP−Φ= σNGVW                                                    (56) 

where σ = 3 and Φ-1 is the inverse of the normal distribution, vector  is the resource 

used by the current solution: 

UP

{ }∑ =
==

n

j ijjii axCC
1

|UP .  The penalty cost function of NG 

V2 is as follows: 

2

2 )(

NGV

NGVj
j W

WA
v

⋅
=                                                       (57)    

 
where the vector Aj provides the resource costs in each constraint for each variable:  

{ }miaA ijj ,,1| K== .  NG V2 selects an item with the largest effective gradient value 
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⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

j

j
j v

c
G  while maintaining feasibility at each iteration.  The flow of the solution 

procedure is identical that of NG V1 as shown in Figure 21.     

Before examining raw results, it is informative to examine the constraint 

weighting trends for NG V2.  Figure 23 shows the weighted trend line of NG V2 for the 

5KP problems examined.  The weight vector of NG V2 responds quite well and quite 

dynamically.  For the slackness setting problems (1, 1, 1, 1, 1), NG V2 weighting mimics 

both the TOYODA and KOCHEN behavior as seen in Figure 23.  For the slackness 

setting problems (1, 2, 2, 2, 2), NG V2 increases the weight on the dominant constraint 

earlier in the process than does KOCHEN, but provides the same end-of-the-process 

emphasis KOCHEN displays in Figure 15.   
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Figure 23.  Performance of Weight Trend of NG V2 for (1,1,1,1,1) and (1,2,2,2,2) 
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The general comparison of NG V2 heuristic with other legacy heuristics (to 

include NG V1) is shown in Table 36.  The performance of NG V2 heuristic by slackness 

setting for the 2KP and 5KP test set is summarized in Table 37 and graphed in Figure 24 

(ties excluded).   

 

Table 36.  Comparison of NG V2 Heuristic with Test Heuristics 

Vs Heuristics Better Same Worse 
TOYODA 92.4 2.6 5.0 

S – T 84.1 5.8 10.1 
L – M M1 89.0 2.6 8.5 

FOX 97.6 1.2 1.2 
KOCHEN 64.7 19.0 16.4 

NG V1 55.2 21.4 23.4 
         (Unit: Percent) 

 

The results show good performance of NG V2 compared to the legacy approaches.  

Table 36 indicates that NG V2 met or exceeded the performance of the legacy heuristics 

an average of 91.8 % of the time and that of NG V1 76.6 % of the time.  Thus, by varying 

the weighting scheme, NG V2 appears more effective than NG V1.   
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Figure 24.  Comparison of NG V2 under Various Constraint Slackness 
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Table 37.  Number of Times Best by NG V2 under Constraint Slackness 

  NG V2 TOYODA S – T L – M M1 FOX KOCHEN Sign Test 
(1, 1) 107 1 3 6 20 31  
(1, 2) 50 9 31 7 3 16  
(2, 1) 43 10 30 3 0 14  2KP 

(2, 2) 67 0 0 9 29 4  
(1,1,1,1,1) 540 2 1 12 4 35  
(1,1,1,1,2) 428 9 4 20 3 63  
(1,1,1,2,2) 335 10 11 46 7 86  
(1,1,2,2,2) 256 16 32 65 3 74  
(1,2,2,2,2) 145 12 130 55 0 75  

5KP 

(2,2,2,2,2) 421 2 1 18 31 47  
SH0 : NG V2 has statistically better performance compared to another heuristic, α =0.1 

                  :  NG V2 is statistically the best among the heuristics compared.   
                            
 

Table 37 and Figure 24 show that NG V2 seems to be the best performer for all 

constraint slackness levels in the 2KP and 5KP test problems.  Ties are not counted in the 

data presented in Table 37 and Figure 24.  Sign tests compare NG V2 with each heuristic, 

and they indicate that NG V2 yields the best solutions.  Table E.6 of Appendix E 

provides the data for the sign test of NG V2.  For the results of correlation structures (See 

Tables E. 7 and E. 8 in Appendix E), NG  V2 yields the same or  improved performance 

as legacy heuristics in 34 cases out of 45 in 2KP and in every 5KP case.  Sign test 

indicates that NG V2 is the best performer in 24 cases (2KP) and in 122 of 126 cases 

(5KP).   

These results suggest that a variable constraint weighting scheme holds promise 

for devising heuristics that provide improved performance across a range of problem 

instances.  NG V2 exploits a novel constraint weighting mechanism, intended to 

dynamically respond to constraint resource usage.  The results indicate that heuristic 
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effectiveness is a function of properly considering resource utilization during the solution 

process.   

However, Table 37 shows the S – T heuristic still yields comparable performance 

on mixed constraint slackness settings in 2KP and (1, 2, 2, 2, 2) in 5KP; S – T constantly 

gives more weight on a tighter constraint starting at the initial iteration, while NG V2 

evaluates all constraints to identify a dominant constraint in the early iterations.  Thus, 

the next section introduces NG V3, which uses the merits of preprocessing problem 

characteristics in order to focus early efforts on a dominant constraint, when such a 

dominant constraint exists. 

5.3.3   New Gradient Heuristic Version 3 (NG V3) 

NG V2 improves on the KOCHEN heuristic using the lognormal distribution as a 

weight vector.  Even though NG V2 seems to use a weighting scheme similar to 

KOCHEN’s, NG V2 gives more weight to a dominant constraint in the earlier iterations.  

Thus, NG V2 outperforms KOCHEN.  However, for slackness settings (1, 2), (2, 1) and 

(1, 2, 2, 2, 2) of Table 37, S – T still produces comparable solution performance 

compared to NG V2.  For one dominant constraint, S – T gives more weight to a 

dominant constraint during all iterations, while NG V2 gives the same weight to all 

constraints in the first few iterations, and then increases weight on a dominant constraint.  

The weighting scheme of NG V2 does not identify a dominant constraint during early 

iterations.   

NG V3 is an improved version of NG V2.  NG V3 includes the preprocessing of 

problem characteristics.  The idea of NG V3 is as follows.  When problem characteristics 
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are analyzed, a dominant constraint can be identified.  Then, the heuristic can pre-weight 

this constraint to use resources more effectively starting at the initial iteration.   
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Figure 25.  Pre-Weighting Scheme According to Correlation And Slackness 

 

Figure 25 proposes a pre-weighting scheme of NG V3 according to both slackness 

condition and correlation structure.  Based on an analysis of optimal solutions, a 

dominant constraint (the least resource remaining at the final iteration) can be generated 

by tight slackness condition and high positive correlation with objective function 

coefficients.  Figure 25 shows that exponential trend lines give a dominant constraint 

(with tight slackness or a high positive correlation) more pre-weight.  The most dominant 

constraint can have the most pre-weight by multiplying slackness pre-weight and 

correlation pre-weight.  However, pre-weight must balance both slackness and 

correlation, i.e., a pre-weight for correlation value close to one is almost the same as a 

pre-weight for tight slackness.  Recall that correlations close to one have an influence 

similar to that of tight constraints.  Thus, a high positive correlation value should have a 

weight similar to that for tight slackness level of a constraint. 
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Based on empirical testing for selection of pre-weighting parameters, the pre-

weighting scheme is as follows: 

 

)1exp()exp()PreWeight(
i

CA r
i i ×= ρ                                     (58) 

where ri is the surplus resource of each constraint  .  Thus, the m-

dimensional weight vector ( ) for NG V3 is of the following form: 

i

n

j
iji bar −=∑

=1

3NGVW

))(exp( 1
3 UW PP −Φ⋅= σNGVW                                                    (59) 

where σ = 3 (based on computational testing, σ = 3 provides the best balance between the 

pre-weight for constraint slackness and pre-weight for correlation structure) and Φ-1 is the 

inverse of the normal distribution, vector  is the resource used by the current solution: UP

{ }∑ =
==

n

j ijjii axCC
1

|UP , and vector { })(PreWeight i=WP .  The penalty cost function of NG 

V3 is as follows: 
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3 )(

NGV

NGVj
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v

⋅
=                                                       (60)    

 
where the vector Aj provides the resource costs in each constraint for each variable:  

{ }miaA ijj ,,1| K== .  NG V3 selects an item with the largest effective gradient value 

⎟
⎟
⎠
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⎜
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j

j
j v

c
G while maintaining feasibility at each iteration.  NG V3 solution procedure is 

shown in Figure 26.     
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Figure 26.  Flowchart of NG V3 Heuristic 
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The general comparison of NG V3 with legacy heuristics and previous new 

gradient heuristics on the 2KP and 5KP test set is summarized in Table 38.   

 
 

Table 38.  Comparison of NG V3 Heuristic with Other Heuristics 

Vs Heuristics Better Same Worse 
TOYODA 89.1 5.7 5.2 

S – T 79.4 11.2 9.3 
L – M M1 88.9 4.4 6.7 

FOX 90.8 7.3 1.9 
KOCHEN 62.6 20.9 16.5 

NG V1 58.8 22.9 18.3 
NG V2 35.2 48.9 15.9 
         (Unit: Percent) 

 

The results in Table 38 show the improved performance of NG V3 compared to 

the legacy approaches, and both new gradient heuristics (NG V1 and NG V2).  Even 

though NG V3 uses the same procedure and equations as NG V2, except multiplying 

constraints by pre-weights, NG V3 equaled or exceeded the performance of NG V1 

81.7% of the time and NG V2 84.1 % of the time.   These results suggest that a pre- 

weighting scheme based on constraint slackness and correlation structure provides 

improved performance over NG V2 approach.   

The overall performance of NG V3 compared to the other heuristics, based on 

different constraint slackness levels in 2KP and 5KP, is summarized in Figure 27 and 

Table 39.  Ties are not counted in the data presented in Figure 27 and Table 39. 
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Figure 27.  Comparison of NG V3 under Various Constraint Slackness 
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Table 39.  Number of Times best by NG V3 under Constraint Slackness 

  NG V3 TOYODA S – T L – M M1 FOX KOCHEN Sign Test 
(1, 1) 118 2 3 4 15 38  
(1, 2) 52 8 24 7 4 16  
(2, 1) 47 9 22 4 0 18  2KP 

(2, 2) 81 0 0 9 23 11  
(1,1,1,1,1) 541 2 0 12 3 44  
(1,1,1,1,2) 452 6 4 13 2 70  
(1,1,1,2,2) 361 10 10 32 5 90  
(1,1,2,2,2) 289 16 32 52 3 83  
(1,2,2,2,2) 186 13 88 42 0 81  

5KP 

(2,2,2,2,2) 445 2 1 14 18 54  
SH0 : NG V3 has statistically better performance compared to another heuristic, α =0.1 

                  :  NG V3 is statistically the best among the heuristics compared.   
 

 

For the results of correlation structures (See Tables E. 10 and E. 11 in Appendix 

E), NG V3 yields the same or better performance with the best legacy heuristic in 39 

cases out of 45 in 2KP and 125 cases out of 126 in 5KP.  Sign test indicates that NG V3 

is the best performer in 22 cases (2KP) and 120 cases (5KP).  Table E.9 in Appendix E 

provides the detailed sign test as shown in Table 39. 

The results for constraint slackness and correlations are particularly encouraging.  

Overall results show NG V3 yields the largest number of best solutions.  More 

importantly, the performance of NG V3 is better than NG V2 on mixed slackness settings 

in 2KP and (1, 2, 2, 2, 2) in 5KP while maintaining great performance on the various 

correlation structures.  The goal of developing NG V3 is to improve performance of NG 

V2 when one constraint is made dominant by slackness setting.  
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5.4   New Reduction Heuristic 

Based on the empirical analysis of legacy transformation heuristics, Chapter IV 

showed that local improvement and transforming MKP to KP using dual variables are a 

very useful and effective way to solve MKP.  The Lagrangian relaxation of MKP with an 

m – dimensional vector of Lagrange multipliers μ  is defined as follows:   

                                   
(61) 
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where or ,  0=jx 1 ,0≥iμ  njmi ...,,2,1,...,,2,1 == . 

The solution to problem (61) provides an upper bound on the optimal solution of 

the original MKP shown in Equations (2) through (4).  The best bound, i.e., the upper 

bound that is the closest to the optimal solution of the original MKP, is determined by 

finding multipliers μ  which correspond to  

.                                                (62) )(min)( μμ LRLD ZZ
μ

=∗

This problem is called the Lagrangian dual problem.  If the optimal multipliers 

 are found, the optimal solution of (62) is an upper bound on the optimal solution of 

the original MKP shown in Equations (2) through (4).  This upper bound with optimal 

multipliers  is tighter than the bound provided by the LP relaxation of the MKP 

(Nemhauser and Wolsey , 1988).  However, finding optimal multipliers is a difficult 

combinatorial problem.  Dual variables from the solution of the linear programming 

relaxation of the original MKP can be used as good multipliers (Fisher, 1981); this 

research uses these dual variables as the multipliers. 

∗μ

∗μ

∗μ
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Once the multipliers have been found, the Lagrangian relaxation problem, 

Equation (61), can be solved directly.  The coefficient of the jth variable is as follows: 

                                                                                      .                                                                 (63) ∑−= jj c μγ
=

m

i
ijia

1 
If jγ  is positive, the jth variable increases the objective function value.  If jγ  is 

negative, the jth variable decreases the objective function value.  Therefore, set  to 1 if 

its coefficient is positive and to 0 if its coefficient is non-positive.  This solution is the 

optimal solution of 

jx

jx

)(μLRZ . 

In developing heuristic algorithms for the KP, Balas and Zemel (1980) found that 

the solution obtained by a greedy heuristic using the decreasing order of bang-for-buck 

ratios (benefit/cost) differed from the optimal solution among only a few variables.  

Comparing optimal and heuristic solutions, some variables are always set to zero and 

some variables are always set to one.  There is, however, a subset of variables where the 

approaches differ and the bang-for-the-buck greedy heuristic has insufficient 

discriminatory power.  Psinger (1999) called this subset the core problem.  Pirkul (1987) 

and Psinger (1999) focus on core problem issues.  Pirkul defined a core problem for MKP 

as “the subproblem in those variables whose A
c
μ  ratio (c is the objective function 

coefficient vector, A is the constraint coefficient vector, and µ is a positive multiplier 

vector) falls between the maximum and minimum ratios for which  has a different 

value in an optimal solution to MKP from that in an optimal solution to linear 

programming relaxation.”  Pirkul also suggested that the core problem consists of very 

few variables compared to the original problem.  Thus, very few variables in the solution 

x
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of the Lagrangian problem, Equation (61), are different from those in an optimal solution 

to the original MKP.  

Using the solution of the Lagrangian problem, Equation (61), variables can be 

categorized as selected, non-selected, or uncertain.  Since dual variables include 

information regarding constraint slackness and correlation structures, jγ  of the 

Lagrangian problem, Equation (63), function like the effective gradient value of the 

greedy heuristics.  If jγ  of Equation (63) has a relatively large positive value, the optimal 

solution to the original MKP has a tendency to have xj = 1 while for a relatively large 

negative value, xj = 0.  However, if jγ  is near zero, the xj value in the optimal solution is 

uncertain.  The core problem consists of these uncertain variables.  Once identified, the 

core problem can be solved using a heuristic or exact algorithm.  A new reduction 

approach procedure can be summarized as follows: 

Step 1:  Solve the linear programming relaxation to find Lagrange multipliers 
 
Step 2:  Transform a MKP into an unconstrained problem (only binary variable    

restriction) using a Lagrangian relaxation 

Step 3:  Categorize as selected, unselected, and uncertain variables according to 

jγ  from the Lagrangian relaxation problem 

Step 4:  Solve the core problem using a heuristic or exact algorithm 
 

Balas and Zemel (1980) suggest, “for the KP the size of the core problem was a 

small fraction of the full problem size and almost independent of the problem size”.  

Pirkul (1987) presented the number of variables in the core problem (number of variables 

have different values in an optimal solution to MKP) as shown Table 40.  Table 40 
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suggested that the core problem consists of few variables with respect to the original 

problem and the core problem size increases at a much slower rate than the increase in 

original problem size.     

Table 40.  No. of Variables in Core Problem for 3KP (Pirkul, 1987) 

No. of variables in Core Problem 
Slackness Si =0.5 Slackness Si =0.37 Slackness Si = 0.25 n 

Min Mean Max Min Mean Max Min Mean Max 
100 1 7.6 11 5 9.1 14 3 9.1 15 
200 4 11.2 19 6 14.0 22 5 12.4 21 
300 5 15.4 26 6 14.6 25 10 15.7 30 
400 8 15.0 28 4 14.8 32 8 17.3 27 
500 10 17.1 27 1 16.3 33 16 18.7 34 
600 16 18.6 23 6 15.2 30 17 21.3 31 

(Pirkul, 1987) 
 

The empirical testing indicates that the solution obtained by a simple greedy 

heuristic using the decreasing order of Equation (63), , differed from 

the optimal solution by only 0 to 11 variables (Average 3.15) in 2KP and 0 to 14 

variables (Average 4.56) in 5KP sets.  Fewer variables differ from the optimal solution in 

our results than in Pirkul’s results because our test problems include some problems for 

which a heuristic obtains the optimal solution. 

∑
=

−=
m

i
ijijj ac

1

μγ

While analyzing the core problem, Pirkul’s results (1987) show that 15% of the 

number of variables seem reasonable to use as the core problem.  This was reasonable 

given his limited test problem set.  However, a more robust problem set will yield 

instances where a possibly larger percentage of variable have Gj clustered around 0.  

Thus, a more reasonable core problem definition involves some percentage of the 

effective gradient range.  For example, hard test problems (e.g., when ρ = (2, 2, 2)) 
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should involve more variables in the core problem while easy test problems (e.g., ρ = (-2, 

-2, 2)) should involve fewer variables.  Examining problems using Equation (63) 

demonstrates this property in that most values of jγ  are far from zero for easy test 

problems (i.e., obvious discriminatory power), while, for hard test problems, more values 

of Equation (63) are located around zero.  Figure 28 shows the density of jγ  values (i.e., 

each value of jγ ,  j = 1, …, n)  according to a representative hard problem ρ = (2, 2, 2) 

and easy problem ρ = (-2, -2, 2) from the 2KP.  All values of jγ  are scaled and based on 

a maximum value of 1 and a minimum value of -1. 
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Figure 28.  Density of Variables around Zero Value by Hard and Easy Problem 

 

Figure 28 implies hard problems have more variables near zero than do easy 

problems.  In the example of Figure 28, the core problem of the hard problem includes 45 

variables in the range of [-0.15, 0.15], while the core problem of the easy problem 

includes 12 variables.  Thus, the core problem should vary according to problem 

 169



difficulty (constraint slackness and correlation structures).  The range of [-0.15, 0.15] of 

jγ  is selected for the core problem, where the variables have the value of 

 falling in this range.  Considering 15% of the value range for ∑
=

−=
m

i
ijijj ac

1

μγ jγ  is 

more generous and effective than considering just 15% of the variables as part of the core 

problem because the number of variables in the core problem varies according to various 

problem characteristics.  When the core problem contains the variables, xj, such that 

]15.0,15.0[−∈jγ , overall core problem consists of an average of 27.5 variables in the 

2KP case and 28.1 variables in the 5KP case.  The range of [-0.15, 0.15] includes all 

variables having different values from optimal solutions in 93 % of 2KP problems (1042 

of 1120 problems) and 96% of 5KP problems (3625 of 3780 problems).  The range of jγ  

can be expanded to include more variables; however, this increase makes the larger core 

problem more difficult to solve.  In the 2KP, especially, extremely high positive 

correlation structures ( 99.0≈CAρ ) cause outliers, which have a value of zero in the 

optimal solution while having a higher positive value of jγ .  However, these are extreme 

correlation structures, so the range of [-0.15, 0.15] is considered sufficient as it contains 

96.7 % of the proper variables in the 2KP problems.   

Solving the core problem has the advantage of fewer variables, so branch-and-

bound is usually applied.  A greedy approach is used in this research.  Since all variables 

in the core problem have nearly equal values of  , a greedy heuristic 

will have less discriminatory power for selecting correct variables.  Since NG V3 is the 

best heuristic among the greedy heuristics (having the most discriminatory power), NG 

∑
=

−=
m

i
ijijj ac

1

μγ
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V3 is used to solve the core problem.  Table 41 shows the overall comparison of this new 

reduction heuristic (NR) based on different constraint slackness levels in 2KP and 5KP.  

The details for sign test are provided at Table E.12 in Appendix E and the detailed results 

for various correlation structures by the new reduction heuristic (NR) are shown at Tables 

E.13 and E.14 in Appendix E.  Ties are not counted in Table 41. 

 

Table 41.  Comparisons to New Reduction Heuristic (Core Solved by NG V3 )  

  NR (NGV3) TOYODA S – T L – M M1 FOX KOCHEN Sign Test 
(1, 1) 110 3 3 5 17 58  
(1, 2) 50 8 23 6 8 19  
(2, 1) 48 9 21 4 2 17  2KP 

(2, 2) 72 0 0 8 13 31  
(1,1,1,1,1) 538 2 1 11 2 54  
(1,1,1,1,2) 437 5 4 17 1 120  
(1,1,1,2,2) 352 8 9 38 4 144  
(1,1,2,2,2) 270 18 31 49 3 131  
(1,2,2,2,2) 206 12 71 37 0 97  

5KP 

(2,2,2,2,2) 451 1 0 11 9 72  
SH0 : NR (NG V3) has statistically better performance compared to another heuristic, α =0.1 

      : NR (NG V3) is statistically the best among the heuristics compared.   
 

 

Table 41 suggests that the new reduction heuristic (NR) based on the core 

problem concept is robust against various constraint slackness and correlation structures 

as compared to the set of legacy heuristics.   

5.5   Reduction Heuristic with an Improvement Phase 

While the new reduction approach is effective, it is a single path algorithm like 

other greedy heuristics.  Based on the empirical analysis of Chapter IV, Pirkul’s (1987) 

improvement phase is more efficient than Glover’s (1977), so it is added to NG V3 after 
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NG V3 provides a feasible solution for the core problem.  Figure 29 shows the flowchart 

of the new reduction heuristic with Pirkul’s improvement phase (NR(P)).   
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Figure 29.  Flowchart of NR (P) Heuristic 
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Table 42 shows the solution performance of this new heuristic, NR(P), with its 

improvement phase compared to each greedy heuristic. 

 

Table 42.  Number of Times Best by New Reduction Heuristic (with improvement) under 
Constraint Slackness 

  NR (P) TOYODA S – T L – M M1 FOX KOCHEN 
(1, 1) 217 0 0 1 1 7 
(1, 2) 156 4 4 1 1 5 
(2, 1) 146 2 6 0 0 4 

2KP 

(2, 2) 167 0 0 4 3 6 
(1,1,1,1,1) 604 0 0 2 0 8 
(1,1,1,1,2) 571 1 2 4 0 18 
(1,1,1,2,2) 518 4 3 4 3 31 
(1,1,2,2,2) 506 2 6 13 1 22 
(1,2,2,2,2) 444 3 13 3 0 17 

5KP 

(2,2,2,2,2) 534 1 0 2 1 18 
Key: 

NR(P) 
 

 New reduction heuristic with Pirkul’s improvement phase 
 
 
 

Table 42 indicates that NR(P) is more robust over all constraint slackness levels 

than the legacy heuristics.  The size of the core problem is small, so comparison of new 

feasible solutions is also small.  Thus, a conclusion is that the core problem reduction is 

an effective technique, saving computation time and improving solution quality.  Table 

43 shows a comparison of the new reduction heuristics with Glover’s and Pirkul’s 

heuristics.  In Table 43, the column of average numbers of comparisons shows average 

numbers of feasible solutions created by the heuristics in order to select the best solution 

among them.  
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Table 43.  Comparison of New Reduction Heuristics with Test Heuristics 

Heuristics Average No. of 
Comparisons Average Solution Quality 

New Reduction (NR) 1 99.52 % of Optimum 
NR w/ Pirkul’s Improvement 

Phase (NR(P)) 13.4 99.88 % of Optimum 

Pirkul Heuristic (PIRKUL) 47.0 99.89 % of Optimum 

Glover Heuristic (GLOVER) 50 99.80 % of Optimum 

Best Legacy 1 99.05 % of Optimum 
 

 

Table 43 shows that the new reduction heuristic with Pirkul’s improvement 

(NR(P)) has 28.5 % of PIRKUL’s comparisons (13.4 vs. 47.0 comparisons), but produces 

similar solution quality (0.01 % difference).  Compared to Glover’s heuristic, NR(P) 

yields better solutions (0.08 % difference) with 26.8% of GLOVER’s comparisons (13.4 

vs. 50 comparisons).  The core problem concept yields similar solution quality with fewer 

comparisons than Pirkul’s and Glover’s heuristics.  More importantly, this core problem 

can be solved by any type of algorithm such as a meta-heuristic or exact algorithm.   

5.6   Comparison of All New Heuristics 

Six different types of heuristics based on the empirical analysis of legacy greedy 

heuristics have been discussed: TYPE, NG V1, NG V2, NG V3, NR, NR(P).  Table 44 

shows the comparison of the newly developed heuristics.  Since these heuristics yield 

solutions close to optimal, the comparisons in Table 44 are based on the average relative 

errors (smaller values are better). 
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Table 44.  Comparison of All New Heuristics by Average Relative Error 

 Slackness TYPE NG V1 NG V2 NG V3 NR NR (P) 
(1, 1) 0.784 0.967 0.479 0.455 0.599 0.116 
(1, 2) 0.278 0.209 0.220 0.197 0.213 0.039 
(2, 1) 0.203 0.174 0.187 0.153 0.156 0.026 

2 
K 
P (2, 2) 0.183 0.230 0.105 0.091 0.118 0.021 

(1,1,1,1,1) 3.741 3.252 1.036 0.731 0.809 0.308 
(1,1,1,1,2) 1.932 2.017 0.827 0.659 0.749 0.230 
(1,1,1,2,2) 1.178 1.131 0.621 0.512 0.630 0.183 
(1,1,2,2,2) 0.725 0.617 0.475 0.415 0.513 0.115 
(1,2,2,2,2) 0.925 0.312 0.484 0.359 0.350 0.076 

5 
K 
P 

(2,2,2,2,2) 0.736 0.631 0.258 0.184 0.162 0.054 
Total Average 1.270 1.114 0.533 0.419 0.475 0.117 
% of Optimum 98.73 % 98.89 % 99.47 % 99.58 % 99.52 % 99.88 % 

Key: 
TYPE 
NG V1 
NG V2 
NG V3 
NR 
NR(P) 

 A Typed Heuristic 
 New Gradient Heuristic Ver.1 
 New Gradient Heuristic Ver.2 
 New Gradient Heuristic Ver.3 
 New Reduction Heuristic (No Improvement Phase) 
 New Reduction Heuristic with Pirkul’s Improvement Phase(1987) 

 

 

The TYPE heuristic uses legacy heuristics only and yields the worst performance 

among the new heuristics.  Among new greedy approaches, NG V3 demonstrates the best 

performance.  The overall best performer is NR(P), problem reduction with local 

improvement. 
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VI.   Computational Test on Randomly Generated Problem Sets 

6.1   Introduction 

In previous chapters, evidence was presented that problem characteristics, 

constraint slackness and correlation structures affect the solution performance of 

heuristics.  Since the commonly used existing standard benchmark MKP set does not 

include sufficiently diverse problem characteristics, experimental information regarding 

the solution performance of heuristics is restricted.  Thus, this chapter provides a new 

MKP test set that varied all desired problem characteristics for a structured empirical test 

of heuristic solution performance.  Legacy heuristics and new heuristics are used to solve 

the problems in these new MKP test sets.  This information is used to draw final 

conclusions. 

6.2   Test Problem Generation  

Most published empirical studies compare heuristic performance using test 

problems.  Legacy standard problems are available as are de facto standard problem sets.  

Most are available via the internet.  Many researchers develop randomly generated 

problem sets as a part of their research to verify their algorithm.  Few researchers have 

actually systematically studied the effects of problem characteristics among the test 

problems.  To promote potential use in the research community and to objectively 

evaluate heuristic performance on a new test set, the test set generated follows the general 

structure of Chu and Beasley (1998) problem set, the set available at Beasley’s (2004) 

web site. 
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In the new MKP test set, five problem generation parameters are varied: number 

of variables, number of constraints, the constraint slackness, the correlation value, and 

coefficient distribution.  Nine test files containing 270 problems are created (30 problems 

in each file).  Each file has a different combination of number of variables and number of 

constraints as follows: 50-5KP, 100-5KP, 250-5KP, 50-10KP, 100-10KP, 250-10KP, 50-

25KP, 100-25KP, and 250-25KP (Number of Variables-Number of Constraints).  Table 

45 provides the general information regarding the new MKP test set. 

 

Table 45.  General Information of New MKP Test 

Parameters Values 

No. of Problems 270  problems (9 files, 30 problems each) 

No. of Variables 50,  100 ,  250 

No. of Constraints 5,  10,  25 

Slackness Randomly generate slackness ratio, si ~ Unif (0.2, 0.8),  for ith  
constraint 

Correlation 
Randomly generate correlation value, iCAρ ~ Unif (-0.9, 0.9) between 
objective function coefficient and ith constraint coefficient.  Set 
each ji AAρ  as midpoint of range defined by  iCAρ  and jCAρ  

Coefficient 
Distribution 

Objective function coefficient cj for all j ~ Discrete Unif (1, 100) 
Each constraint coefficient  aij for all i, j ~ Discrete Unif (1, ri) 
where ri ~ Discrete Unif (40, 90) 

Remark: 
                Unif: Uniform Distribution 
                Discrete Unif: Discrete Uniform Distribution 
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 As shown in Table 45, slackness ratios and correlation values are randomly 

generated.  Thus, slackness and correlation can truly cover the range from their minimum 

value to maximum value.  The correlation of inter-constraint, ji AA
ρ , representing the 

correlation between ith constraint coefficient and jth constraint coefficient, is fixed by 

Equation (42), jiji CACAAA ρρρ ⋅= , to maintain the correlation matrix ℜ for test problem 

coefficients as  positive semidefinite by Theorem 4.  Since objective function coefficients 

and each constraint’s coefficient follows different distributions, each MKP instance is 

different.   

A generation scheme to create the new MKP test set follows the Procedure 

CorrGeneration and the Procedure Iman and Conover approach used to generate the 5KP 

test problem sets used in Chapter III.  These procedures generated all required problem 

characteristics for the 5KP test set.  The procedure for generating the new test problem 

set is:  

Procedure New Test Problem Generation 

1. Randomly generate ri for all i ~ Discrete Unif (40, 90). 
 

2. Randomly generate iCA
ρ for all i ~ Unif (-0.9, 0.9). 

 
3. Generate the correlation matrix ℜ using Procedure CorrGeneration. 

 
4. Using ℜ and the ri, generate objective function coefficients, cj  for all j ~ 

Discrete Unif (1, 100), and constraint coefficients, aij for all i, j ~ Discrete 
Unif (1, ri).   
 

5. Randomly generate slackness ratio, Si for all i ~ Unif (0.2, 0.8). 
 

6. Set each RHS value, for all i. ∑
=

=
n

j
ijii aSb

1

 178



6.3    New Test Set vs. Legacy Test Set  

This section introduces characteristics of the new test set by comparing two 

existing legacy test sets.  Legacy generation approaches and standard test problem sets do 

not include various constraint slackness and correlation structures among the problem 

coefficients. 

Martello and Toth (1988, 1997) devised three classes of correlation to check 

computational performance for knapsack problems: 

                    Uncorrelated: wj uniformly random in [1, a], 

    pj uniformly random in [1, a], 

 Weakly Correlated:  wj uniformly random in [1, a], 

    pj uniformly random in [wj - δ, wj + δ] 

          Strongly Correlated: wj uniformly random in [1, a], 

    pj = wj + δ 

where pj = profit of item j, wj = weight of item j given n items, and a and δ are prefixed 

constants.  These generation schemes are simply linear functions and are labeled implicit 

correlation induction strategies (Cario et al., 2002).  Although these have been widely 

used in empirical studies (for many types of optimization problems), most researchers 

never quantify the level of correlation induced between the problem coefficients during 

the studies.  The weakly correlated scheme produces correlation values with ρ = 0.98, 

and the strongly correlated scheme produces correlation coefficients with ρ = 0.99 (Cario, 

et al., 2002).   
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The second example is the Beasley (2004) problem set presented in Chapter III 

and first developed for Chu and Beasley (1998).  Chu and Beasley (1998) generated the 

problem coefficients in the following manner.  The constraint coefficients were randomly 

generated Unif (0,1000).  The objective function coefficients were then set using the 

formula: 

j

m

i
ij

j qm

a
c

500
1

+
=

∑
=                                               (64)                              

where the qj is uniformly distributed Unif (0,1), essentially noise.  The intent is to induce 

correlation between the objective function and constraint coefficients, but these problems 

do not adequately vary the correlation coefficient between objective function and ith 

constraint coefficient, iCA
ρ .  This approach implicitly induces a correlation level of 

approximately 0.42, and sampling error provides a narrow range about this value.  Figure 

5 showed the correlation range between objective function coefficients and each of the 

five constraint coefficients in one of the Beasley test problem files.  The narrow range of 

iCA
ρ  can restrict the extensibility of solution performance of a heuristic beyond that 

observed with the test problem set (even though extensibility is quite often implied in the 

discussions).  This is particularly worrisome given that the first example of problem 

generation restricts the correlation to the 0.98 to 0.99+ range.   

On the contrary, the new test set covers the correlation range from -0.9 to 0.9.  

Table 46 and Figure 30 compare the correlation range of the new test set and Beasley’s 

(2004) test set.   
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Table 46 shows the minimum of iCA
ρ  and the maximum of iCA

ρ  in each test set 

(Beasley’s data is the same as that of Table 1).  

 

Table 46.  Correlation Analysis of Standard Problems 

New Test Set Beasley’s Test Set 
File min iCAρ  max iCAρ  (n,m) File min iCAρ  max iCAρ  (n,m) 

50-5KP -0.895 0.885 (50, 5) mknapcb1 0.094 0.511 (100,5) 
100-5KP -0.883 0.892 (100, 5) mknapcb2 0.163 0.461 (250,5) 
250-5KP -0.875 0.871 (250, 5) mknapcb3 0.189 0.403 (500,5) 
50-10KP -0.884 0.899 (50, 10) mknapcb4 -0.157 0.459 (100,10) 

100-10KP -0.881 0.882 (100, 10) mknapcb5 0.003 0.326 (250,10) 
250-10KP -0.887 0.883 (250, 10) mknapcb6 0.030 0.308 (500,10) 
50-25KP -0.898 0.905 (50, 25) mknapcb7 -0.256 0.437 (100,30) 

100-25KP -0.902 0.904 (100, 25) mknapcb8 -0.192 0.307 (250,30) 
250-25KP -0.889 0.890 (250, 25) mknabcb9 -0.074 0.213 (500,30) 

(n,m) represents (variables, constraints) in problems 

 

 

Figure 30 graphically shows the correlation range of the 50-5KP file (new test set) 

and mknapcb1 (Beasley’s test set).  Both files include 30 problems.  Since all problems 

are 5KP, each problem has five correlation points in Figure 30; each graph has 150 

points. 
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Figure 30.  Correlation Range Comparison of 50-5KP and mknapcb 1 

 

Figure 30 indicates that the correlation range of the new problem is very wide, 

while the correlation range of Beasley’s test set is very narrow.  An adequate test set 

should provide a full range of test instances. 
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Figure 31 shows that the slackness range of the new test problem set spreads out 

from 0.2 to 0.8, while problems from the Beasley set do not.   
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Figure 31.  Slackness Range Comparison of 50-5KP and mknapcb 1 
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For slackness ratios, Beasley’s test set uses the convention of equal slackness 

ratios applied to all constraints although varied across three ratios (0.25, 0.5, 0.75) within 

a problem set file.  Thus, all constraint slackness ratios are equal in each problem with 

different slack ratios (0.25, 0.5, 0.75) applied to 10 problems in each 30 problem test set.   

Existing benchmark test sets do not provide a sufficiently diverse set of test 

problems.  This means testing may not gain full experimental information regarding 

heuristic solution procedure performance.  Therefore, the new test set is created to 

provide a more comprehensive test set and a true range of representative MKPs.  

6.4   Computational Results  

The overall performance of five legacy heuristics and all new heuristics on 

Beasley’s test set and on the new test set is summarized in Tables 47 and 48, respectively.  

Both Tables present average relative errors which is the percentage from the optimal 

solution for each heuristic solution.  Optimal solutions in the new test set were achieved 

using Xpress commercial software.  Beasley’s test set provides the optimal solution of 

each problem. 



Table 47.  Average Relative Error by Each Heuristic Solving Beasley’s Problem Set (2004) 

Test 
Problem TOYODA S – T L – MM1 FOX KOCHEN TYPE NGV1 NGV2 NGV3 NR NR(P) 

mknapcb1 
(100-5KP) 2.811 3.557 5.736 9.469 0.975 0.975 1.444 1.087 0.991 1.172 0.532 

mknapcb2 
(250-5KP) 2.095 2.456 6.576 9.823 0.440 0.440 0.977 0.396 0.406 0.579 0.242 

mknapcb3 
(500-5KP) 1.474 1.989 6.927 9.873 0.207 0.207 0.866 0.201 0.218 0.265 0.078 

mknapcb4 
(100-10KP) 3.889 4.463 4.868 11.492 1.809 1.809 2.106 1.522 1.634 1.505 1.103 

mknapcb5 
(250-10KP) 2.713 3.383 4.355 11.259 0.809 0.809 1.096 0.663 0.605 0.668 0.484 

mknapcb6 
(500-10KP) 1.908 2.242 4.426 10.902 0.316 0.316 0.683 0.306 0.275 0.307 0.190 

mknapcb7 
(100-30KP) 4.874 5.359 3.199 12.717 2.250 2.250 2.782 1.684 1.730 1.455 1.452 

mknapcb8 
(250-30KP) 3.744 3.900 2.867 12.763 1.390 1.390 1.708 0.986 1.005 0.864 0.801 

mknapcb9 
(500-30KP) 2.822 2.961 2.560 12.057 0.793 0.793 1.115 0.653 0.587 0.511 0.491 

Total 
Average 2.926 3.368 4.613 11.151 0.999 0.999 1.420 0.833 0.828 0.814 0.597 

 (Unit: Percent)  
NG : New Gradient Heuristic                                                                                                                                                  
NR:  New Reduction Heuristic 
NR(P): New Reduction Heuristic with Pirkul’s Improvement 
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Test 
Problem TOYODA S – T L – MM1 FOX KOCHEN TYPE NGV1 NGV2 NGV3 NR NR(P) 

50-5KP 4.275 5.820 2.431 7.744 2.221 2.953 1.635 1.101 0.834 1.001 0.219 

100-5KP 5.508 6.422 3.937 6.155 1.772 2.083 0.943 0.450 0.403 0.472 0.097 

250-5KP 5.844 5.921 6.177 5.475 0.889 1.065 0.649 0.267 0.210 0.196 0.038 

50-10KP 6.550 6.758 3.210 12.049 3.398 3.398 3.729 1.806 1.685 2.326 0.921 

100-10KP 7.574 7.688 3.938 10.486 2.662 2.662 1.942 0.940 0.832 0.939 0.267 

250-10KP 10.461 10.673 7.664 10.179 2.451 2.441 1.595 0.629 0.344 0.318 0.075 

50-25KP 9.148 10.546 4.457 15.322 6.840 7.408 5.442 1.910 1.827 2.238 0.930 

100-25KP 10.518 12.848 5.645 13.991 5.754 6.033 5.095 1.504 1.139 1.082 0.541 

250-25KP 13.242 14.722 8.514 13.744 5.022 5.022 4.348 1.019 0.507 0.517 0.176 

Total 
Average 8.124 9.044 5.108 10.572 3.445 3.674 2.820 1.070 0.865 1.010 0.363 

 (Unit: Percent)  
NG : New Gradient Heuristic                                                                                                                                                  

Table 48.  Average Relative Error by Each Heuristic Solving New Test Set 
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NR:  New Reduction Heuristic 
NR(P): New Reduction Heuristic with Pirkul’s Improvement 



Tables 47 and 48 present empirical results supporting our three important 

premises: (1) the new test set provides a true range of problem characteristics leading to 

relatively robust conclusions, (2) Beasley’s benchmark set of 270 problems is not fully 

adequate, so heuristic performance conclusions are limited, and (3) the new heuristics 

yield robust solution quality over a complete range of problem characteristics. 

Table 47 results indicate KOCHEN is a best choice among the legacy heuristics 

examined.  Moreover, KOCHEN behavior, in terms of solution quality, is fairly 

consistent as the problem size increases.  The TYPE heuristic matches KOCHEN 

performance which is not unexpected given the range of problems in the test set.  Both 

NG V2 and NG V3 are competitive and overall are preferred to KOCHEN especially as 

the problem size increases.  NR heuristic is very competitive with NG V3 and the results 

indicate local improvement helps improve the solution quality. 

Table 48, based on the new test set, yields interesting insights.  First, among 

legacy heuristics, KOCHEN is no longer clearly preferred as the L – M M1 competes 

quite well on the variety of problems.  The performance of TYPE degrades, as expected 

given the broad range of problems generated and the specificity of the TYPE heuristic.  

Each of the new gradient methods, NG V1, NG V2, and NG V3, compete well against the 

best legacy heuristics with NG V3 being better than NG V2 overall.  NR(P) yielded better 

solutions compared to NG V3, as seen in Table 47 and 48, since the local improvement 

phase helped improve overall solution quality. 
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Figure 32.  Average Relative Error of All Legacy Heuristics on Each Problem Test Set 

 

The big difference, and one for which every researcher should take notice, arises 

in comparing the results in Tables 47 and 48.  Notice in Table 48 that, for legacy 

heuristics, as the problem size increases, solution quality obtained degrades.  This trend is 

not seen in Table 47 based on the current set of test problems.  Figure 32 plots, by test 

problem grouping (there are 9 such groupings of 30 problems each), the average relative 

errors of all legacy heuristics; note the increasing trend associated with the new test set.  

This is not a favorable characteristic for a heuristic. 
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Figure 33.  Average Relative Error of NG V3 on Each Problem Test Set 

 

Figure 33 plots the average relative errors of NG V3 on each problem test set.  In 

sharp contrast, the trends associated with the new heuristics developed in this research do 

not degrade in a similar fashion.  NG V3 is especially robust which implies NG V3’s 

greater potential utility for real-world applications. 
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VII.   Conclusions 

7.1   Contributions 

This research employed an empirical science of heuristics applied to the 

multidimensional knapsack problem (MKP).  Heuristics are often employed without 

deeply understanding solution performance.  This research used the empirical analysis of 

the legacy greedy heuristics to gain a deeper knowledge of heuristic performance.  Since 

existing standard problem sets do not include a sufficient range of problem 

characteristics, new test problem sets were developed for use in the computational 

experiments.  The empirical testing uncovered the fact that different heuristics yield 

different solution qualities based on problem characteristics.  The solution qualities are 

analyzed as a function of problem characteristics.  Using this knowledge, several 

heuristics were defined, developed, and tested.  These heuristics were found to yield 

robust and consistent solution quality over all problem characteristics.   

7.1.1   Empirical Science Suggesting Theory 

Hooker (1994) indicates that deductive mathematical methods are inadequate in 

studying the performance of algorithms based on computational experiment.  Since 

understanding the influence of problem characteristics on heuristic solution performance 

requires computational testing, current deductive mathematical methods are inadequate.  

This research conducted computational testing, rather than using a mathematical 

deductive approach, to gain insights into how various heuristics function according to 

particular test problem characteristics.  These insights yielded theories regarding heuristic 

procedure performance as a function of problem characteristics.  These theories were 
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exploited to yield new heuristics whose performance is more robust than that of the 

legacy heuristics.  

7.1.2   Evidence of Lack of Diversity of the Existing Benchmark Test Set 

Evidence was presented that the existing benchmark problem set and test sets 

randomly generated by researchers do not include a sufficient variety of problem 

characteristics.  This research indicated that these narrow ranges of problem 

characteristics lead to incorrect conclusions regarding the solution performance of 

heuristics.  Thus, benchmark problem sets do not provide the mechanism to gain the 

heuristic solution procedure performance insight with respect to problem characteristics 

attainable with the more diverse problem set eventually employed in this research. 

7.1.3   Knowledge of Heuristic Performance Based on Problem Characteristics 

Knowledge regarding heuristic solution performance was achieved using a 

structured empirical test of legacy heuristics using a more diverse test set of 2KP and 

5KP test problems.  The research analyzed why the heuristics yielded various solution 

qualities depending on problem characteristics, and uncovered new heuristic performance 

characteristics in terms of finding a best performer among the heuristics for particular 

problem types.  Analysis of the rationale for these best performers yielded insights that 

led to new heuristic approaches. 

7.1.4   New Robust Heuristics Development 

Several new heuristics were developed based on the empirical analysis of legacy 

heuristics.  The TYPE heuristic was based on pre-processing a problem to determine 

constraint slackness and correlation levels which facilitates the choice of heuristic likely 

to be the best performer.  The TYPE heuristic, first suggested 30 years ago, is believed to 
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be the first of its kind.  Three new gradient heuristics, based on characteristics of legacy 

heuristics, were defined and developed.  These new gradient heuristics performed 

extremely well in terms of returning best solutions, performing quite well over the range 

of constraint slackness and correlations.  A new reduction heuristic showed the 

effectiveness of reducing the problem size using the core problem structure.  The core 

problem reduction in this research was based on a gradient measure range versus total 

variable percentage and was shown adequate in terms of optimal value coverage.  A local 

improvement method was devised and examined as well. 

7.1.5   New Problem Generation Approach 

Existing benchmark problems do not provide an adequate experimental basis 

upon which to make claims of general applicability of a heuristic solution procedure.  

This research proposed an alternative generation scheme to MKP generation.  This 

problem generation approach allows constraint slackness and correlation levels to 

randomly vary within a constraint set, thereby yielding problems with diverse problem 

characteristics.  A new test set was derived and includes a true range of problem 

characteristics.  Performance results against this new test set demonstrated the 

deficiencies of legacy heuristics and the viability of the new heuristics developed. 

7.2   Future Research 

This research has focused on the solution procedure performance of greedy 

heuristics on the MKP.  There are several areas that should be examined in future 

research:   
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First, existing modern heuristics may be affected by problem characteristics 

because the greedy heuristic produces various solution qualities depending on problem 

characteristics.  Since new heuristics provide robust and consistent base solutions (initial 

solutions), modern heuristics, such as tabu search, genetic algorithms, simulated 

annealing, or an ant colony optimization algorithm, and their solution procedure 

performance could be examined using the new test set.  This future research can identify 

which is the best modern heuristic approach for solving the MKP.  

 Second, future research could be applied to other problem types such as set 

covering problems, set partitioning problems, bin packing problems, and general 

assignment problems.  Many combinatorial problems require a heuristic to solve them, 

and this research can improve the solution performance of heuristics and yield robust 

solution quality.   

Third, future research could also examine existing benchmark problems of other 

problem types.  If existing benchmark problem sets do not cover the full range of 

problem characteristics, this research could create sufficient problem generation methods 

for other problem types.  These new problem sets could provide full information 

regarding heuristic solution performance.   

Finally, this research applied just Glover’s improvement phase (1977) and 

Pirkul’s improvement phase (1987) to the MKP.  These local improvements are not 

effective to improve the solution quality when they are combined with NG V3.  Future 

research could consider improvement moves taken from meta-heuristics such as genetic 

algorithms and tabu search.            
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Appendix A.  Statistical Test to Distinguish a Best Heuristic in 2KP 
 
• Chi-square test 

 
 : Heuristics do not differ. 
 : At least one heuristic differs. 

 
Table A.1  Chi - Square Test for 2KP Constraint Slackness 

 
Constraint 
Slackness X2 df Probability Reject Region?

(α = 0.1) 
1,1 671.709 7 0.000 Yes 
1,2 152.291 7 0.000 Yes 
2,1 144.873 7 0.000 Yes 
2,2 345.091 7 0.000 Yes 

 
• Sign test for two heuristics 

 
   : Two heuristics statistically have the same performance. S

0H
S
1H   : One heuristic has statistically better performance compared to another heuristic. 

 
Table A.2  Sign Test for 2KP Constraint Slackness 

 
Constraint 
Slackness 

Best 
Heuristic 

# of Better  
Solutions 

vs. 
Heuristic 

# of Better  
Solutions Pr(X ≥ U) Reject Region 

(α = 0.1) 

216 TOYODA 15 0.000 Yes 
229 S – T 11 0.000 Yes 
249 L – M M1 20 0.000 Yes 1,1 KOCHEN 

210 FOX 59 0.000 Yes 
202 TOYODA 21 0.000 Yes 
246 L – M M1 17 0.000 Yes 
187 FOX 46 0.000 Yes 1,2 S – T 

73 KOCHEN 55 0.066 Yes 
192 TOYODA 21 0.000 Yes 
244 L – M M1 14 0.000 Yes 
180 FOX 54 0.000 Yes 2,1 S – T 

70 KOCHEN 61 0.242 No 
195 TOYODA 15 0.000 Yes 
200 S – T 13 0.000 Yes 
227 L – M M1 27 0.000 Yes 2,2 KOCHEN 

157 FOX 85 0.000 Yes 
   

U ~ the number times best heuristic is better than compared heuristic 
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Table A.3  Sign Test for 2KP Correlation Structures 

 
CorrCA1 CorrCA2 CorrA1A2 Best Best TOYODA Pr(X≥U) Reject Ho Best S -T Pr(X≥U) Reject Ho Best L - M M1 Pr(X≥U) Reject Ho Best FOX Pr(X≥U) Reject Ho Best KOCHEN Pr(X≥U) Reject Ho

2 KOCHEN 8 0 0.007 Y 8 0 0.007 Y 10 0 0.002 Y 7 2 0.091 Y
1 1 FOX 10 0 0.002 Y 10 0 0.002 Y 9 1 0.013 Y 9 1 0.013 Y
0 0 FOX 10 0 0.002 Y 10 0 0.002 Y 8 2 0.057 Y 7 3 0.171 Y
-1 -1 FOX 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y 7 3 0.171 Y
-2 -2 FOX 8 1 0.023 Y 10 0 0.002 Y 10 0 0.002 Y 7 3 0.171 Y
2 1 FOX 10 0 0.002 Y 10 0 0.002 Y 9 1 0.013 Y 10 0 0.002 Y
1 2 FOX 7 3 0.171 Y 7 3 0.171 Y 10 0 0.002 Y 6 4 0.376 N

1 KOCHEN 7 3 0.171 Y 7 3 0.171 Y 20 0 0.000 Y 20 0 0.000 Y
0 KOCHEN 6 1 0.065 Y 6 1 0.065 Y 10 0 0.002 Y 10 0 0.002 Y

0 1 FOX 8 2 0.057 Y 9 1 0.013 Y 9 1 0.013 Y 6 4 0.376 N
0 0 KOCHEN 20 0 0.000 Y 20 0 0.000 Y 20 0 0.000 Y 19 1 0.000 Y
0 -1 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y
1 0 FOX 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y 5 5 0.624 N

-1 -1 KOCHEN 20 0 0.000 Y 20 0 0.000 Y 17 0 0.000 Y 16 3 0.003 Y
-1 -2 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y
2 -1 KOCHEN 9 0 0.004 Y 10 0 0.002 Y 10 0 0.002 Y 5 2 0.225 N
2 0 FOX 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y 9 1 0.013 Y
1 1 FOX 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y 6 2 0.144 Y
1 0 KOCHEN 20 0 0.000 Y 20 0 0.000 Y 19 1 0.000 Y 19 1 0.000 Y
1 -1 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y

2 TIE
1 KOCHEN 8 1 0.074 Y 8 1 0.031 Y 16 2 0.000 Y 20 0 0.000 Y
0 KOCHEN 9 3 0.074 Y 11 3 0.031 Y 19 1 0.000 Y 19 1 0.000 Y

0 -1 KOCHEN 9 3 0.074 Y 11 4 0.061 Y 20 0 0.000 Y 20 0 0.000 Y
0 -2 KOCHEN 2 3 0.814 N 2 3 0.814 N 8 2 0.057 Y 10 0 0.002 Y
1 1 KOCHEN 7 0 0.012 Y 7 0 0.012 Y 10 0 0.002 Y 4 3 0.500 N
1 0 KOCHEN 19 0 0.000 Y 20 0 0.000 Y 15 4 0.011 Y 16 1 0.000 Y
1 -1 KOCHEN 7 1 0.039 Y 8 0 0.007 Y 6 3 0.252 N 9 1 0.013 Y
2 0 FOX 10 0 0.002 Y 10 0 0.002 Y 9 0 0.004 Y 4 3 0.500 N
2 -1 FOX 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y 9 1 0.013 Y
1 0 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y 7 3 0.171 Y
1 -1 KOCHEN 20 0 0.000 Y 20 0 0.000 Y 18 2 0.000 Y 17 3 0.002 Y
1 -2 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 7 2 0.091 Y 10 0 0.002 Y
0 1 FOX 7 3 0.171 Y 9 1 0.013 Y 10 0 0.002 Y 5 4 0.500 N
0 0 KOCHEN 18 1 0.000 Y 18 1 0.000 Y 14 4 0.017 Y 17 1 0.000 Y

1 KOCHEN 8 1 0.023 Y 9 0 0.004 Y 8 2 0.057 Y 10 0 0.002 Y
-1 2 TIE
-1 1 KOCHEN 5 3 0.362 N 6 2 0.144 Y 14 3 0.008 Y 13 6 0.084 Y
-1 0 KOCHEN 2 5 0.935 N 4 3 0.500 N 13 3 0.012 Y 13 5 0.049 Y
-2 1 KOCHEN 7 1 0.039 Y 7 1 0.039 Y 7 1 0.039 Y 5 4 0.500 N
2 -2 FOX 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y 8 1 0.023 Y
1 -1 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y 6 2 0.144 Y
0 0 KOCHEN 7 1 0.039 Y 8 0 0.007 Y 8 1 0.023 Y 4 5 0.748 N
-1 1 KOCHEN 6 2 0.144 Y 6 2 0.144 N 4 2 0.342 N 4 4 0.638 N
-2 2 TIE

2 2
2
2
2
2
1
1
1 1
1 1
1
1
1
1 -
1
1
1 -
0
0
0
0
0 0
0 0
0 0
0
0
0 -
0 -
0 -
0 -
-1
-1
-1
-1
-1
-1
-1 0 -
-1
-1
-1
-1
-2
-2
-2
-2
-2  

 
                                                                                                                                                                              (Reject Region: α = 0.1) 
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Appendix B.  Supplementary Data for Generating 5KP Problem Set 
 

Table B.1  Possible Combinations for Correlation Structure for 5KP 
 
Comb. CA1 CA2 CA3 CA4 CA5 Comb. CA1 CA2 CA3 CA4 CA5 Comb. CA1 CA2 CA3 CA4 CA5

1 -2 -2 -2 -2 -2 43 -2 -1 -1 1 1 85 -1 -1 0 1 2 
2 -2 -2 -2 -2 -1 44 -2 -1 -1 1 2 86 -1 -1 0 2 2 
3 -2 -2 -2 -2 0 45 -2 -1 -1 2 2 87 -1 -1 1 1 1 
4 -2 -2 -2 -2 1 46 -2 -1 0 0 0 88 -1 -1 1 1 2 
5 -2 -2 -2 -2 2 47 -2 -1 0 0 1 89 -1 -1 1 2 2 
6 -2 -2 -2 -1 -1 48 -2 -1 0 0 2 90 -1 -1 2 2 2 
7 -2 -2 -2 -1 0 49 -2 -1 0 1 1 91 -1 0 0 0 0 
8 -2 -2 -2 -1 1 50 -2 -1 0 1 2 92 -1 0 0 0 1 
9 -2 -2 -2 -1 2 51 -2 -1 0 2 2 93 -1 0 0 0 2 

10 -2 -2 -2 0 0 52 -2 -1 1 1 1 94 -1 0 0 1 1 
11 -2 -2 -2 0 1 53 -2 -1 1 1 2 95 -1 0 0 1 2 
12 -2 -2 -2 0 2 54 -2 -1 1 2 2 96 -1 0 0 2 2 
13 -2 -2 -2 1 1 55 -2 -1 2 2 2 97 -1 0 1 1 1 
14 -2 -2 -2 1 2 56 -2 0 0 0 0 98 -1 0 1 1 2 
15 -2 -2 -2 2 2 57 -2 0 0 0 1 99 -1 0 1 2 2 
16 -2 -2 -1 -1 -1 58 -2 0 0 0 2 100 -1 0 2 2 2 
17 -2 -2 -1 -1 0 59 -2 0 0 1 1 101 -1 1 1 1 1 
18 -2 -2 -1 -1 1 60 -2 0 0 1 2 102 -1 1 1 1 2 
19 -2 -2 -1 -1 2 61 -2 0 0 2 2 103 -1 1 1 2 2 
20 -2 -2 -1 0 0 62 -2 0 1 1 1 104 -1 1 2 2 2 
21 -2 -2 -1 0 1 63 -2 0 1 1 2 105 -1 2 2 2 2 
22 -2 -2 -1 0 2 64 -2 0 1 2 2 106 0 0 0 0 0 
23 -2 -2 -1 1 1 65 -2 0 2 2 2 107 0 0 0 0 1 
24 -2 -2 -1 1 2 66 -2 1 1 1 1 108 0 0 0 0 2 
25 -2 -2 -1 2 2 67 -2 1 1 1 2 109 0 0 0 1 1 
26 -2 -2 0 0 0 68 -2 1 1 2 2 110 0 0 0 1 2 
27 -2 -2 0 0 1 69 -2 1 2 2 2 111 0 0 0 2 2 
28 -2 -2 0 0 2 70 -2 2 2 2 2 112 0 0 1 1 1 
29 -2 -2 0 1 1 71 -1 -1 -1 -1 -1 113 0 0 1 1 2 
30 -2 -2 0 1 2 72 -1 -1 -1 -1 0 114 0 0 1 2 2 
31 -2 -2 0 2 2 73 -1 -1 -1 -1 1 115 0 0 2 2 2 
32 -2 -2 1 1 1 74 -1 -1 -1 -1 2 116 0 1 1 1 1 
33 -2 -2 1 1 2 75 -1 -1 -1 0 0 117 0 1 1 1 2 
34 -2 -2 1 2 2 76 -1 -1 -1 0 1 118 0 1 1 2 2 
35 -2 -2 2 2 2 77 -1 -1 -1 0 2 119 0 1 2 2 2 
36 -2 -1 -1 -1 -1 78 -1 -1 -1 1 1 120 0 2 2 2 2 
37 -2 -1 -1 -1 0 79 -1 -1 -1 1 2 121 1 1 1 1 1 
38 -2 -1 -1 -1 1 80 -1 -1 -1 2 2 122 1 1 1 1 2 
39 -2 -1 -1 -1 2 81 -1 -1 0 0 0 123 1 1 1 2 2 
40 -2 -1 -1 0 0 82 -1 -1 0 0 1 124 1 1 2 2 2 
41 -2 -1 -1 0 1 83 -1 -1 0 0 2 125 1 2 2 2 2 
42 -2 -1 -1 0 2 84 -1 -1 0 1 1 126 2 2 2 2 2 

 
where CAi = iCAρ ,  i = 1, …, 5,  and coded correlation {-2, -1, 0, 1, 2} represents 

correlation { -0.9, -0.5, 0, 0.5, 0.9}. 
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Appendix C.  Statistical Test to Distinguish a Best Heuristic in 5KP 
 
• Chi-square test 

C
0H  : Heuristics do not differ. 
C
1H  : At least one heuristic differs. 

 
Table C.1  Chi - Square Test for 5KP Constraint Slackness 

 
Constraint 
Slackness X2 df Probability Reject Region? 

(α = 0.1) 
1,1,1,1,1 1069.210 4 0.000 Yes 
1,1,1,1,2 1207.090 4 0.000 Yes 
1,1,1,2,2 977.301 4 0.000 Yes 
1,1,2,2,2 642.791 4 0.000 Yes 
1,2,2,2,2 315.162 4 0.000 Yes 
2,2,2,2,2 982.037 4 0.000 Yes 

 
• Sign test for two heuristics 
   : Two heuristics statistically have the same performance. S

0H
   : One heuristic has statistically better performance compared to another heuristic. S

1H
 

Table C.2  Sign Test for 5KP Constraint Slackness 
 

Constraint 
Slackness Best Heuristic # of Better  

Solutions vs. Heuristic # of Better  
Solutions Pr(X ≥ U) Reject Region 

(α = 0.1) 
604 TOYODA 13 0.000 Yes 
618 S – T 7 0.000 Yes 
499 L – M M1 126 0.000 Yes 1,1,1,1,1 KOCHEN 

554 FOX 75 0.000 Yes 
577 TOYODA 26 0.000 Yes 
599 S – T 14 0.000 Yes 
516 L – M M1 105 0.000 Yes 1,1,1,1,2 KOCHEN 

583 FOX 45 0.000 Yes 
534 TOYODA 38 0.000 Yes 
553 S – T 37 0.000 Yes 
512 L – M M1 108 0.000 Yes 1,1,1,2,2 KOCHEN 

603 FOX 27 0.000 Yes 
535 TOYODA 42 0.000 Yes 
456 S – T 80 0.000 Yes 
476 L – M M1 122 0.000 Yes 1,1,2,2,2 KOCHEN 

606 FOX 22 0.000 Yes 
451 TOYODA 155 0.000 Yes 
362 L – M M1 218 0.000 Yes 
591 FOX 19 0.000 Yes 1,2,2,2,2 S - T 

241 KOCHEN 237 0.445 No 
584 TOYODA 10 0.000 Yes 
594 S – T 6 0.000 Yes 
537 L – M M1 76 0.000 Yes 2,2,2,2,2 KOCHEN 

499 FOX 123 0.000 Yes 
             U ~ the number times best heuristic is better than compared heuristic 
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Table C.3  Resource Usage in All Slackness Setting under Zero Correlation by Each 

Heuristic and Optimal Solution for 5KP 
 

Slackness Classification TOYODA S - T L – M 
M1 FOX KOCHEN Optimal 

# of Vars 34.0 33.8 32.4 34.0 34.0 34.0 

1st Const 0.963 0.968 0.984 0.984 0.962 0.988 
2nd Const 0.968 0.967 0.969 0.986 0.967 0.995 
3rd Const 0.965 0.947 0.974 0.970 0.956 0.995 
4th Const 0.970 0.964 0.977 0.972 0.982 0.991 

(1,1,1,1,1) 

5th Const 0.982 0.974 0.986 0.982 0.974 0.993 
# of Vars 34.4 34.2 32.8 35.8 35.0 35.0 
1st Const 0.973 0.973 0.987 0.972 0.983 0.990 
2nd Const 0.937 0.945 0.979 0.983 0.986 0.997 
3rd Const 0.983 0.978 0.987 0.980 0.975 0.995 
4th Const 0.960 0.943 0.975 0.973 0.976 0.994 

(1,1,1,1,2) 

5th Const 0.478 0.478 0.468 0.512 0.500 0.506 
# of Vars 35.2 35.2 34.6 37.0 36.6 36.6 
1st Const 0.946 0.940 0.988 0.993 0.993 0.994 
2nd Const 0.970 0.978 0.987 0.981 0.984 0.998 
3rd Const 0.941 0.923 0.993 0.979 0.978 0.989 
4th Const 0.466 0.474 0.489 0.507 0.503 0.513 

(1,1,1,2,2) 

5th Const 0.492 0.505 0.495 0.525 0.525 0.527 
# of Vars 38.4 39.4 36.4 40.200 40.2 39.4 
1st Const 0.976 0.977 0.988 0.994 0.987 0.998 
2nd Const 0.993 0.995 0.993 0.991 0.991 0.997 
3rd Const 0.516 0.548 0.510 0.566 0.556 0.564 
4th Const 0.530 0.555 0.543 0.587 0.574 0.565 

(1,1,2,2,2) 

5th Const 0.522 0.556 0.521 0.551 0.557 0.556 
# of Vars 40.8 44.2 42.2 45.6 44.6 45.6 
1st Const 0.998 0.998 0.996 0.992 0.997 1.000 
2nd Const 0.564 0.620 0.599 0.643 0.628 0.655 
3rd Const 0.564 0.625 0.613 0.654 0.629 0.659 
4th Const 0.542 0.603 0.593 0.638 0.612 0.624 

(1,2,2,2,2) 

5th Const 0.550 0.613 0.615 0.647 0.629 0.658 
# of Vars 70.4 70.4 69.4 72.4 70.8 71.2 

1st Const 0.968 0.968 0.982 0.986 0.976 0.985 
2nd Const 0.986 0.986 0.988 0.988 0.994 0.998 
3rd Const 0.984 0.984 0.986 0.985 0.985 0.996 
4th Const 0.974 0.974 0.985 0.993 0.987 0.995 

(2,2,2,2,2) 

5th Const 0.985 0.985 0.988 0.983 0.988 0.997 
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Table C.4  Sign Tests for 5KP Correlation Structures 
 

Correlation Best Best TOYODA Pr(X≥U) Reject Ho Best S -T Pr(X≥U) Reject Ho Best L - M M1 Pr(X≥U) Reject Ho Best FOX Pr(X≥U) Reject Ho Best KOCHEN Pr(X≥U) Reject Ho
-2,-2,-2,-2,-2 TIE
-2,-2,-2,-2,-1 KOCHEN 8 0 0.007 Y 8 0 0.007 Y 5 4 0.500 N 8 2 0.057 Y
-2,-2,-2,-2,0 FOX 10 0 0.002 Y 10 0 0.002 Y 7 3 0.171 Y 8 1 0.023 Y
-2,-2,-2,-2,1 FOX 10 0 0.002 Y 10 0 0.002 Y 6 3 0.252 N 7 3 0.171 Y
-2,-2,-2,-2,2 FOX 10 0 0.002 Y 10 0 0.002 Y 9 1 0.013 Y 9 1 0.013 Y
-2,-2,-2,-1,-1 L-M M1 7 2 0.091 Y 8 1 0.023 Y 9 1 0.013 Y 4 4 0.638 N
-2,-2,-2,-1,0 L-M M1 10 0 0.002 Y 10 0 0.002 Y 8 2 0.057 Y 7 3 0.171 Y
-2,-2,-2,-1,1 L-M M1 10 0 0.002 Y 10 0 0.002 Y 6 4 0.376 N 6 4 0.376 N
-2,-2,-2,-1,2 FOX 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y
-2,-2,-2,0,0 KOCHEN 9 1 0.013 Y 9 1 0.013 Y 10 0 0.002 Y 9 0 0.004 Y
-2,-2,-2,0,1 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y
-2,-2,-2,0,2 FOX 10 0 0.002 Y 10 0 0.002 Y 9 1 0.013 Y 8 2 0.057 Y
-2,-2,-2,1,1 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y
-2,-2,-2,1,2 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 7 3 0.171 Y 6 4 0.376 N
-2,-2,-2,2,2 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y

-2,-2,-1,-1,-1 KOCHEN 6 0 0.021 Y 7 0 0.012 Y 6 3 0.252 N 8 1 0.023 Y
-2,-2,-1,-1,0 KOCHEN 9 0 0.004 Y 9 0 0.004 Y 4 5 0.748 N 9 1 0.013 Y
-2,-2,-1,-1,1 L-M M1 10 0 0.002 Y 10 0 0.002 Y 6 4 0.376 N 7 3 0.171 Y
-2,-2,-1,-1,2 FOX 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y 8 0 0.007 Y
-2,-2,-1,0,0 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 9 0 0.004 Y 10 0 0.002 Y
-2,-2,-1,0,1 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 6 4 0.376 N 10 0 0.002 Y
-2,-2,-1,0,2 FOX 9 1 0.013 Y 10 0 0.002 Y 9 1 0.013 Y 8 2 0.057 Y
-2,-2,-1,1,1 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 9 0 0.004 Y 10 0 0.002 Y
-2,-2,-1,1,2 TIE
-2,-2,-1,2,2 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y
-2,-2,0,0,0 KOCHEN 8 1 0.023 Y 9 0 0.004 Y 9 1 0.013 Y 10 0 0.002 Y
-2,-2,0,0,1 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 8 2 0.057 Y 10 0 0.002 Y
-2,-2,0,0,2 FOX 10 0 0.002 Y 10 0 0.002 Y 8 2 0.057 Y 5 5 0.624 N
-2,-2,0,1,1 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y
-2,-2,0,1,2 TIE
-2,-2,0,2,2 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y
-2,-2,1,1,1 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y
-2,-2,1,1,2 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 7 3 0.171 Y 10 0 0.002 Y
-2,-2,1,2,2 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y
-2,-2,2,2,2 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y

-2,-1,-1,-1,-1 KOCHEN 6 1 0.065 Y 8 0 0.007 Y 5 5 0.624 N 10 0 0.002 Y
-2,-1,-1,-1,0 L-M M1 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y 9 1 0.013 Y
-2,-1,-1,-1,1 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 7 3 0.171 Y 7 3 0.171 Y
-2,-1,-1,-1,2 FOX 9 1 0.013 Y 10 0 0.002 Y 7 3 0.171 Y 8 2 0.057 Y
-2,-1,-1,0,0 KOCHEN 8 0 0.007 Y 10 0 0.002 Y 9 1 0.013 Y 10 0 0.002 Y
-2,-1,-1,0,1 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 7 3 0.171 Y 10 0 0.002 Y
-2,-1,-1,0,2 FOX 10 0 0.002 Y 10 0 0.002 Y 9 1 0.013 Y 9 1 0.013 Y
-2,-1,-1,1,1 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y
-2,-1,-1,1,2 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 8 2 0.057 Y 6 4 0.376 N
-2,-1,-1,2,2 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y 9 1 0.013 Y
-2,-1,0,0,0 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 9 1 0.013 Y 10 0 0.002 Y
-2,-1,0,0,1 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 7 3 0.171 Y 9 1 0.013 Y
-2,-1,0,0,2 FOX 10 0 0.002 Y 10 0 0.002 Y 7 3 0.171 Y 8 2 0.057 Y
-2,-1,0,1,1 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y
-2,-1,0,1,2 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 9 1 0.013 Y 5 5 0.624 N
-2,-1,0,2,2 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y
-2,-1,1,1,1 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y
-2,-1,1,1,2 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 7 3 0.171 Y 8 2 0.057 Y
-2,-1,1,2,2 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 9 1 0.013 Y 10 0 0.002 Y
-2,-1,2,2,2 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 9 1 0.013 Y 10 0 0.002 Y
-2,0,0,0,0 KOCHEN 7 0 0.012 Y 7 1 0.039 Y 10 0 0.002 Y 10 0 0.002 Y
-2,0,0,0,1 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 6 3 0.252 N 10 0 0.002 Y
-2,0,0,0,2 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 7 3 0.171 Y 6 4 0.376 N
-2,0,0,1,1 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y
-2,0,0,1,2 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 8 2 0.057 Y 8 2 0.057 Y
-2,0,0,2,2 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y
-2,0,1,1,1 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y
-2,0,1,1,2 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 7 3 0.171 Y 8 2 0.057 Y
-2,0,1,2,2 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 9 1 0.013 Y 10 0 0.002 Y
-2,0,2,2,2 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y
-2,1,1,1,1 KOCHEN 6 3 0.252 N 8 2 0.057 Y 10 0 0.002 Y 10 0 0.002 Y
-2,1,1,1,2 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 9 1 0.013 Y 10 0 0.002 Y
-2,1,1,2,2 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y
-2,1,2,2,2 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y
-2,2,2,2,2 KOCHEN 8 2 0.057 Y 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y

-1,-1,-1,-1,-1 TIE
-1,-1,-1,-1,0 L-M M1 9 1 0.013 Y 9 1 0.013 Y 8 1 0.023 Y 8 2 0.057 Y
-1,-1,-1,-1,1 TIE
-1,-1,-1,-1,2 FOX 10 0 0.002 Y 10 0 0.002 Y 7 3 0.171 Y 8 2 0.057 Y
-1,-1,-1,0,0 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 9 1 0.013 Y 10 0 0.002 Y
-1,-1,-1,0,1 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 9 1 0.013 Y 9 0 0.004 Y
-1,-1,-1,0,2 FOX 9 1 0.013 Y 10 0 0.002 Y 8 2 0.057 Y 7 3 0.171 Y
-1,-1,-1,1,1 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y
-1,-1,-1,1,2 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 8 2 0.057 Y 8 2 0.057 Y
-1,-1,-1,2,2 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y
-1,-1,0,0,0 KOCHEN 9 0 0.004 Y 10 0 0.002 Y 6 2 0.144 Y 10 0 0.002 Y
-1,-1,0,0,1 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 8 2 0.057 Y 8 2 0.057 Y
-1,-1,0,0,2 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 8 2 0.057 Y 7 3 0.171 Y
-1,-1,0,1,1 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y
-1,-1,0,1,2 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 9 1 0.013 Y 5 5 0.624 N
-1,-1,0,2,2 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y 9 1 0.013 Y
-1,-1,1,1,1 KOCHEN 9 1 0.013 Y 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y
-1,-1,1,1,2 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 7 3 0.171 Y 9 1 0.013 Y
-1,-1,1,2,2 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y
-1,-1,2,2,2 KOCHEN 9 0 0.004 Y 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y
-1,0,0,0,0 KOCHEN 7 2 0.091 Y 8 1 0.023 Y 10 0 0.002 Y 10 0 0.002 Y
-1,0,0,0,1 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 6 4 0.376 N 10 0 0.002 Y
-1,0,0,0,2 TIE
-1,0,0,1,1 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y
-1,0,0,1,2 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 7 3 0.171 Y 9 1 0.013 Y
-1,0,0,2,2 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y
-1,0,1,1,1 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y
-1,0,1,1,2 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 9 1 0.013 Y 10 0 0.002 Y
-1,0,1,2,2 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 8 2 0.057 Y 10 0 0.002 Y
-1,0,2,2,2 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y
-1,1,1,1,1 KOCHEN 8 2 0.057 Y 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y
-1,1,1,1,2 L-M M1 9 1 0.013 Y 9 1 0.013 Y 9 1 0.013 Y 5 5 0.624 N
-1,1,1,2,2 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 9 1 0.013 Y 10 0 0.002 Y
-1,1,2,2,2 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y
-1,2,2,2,2 KOCHEN 9 1 0.013 Y 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y
0,0,0,0,0 TIE
0,0,0,0,1 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 7 3 0.171 Y 10 0 0.002 Y
0,0,0,0,2 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 8 2 0.057 Y 7 3 0.171 Y
0,0,0,1,1 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 9 1 0.013 Y 10 0 0.002 Y
0,0,0,1,2 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 8 2 0.057 Y 8 2 0.057 Y
0,0,0,2,2 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y
0,0,1,1,1 KOCHEN 9 1 0.013 Y 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y
0,0,1,1,2 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 7 3 0.171 Y 8 2 0.057 Y
0,0,1,2,2 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 7 2 0.091 Y 10 0 0.002 Y
0,0,2,2,2 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y
0,1,1,1,1 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y
0,1,1,1,2 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 9 1 0.013 Y 10 0 0.002 Y
0,1,1,2,2 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y
0,1,2,2,2 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y
0,2,2,2,2 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y
1,1,1,1,1 KOCHEN 7 1 0.039 Y 8 1 0.023 Y 10 0 0.002 Y 10 0 0.002 Y
1,1,1,1,2 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 6 4 0.376 N 10 0 0.002 Y
1,1,1,2,2 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 9 1 0.013 Y 10 0 0.002 Y
1,1,2,2,2 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y
1,2,2,2,2 KOCHEN 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y 10 0 0.002 Y
2,2,2,2,2 KOCHEN 9 1 0.013 Y 8 2 0.057 Y 10 0 0.002 Y 10 0 0.002 Y  

                              
(Reject Region: α = 0.1) 
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Table C. 5  Resource Usage by KOCHEN under (1, 1, 1, 2, 2) 
 

Correlation 1st Const. 2nd Const. 3rd Const. 4th Const. 5th Const. 

-2,-2,-2,-2,-2 0.948 0.959 0.957 0.421 0.401 
-2,-2,-2,-2,-1 0.963 0.948 0.939 0.405 0.561 
-2,-2,-2,-2,0 0.921 0.946 0.979 0.424 0.704 
-2,-2,-2,-2,1 0.948 0.947 0.978 0.431 0.871 
-2,-2,-2,-2,2 0.940 0.940 0.950 0.409 0.985 
-2,-2,-2,-1,-1 0.971 0.964 0.921 0.562 0.579 
-2,-2,-2,-1,0 0.978 0.986 0.943 0.556 0.731 
-2,-2,-2,-1,1 0.964 0.941 0.953 0.565 0.873 
-2,-2,-2,-1,2 0.945 0.960 0.938 0.544 0.985 
-2,-2,-2,0,0 0.964 0.930 0.975 0.714 0.699 
-2,-2,-2,0,1 0.938 0.955 0.972 0.720 0.882 
-2,-2,-2,0,2 0.963 0.916 0.958 0.716 0.993 
-2,-2,-2,1,1 0.948 0.950 0.968 0.878 0.879 
-2,-2,-2,1,2 0.938 0.960 0.968 0.862 0.990 
-2,-2,-2,2,2 0.918 0.962 0.958 0.975 0.981 

-2,-2,-1,-1,-1 0.920 0.921 0.998 0.533 0.519 
-2,-2,-1,-1,0 0.904 0.875 0.990 0.533 0.664 
-2,-2,-1,-1,1 0.882 0.910 0.998 0.537 0.814 
-2,-2,-1,-1,2 0.856 0.888 0.994 0.531 0.939 
-2,-2,-1,0,0 0.908 0.898 0.995 0.683 0.668 
-2,-2,-1,0,1 0.903 0.898 0.996 0.665 0.805 
-2,-2,-1,0,2 0.916 0.894 0.995 0.673 0.923 
-2,-2,-1,1,1 0.866 0.933 0.990 0.817 0.821 
-2,-2,-1,1,2 0.882 0.914 0.995 0.827 0.948 
-2,-2,-1,2,2 0.895 0.880 0.994 0.918 0.931 
-2,-2,0,0,0 0.786 0.788 0.998 0.586 0.592 
-2,-2,0,0,1 0.864 0.870 0.999 0.616 0.729 
-2,-2,0,0,2 0.852 0.888 0.998 0.609 0.834 
-2,-2,0,1,1 0.869 0.862 0.997 0.726 0.722 
-2,-2,0,1,2 0.910 0.907 0.998 0.727 0.835 
-2,-2,0,2,2 0.868 0.890 0.998 0.818 0.825 
-2,-2,1,1,1 0.820 0.795 1.000 0.587 0.614 
-2,-2,1,1,2 0.678 0.709 1.000 0.588 0.673 
-2,-2,1,2,2 0.746 0.752 1.000 0.700 0.698 
-2,-2,2,2,2 0.664 0.684 1.000 0.524 0.509 

-2,-1,-1,-1,-1 0.856 0.989 0.987 0.501 0.503 
-2,-1,-1,-1,0 0.838 0.979 0.996 0.458 0.630 
-2,-1,-1,-1,1 0.784 0.988 0.976 0.484 0.771 
-2,-1,-1,-1,2 0.815 0.993 0.990 0.502 0.912 
-2,-1,-1,0,0 0.805 0.980 0.970 0.627 0.629 
-2,-1,-1,0,1 0.810 0.987 0.993 0.609 0.766 
-2,-1,-1,0,2 0.891 0.991 0.973 0.634 0.927 
-2,-1,-1,1,1 0.818 0.988 0.980 0.789 0.769 
-2,-1,-1,1,2 0.831 0.991 0.988 0.788 0.912 
-2,-1,-1,2,2 0.746 0.980 0.969 0.892 0.890 
-2,-1,0,0,0 0.764 0.953 0.993 0.570 0.554 
-2,-1,0,0,1 0.780 0.978 0.987 0.604 0.717 
-2,-1,0,0,2 0.813 0.983 0.996 0.583 0.821 
-2,-1,0,1,1 0.753 0.968 0.994 0.701 0.704 
-2,-1,0,1,2 0.772 0.956 0.997 0.682 0.803 
-2,-1,0,2,2 0.707 0.967 0.997 0.814 0.812 
-2,-1,1,1,1 0.741 0.820 1.000 0.600 0.585 
-2,-1,1,1,2 0.781 0.915 0.996 0.605 0.689 
-2,-1,1,2,2 0.748 0.872 1.000 0.686 0.683 
-2,-1,2,2,2 0.616 0.655 1.000 0.501 0.511 
-2,0,0,0,0 0.731 0.991 0.989 0.520 0.521 
-2,0,0,0,1 0.759 0.980 0.994 0.552 0.665 
-2,0,0,0,2 0.690 0.986 0.991 0.534 0.764 
-2,0,0,1,1 0.688 0.996 0.986 0.633 0.660 
-2,0,0,1,2 0.749 0.991 0.985 0.658 0.769 
-2,0,0,2,2 0.705 0.994 0.994 0.772 0.775 
-2,0,1,1,1 0.745 0.981 0.997 0.599 0.598 
-2,0,1,1,2 0.787 0.973 0.998 0.595 0.672 
-2,0,1,2,2 0.735 0.985 0.997 0.687 0.690 
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Correlation 1st Const. 2nd Const. 3rd Const. 4th Const. 5th Const. 

-2,0,2,2,2 0.635 0.743 1.000 0.522 0.522 
-2,1,1,1,1 0.746 0.997 0.998 0.554 0.555 
-2,1,1,1,2 0.821 0.996 0.995 0.557 0.648 
-2,1,1,2,2 0.776 0.983 0.998 0.635 0.633 
-2,1,2,2,2 0.606 0.864 1.000 0.512 0.512 
-2,2,2,2,2 0.760 0.997 1.000 0.499 0.508 

-1,-1,-1,-1,-1 0.972 0.987 0.975 0.476 0.478 
-1,-1,-1,-1,0 0.976 0.964 0.980 0.468 0.622 
-1,-1,-1,-1,1 0.969 0.986 0.974 0.463 0.757 
-1,-1,-1,-1,2 0.971 0.972 0.973 0.452 0.912 
-1,-1,-1,0,0 0.975 0.970 0.985 0.595 0.620 
-1,-1,-1,0,1 0.961 0.955 0.976 0.643 0.748 
-1,-1,-1,0,2 0.958 0.986 0.978 0.614 0.900 
-1,-1,-1,1,1 0.966 0.973 0.983 0.752 0.765 
-1,-1,-1,1,2 0.967 0.985 0.991 0.755 0.871 
-1,-1,-1,2,2 0.991 0.990 0.965 0.902 0.869 
-1,-1,0,0,0 0.947 0.960 0.996 0.577 0.557 
-1,-1,0,0,1 0.961 0.942 0.997 0.572 0.687 
-1,-1,0,0,2 0.937 0.953 0.996 0.588 0.814 
-1,-1,0,1,1 0.932 0.965 0.997 0.702 0.690 
-1,-1,0,1,2 0.959 0.970 0.996 0.678 0.787 
-1,-1,0,2,2 0.964 0.946 0.998 0.810 0.814 
-1,-1,1,1,1 0.863 0.857 1.000 0.564 0.592 
-1,-1,1,1,2 0.863 0.875 1.000 0.588 0.680 
-1,-1,1,2,2 0.902 0.908 0.999 0.704 0.684 
-1,-1,2,2,2 0.695 0.697 1.000 0.513 0.523 
-1,0,0,0,0 0.886 0.994 0.993 0.529 0.529 
-1,0,0,0,1 0.902 0.996 0.992 0.543 0.645 
-1,0,0,0,2 0.891 0.992 0.994 0.518 0.766 
-1,0,0,1,1 0.930 0.990 0.991 0.638 0.668 
-1,0,0,1,2 0.891 0.992 0.988 0.644 0.755 
-1,0,0,2,2 0.911 0.992 0.996 0.776 0.755 
-1,0,1,1,1 0.837 0.952 1.000 0.582 0.586 
-1,0,1,1,2 0.921 0.971 1.000 0.594 0.664 
-1,0,1,2,2 0.895 0.955 1.000 0.673 0.675 
-1,0,2,2,2 0.762 0.770 1.000 0.512 0.508 
-1,1,1,1,1 0.835 0.996 0.987 0.529 0.546 
-1,1,1,1,2 0.767 0.991 0.997 0.537 0.627 
-1,1,1,2,2 0.890 0.992 0.995 0.627 0.618 
-1,1,2,2,2 0.700 0.880 1.000 0.517 0.517 
-1,2,2,2,2 0.856 0.993 0.999 0.482 0.489 
0,0,0,0,0 0.993 0.984 0.978 0.503 0.525 
0,0,0,0,1 0.978 0.989 0.975 0.485 0.627 
0,0,0,0,2 0.983 0.984 0.985 0.493 0.722 
0,0,0,1,1 0.991 0.983 0.981 0.637 0.636 
0,0,0,1,2 0.981 0.994 0.994 0.608 0.722 
0,0,0,2,2 0.971 0.988 0.991 0.743 0.726 
0,0,1,1,1 0.961 0.947 0.998 0.554 0.581 
0,0,1,1,2 0.951 0.975 0.996 0.579 0.659 
0,0,1,2,2 0.973 0.969 0.993 0.651 0.663 
0,0,2,2,2 0.753 0.784 1.000 0.505 0.511 
0,1,1,1,1 0.908 0.998 0.991 0.537 0.527 
0,1,1,1,2 0.910 0.995 0.987 0.534 0.605 
0,1,1,2,2 0.957 0.997 0.996 0.631 0.626 
0,1,2,2,2 0.846 0.947 1.000 0.519 0.517 
0,2,2,2,2 0.838 0.998 0.998 0.502 0.494 
1,1,1,1,1 0.988 0.981 0.990 0.544 0.535 
1,1,1,1,2 0.993 0.969 0.996 0.540 0.612 
1,1,1,2,2 0.994 0.996 0.993 0.605 0.600 
1,1,2,2,2 0.842 0.870 0.999 0.493 0.482 
1,2,2,2,2 0.875 0.993 0.998 0.470 0.485 
2,2,2,2,2 0.993 0.997 0.994 0.481 0.492 
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Table C.6  Resource Usage by KOCHEN under (1, 1, 2, 2, 2) 
 

Correlation 1st Const. 2nd Const. 3rd Const. 4th Const. 5th Const. 

-2,-2,-2,-2,-2 0.945 0.951 0.441 0.442 0.438 
-2,-2,-2,-2,-1 0.950 0.980 0.414 0.411 0.578 
-2,-2,-2,-2,0 0.977 0.970 0.427 0.438 0.736 
-2,-2,-2,-2,1 0.955 0.985 0.427 0.433 0.876 
-2,-2,-2,-2,2 0.980 0.974 0.429 0.436 0.991 
-2,-2,-2,-1,-1 0.974 0.960 0.446 0.577 0.562 
-2,-2,-2,-1,0 0.948 0.963 0.456 0.589 0.740 
-2,-2,-2,-1,1 0.959 0.984 0.449 0.588 0.887 
-2,-2,-2,-1,2 0.956 0.946 0.457 0.571 0.989 
-2,-2,-2,0,0 0.972 0.980 0.438 0.763 0.738 
-2,-2,-2,0,1 0.960 0.982 0.441 0.716 0.889 
-2,-2,-2,0,2 0.971 0.966 0.446 0.720 0.995 
-2,-2,-2,1,1 0.991 0.951 0.435 0.889 0.876 
-2,-2,-2,1,2 0.977 0.916 0.415 0.856 0.988 
-2,-2,-2,2,2 0.952 0.939 0.433 0.980 0.986 

-2,-2,-1,-1,-1 0.943 0.970 0.568 0.536 0.573 
-2,-2,-1,-1,0 0.975 0.979 0.578 0.576 0.745 
-2,-2,-1,-1,1 0.983 0.937 0.574 0.565 0.884 
-2,-2,-1,-1,2 0.948 0.972 0.546 0.549 0.990 
-2,-2,-1,0,0 0.936 0.979 0.590 0.731 0.725 
-2,-2,-1,0,1 0.986 0.975 0.579 0.725 0.887 
-2,-2,-1,0,2 0.985 0.941 0.562 0.727 0.983 
-2,-2,-1,1,1 0.961 0.976 0.582 0.878 0.888 
-2,-2,-1,1,2 0.980 0.975 0.569 0.876 0.992 
-2,-2,-1,2,2 0.981 0.959 0.576 0.994 0.994 
-2,-2,0,0,0 0.986 0.976 0.720 0.727 0.711 
-2,-2,0,0,1 0.966 0.977 0.703 0.706 0.859 
-2,-2,0,0,2 0.970 0.969 0.723 0.734 0.998 
-2,-2,0,1,1 0.962 0.946 0.705 0.869 0.876 
-2,-2,0,1,2 0.962 0.957 0.733 0.881 0.993 
-2,-2,0,2,2 0.966 0.966 0.723 0.990 0.989 
-2,-2,1,1,1 0.970 0.908 0.859 0.869 0.854 
-2,-2,1,1,2 0.968 0.965 0.864 0.881 0.988 
-2,-2,1,2,2 0.985 0.943 0.860 0.986 0.992 
-2,-2,2,2,2 0.932 0.969 0.983 0.984 0.975 

-2,-1,-1,-1,-1 0.949 0.998 0.547 0.544 0.530 
-2,-1,-1,-1,0 0.893 0.994 0.532 0.522 0.681 
-2,-1,-1,-1,1 0.862 0.996 0.507 0.489 0.793 
-2,-1,-1,-1,2 0.937 0.995 0.520 0.543 0.919 
-2,-1,-1,0,0 0.880 0.996 0.525 0.687 0.652 
-2,-1,-1,0,1 0.918 0.996 0.532 0.665 0.819 
-2,-1,-1,0,2 0.922 0.992 0.554 0.680 0.972 
-2,-1,-1,1,1 0.933 0.996 0.540 0.801 0.803 
-2,-1,-1,1,2 0.934 0.996 0.524 0.807 0.962 
-2,-1,-1,2,2 0.888 0.989 0.532 0.939 0.954 
-2,-1,0,0,0 0.931 0.999 0.652 0.662 0.677 
-2,-1,0,0,1 0.911 0.993 0.643 0.663 0.813 
-2,-1,0,0,2 0.896 0.988 0.656 0.651 0.942 
-2,-1,0,1,1 0.898 0.992 0.665 0.803 0.807 
-2,-1,0,1,2 0.897 0.996 0.682 0.833 0.950 
-2,-1,0,2,2 0.907 0.995 0.650 0.912 0.924 
-2,-1,1,1,1 0.895 0.995 0.844 0.823 0.830 
-2,-1,1,1,2 0.903 0.995 0.805 0.801 0.952 
-2,-1,1,2,2 0.895 0.996 0.818 0.949 0.955 
-2,-1,2,2,2 0.936 0.994 0.956 0.958 0.962 
-2,0,0,0,0 0.825 0.996 0.618 0.598 0.592 
-2,0,0,0,1 0.895 0.998 0.605 0.614 0.746 
-2,0,0,0,2 0.906 1.000 0.608 0.611 0.840 
-2,0,0,1,1 0.927 0.997 0.609 0.706 0.713 
-2,0,0,1,2 0.907 0.998 0.593 0.741 0.844 
-2,0,0,2,2 0.879 0.998 0.595 0.832 0.840 
-2,0,1,1,1 0.876 0.998 0.706 0.712 0.714 
-2,0,1,1,2 0.894 0.999 0.731 0.740 0.837 
-2,0,1,2,2 0.904 0.995 0.730 0.845 0.849 
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Correlation 1st Const. 2nd Const. 3rd Const. 4th Const. 5th Const. 

-2,0,2,2,2 0.859 0.999 0.832 0.821 0.822 
-2,1,1,1,1 0.846 0.999 0.624 0.611 0.627 
-2,1,1,1,2 0.869 0.998 0.599 0.615 0.697 
-2,1,1,2,2 0.914 0.997 0.622 0.712 0.711 
-2,1,2,2,2 0.927 0.998 0.710 0.695 0.702 
-2,2,2,2,2 0.804 1.000 0.538 0.534 0.530 

-1,-1,-1,-1,-1 0.993 0.987 0.472 0.485 0.489 
-1,-1,-1,-1,0 0.992 0.987 0.495 0.497 0.638 
-1,-1,-1,-1,1 0.975 0.992 0.476 0.491 0.766 
-1,-1,-1,-1,2 0.983 0.992 0.504 0.524 0.917 
-1,-1,-1,0,0 0.988 0.988 0.513 0.655 0.626 
-1,-1,-1,0,1 0.983 0.988 0.503 0.635 0.762 
-1,-1,-1,0,2 0.989 0.983 0.514 0.672 0.915 
-1,-1,-1,1,1 0.985 0.987 0.498 0.783 0.785 
-1,-1,-1,1,2 0.980 0.985 0.525 0.787 0.906 
-1,-1,-1,2,2 0.985 0.991 0.484 0.892 0.903 
-1,-1,0,0,0 0.979 0.989 0.654 0.643 0.652 
-1,-1,0,0,1 0.992 0.982 0.643 0.626 0.771 
-1,-1,0,0,2 0.988 0.980 0.656 0.658 0.923 
-1,-1,0,1,1 0.987 0.984 0.642 0.758 0.785 
-1,-1,0,1,2 0.991 0.991 0.651 0.791 0.913 
-1,-1,0,2,2 0.982 0.990 0.644 0.913 0.930 
-1,-1,1,1,1 0.979 0.977 0.777 0.792 0.794 
-1,-1,1,1,2 0.990 0.983 0.770 0.776 0.902 
-1,-1,1,2,2 0.991 0.977 0.794 0.907 0.923 
-1,-1,2,2,2 0.984 0.988 0.914 0.910 0.908 
-1,0,0,0,0 0.969 0.993 0.574 0.560 0.574 
-1,0,0,0,1 0.976 0.994 0.608 0.594 0.733 
-1,0,0,0,2 0.980 0.995 0.585 0.580 0.817 
-1,0,0,1,1 0.978 0.996 0.596 0.725 0.729 
-1,0,0,1,2 0.955 0.998 0.570 0.687 0.813 
-1,0,0,2,2 0.985 0.987 0.598 0.850 0.830 
-1,0,1,1,1 0.964 0.994 0.701 0.714 0.696 
-1,0,1,1,2 0.973 0.995 0.698 0.700 0.829 
-1,0,1,2,2 0.975 0.997 0.704 0.816 0.800 
-1,0,2,2,2 0.969 0.995 0.814 0.804 0.813 
-1,1,1,1,1 0.896 0.999 0.582 0.595 0.592 
-1,1,1,1,2 0.924 0.998 0.604 0.621 0.696 
-1,1,1,2,2 0.902 0.999 0.608 0.688 0.692 
-1,1,2,2,2 0.958 0.999 0.707 0.701 0.695 
-1,2,2,2,2 0.807 1.000 0.551 0.544 0.540 
0,0,0,0,0 0.987 0.991 0.556 0.574 0.557 
0,0,0,0,1 0.986 0.992 0.557 0.544 0.666 
0,0,0,0,2 0.984 0.994 0.571 0.563 0.781 
0,0,0,1,1 0.990 0.985 0.528 0.634 0.644 
0,0,0,1,2 0.991 0.993 0.565 0.676 0.752 
0,0,0,2,2 0.987 0.992 0.557 0.763 0.786 
0,0,1,1,1 0.998 0.988 0.643 0.652 0.645 
0,0,1,1,2 0.993 0.987 0.648 0.655 0.777 
0,0,1,2,2 0.989 0.991 0.646 0.767 0.774 
0,0,2,2,2 0.994 0.996 0.776 0.776 0.778 
0,1,1,1,1 0.978 0.997 0.592 0.599 0.594 
0,1,1,1,2 0.982 0.997 0.605 0.612 0.692 
0,1,1,2,2 0.960 0.996 0.591 0.675 0.658 
0,1,2,2,2 0.979 0.995 0.690 0.683 0.671 
0,2,2,2,2 0.801 1.000 0.517 0.525 0.512 
1,1,1,1,1 0.995 0.992 0.564 0.563 0.552 
1,1,1,1,2 0.996 0.992 0.576 0.578 0.642 
1,1,1,2,2 0.997 0.995 0.577 0.629 0.638 
1,1,2,2,2 0.996 0.993 0.625 0.619 0.649 
1,2,2,2,2 0.880 1.000 0.509 0.514 0.515 
2,2,2,2,2 0.994 0.998 0.506 0.515 0.517 
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Table C.7  Resource Usage by KOCHEN under (1, 2, 2, 2, 2) 
 

Correlation 1st Const. 2nd Const. 3rd Const. 4th Const. 5th Const. 

-2,-2,-2,-2,-2 0.992 0.474 0.467 0.478 0.492 
-2,-2,-2,-2,-1 0.988 0.461 0.490 0.472 0.613 
-2,-2,-2,-2,0 0.988 0.433 0.438 0.431 0.732 
-2,-2,-2,-2,1 0.993 0.502 0.476 0.467 0.912 
-2,-2,-2,-2,2 0.979 0.474 0.434 0.466 0.990 
-2,-2,-2,-1,-1 0.992 0.452 0.467 0.609 0.608 
-2,-2,-2,-1,0 0.993 0.476 0.474 0.609 0.766 
-2,-2,-2,-1,1 0.991 0.475 0.483 0.603 0.903 
-2,-2,-2,-1,2 0.984 0.423 0.437 0.588 0.995 
-2,-2,-2,0,0 0.980 0.474 0.492 0.749 0.763 
-2,-2,-2,0,1 0.996 0.433 0.469 0.740 0.880 
-2,-2,-2,0,2 0.990 0.470 0.471 0.722 0.991 
-2,-2,-2,1,1 0.982 0.426 0.440 0.880 0.885 
-2,-2,-2,1,2 0.981 0.445 0.451 0.874 0.996 
-2,-2,-2,2,2 0.989 0.440 0.428 0.985 0.986 

-2,-2,-1,-1,-1 0.989 0.465 0.604 0.609 0.609 
-2,-2,-1,-1,0 0.993 0.450 0.595 0.586 0.767 
-2,-2,-1,-1,1 0.991 0.466 0.601 0.601 0.908 
-2,-2,-1,-1,2 0.978 0.427 0.578 0.565 0.996 
-2,-2,-1,0,0 0.992 0.462 0.601 0.757 0.777 
-2,-2,-1,0,1 0.991 0.457 0.575 0.722 0.900 
-2,-2,-1,0,2 0.973 0.482 0.598 0.732 0.992 
-2,-2,-1,1,1 0.996 0.440 0.588 0.887 0.893 
-2,-2,-1,1,2 0.981 0.438 0.561 0.868 0.994 
-2,-2,-1,2,2 0.988 0.479 0.562 0.992 0.995 
-2,-2,0,0,0 0.988 0.449 0.741 0.730 0.745 
-2,-2,0,0,1 0.989 0.463 0.764 0.760 0.919 
-2,-2,0,0,2 0.979 0.431 0.718 0.703 0.992 
-2,-2,0,1,1 0.989 0.456 0.740 0.884 0.877 
-2,-2,0,1,2 0.981 0.435 0.728 0.876 0.990 
-2,-2,0,2,2 0.996 0.451 0.724 0.987 0.996 
-2,-2,1,1,1 0.995 0.455 0.913 0.894 0.899 
-2,-2,1,1,2 0.985 0.464 0.895 0.900 0.992 
-2,-2,1,2,2 0.986 0.444 0.860 0.987 0.988 
-2,-2,2,2,2 0.982 0.454 0.989 0.991 0.986 

-2,-1,-1,-1,-1 0.997 0.613 0.610 0.612 0.602 
-2,-1,-1,-1,0 0.990 0.638 0.619 0.602 0.747 
-2,-1,-1,-1,1 0.989 0.565 0.561 0.567 0.867 
-2,-1,-1,-1,2 0.975 0.578 0.578 0.590 0.997 
-2,-1,-1,0,0 0.991 0.623 0.614 0.765 0.760 
-2,-1,-1,0,1 0.992 0.597 0.581 0.738 0.872 
-2,-1,-1,0,2 0.990 0.565 0.558 0.710 0.981 
-2,-1,-1,1,1 0.990 0.590 0.616 0.897 0.894 
-2,-1,-1,1,2 0.987 0.580 0.586 0.872 0.996 
-2,-1,-1,2,2 0.978 0.587 0.563 0.992 0.984 
-2,-1,0,0,0 0.992 0.612 0.751 0.743 0.777 
-2,-1,0,0,1 0.987 0.601 0.740 0.759 0.908 
-2,-1,0,0,2 0.984 0.584 0.721 0.731 0.993 
-2,-1,0,1,1 0.992 0.590 0.746 0.896 0.902 
-2,-1,0,1,2 0.982 0.577 0.736 0.875 0.996 
-2,-1,0,2,2 0.986 0.562 0.709 0.985 0.995 
-2,-1,1,1,1 0.985 0.608 0.894 0.871 0.896 
-2,-1,1,1,2 0.975 0.598 0.886 0.888 0.998 
-2,-1,1,2,2 0.966 0.582 0.871 0.991 0.994 
-2,-1,2,2,2 0.989 0.572 0.982 0.983 0.984 
-2,0,0,0,0 0.992 0.762 0.743 0.774 0.760 
-2,0,0,0,1 0.989 0.739 0.752 0.750 0.895 
-2,0,0,0,2 0.986 0.729 0.726 0.713 0.986 
-2,0,0,1,1 0.991 0.738 0.745 0.899 0.891 
-2,0,0,1,2 0.978 0.721 0.728 0.872 0.995 
-2,0,0,2,2 0.980 0.723 0.729 0.994 0.988 
-2,0,1,1,1 0.993 0.716 0.881 0.881 0.885 
-2,0,1,1,2 0.975 0.723 0.868 0.864 0.996 
-2,0,1,2,2 0.982 0.728 0.883 0.989 0.987 
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Correlation 1st Const. 2nd Const. 3rd Const. 4th Const. 5th Const. 

-2,0,2,2,2 0.979 0.734 0.989 0.994 0.989 
-2,1,1,1,1 0.987 0.888 0.908 0.900 0.898 
-2,1,1,1,2 0.985 0.866 0.879 0.890 0.992 
-2,1,1,2,2 0.976 0.856 0.886 0.988 0.989 
-2,1,2,2,2 0.987 0.837 0.980 0.974 0.967 
-2,2,2,2,2 0.990 0.995 0.986 0.986 0.980 

-1,-1,-1,-1,-1 0.996 0.586 0.565 0.569 0.579 
-1,-1,-1,-1,0 0.994 0.567 0.562 0.546 0.688 
-1,-1,-1,-1,1 0.996 0.560 0.566 0.536 0.836 
-1,-1,-1,-1,2 0.995 0.573 0.560 0.569 0.949 
-1,-1,-1,0,0 0.997 0.573 0.547 0.688 0.675 
-1,-1,-1,0,1 0.994 0.565 0.582 0.695 0.842 
-1,-1,-1,0,2 0.992 0.559 0.580 0.720 0.954 
-1,-1,-1,1,1 0.992 0.550 0.572 0.830 0.835 
-1,-1,-1,1,2 0.993 0.571 0.558 0.820 0.958 
-1,-1,-1,2,2 0.997 0.561 0.555 0.962 0.944 
-1,-1,0,0,0 0.992 0.549 0.703 0.688 0.679 
-1,-1,0,0,1 0.996 0.560 0.696 0.716 0.827 
-1,-1,0,0,2 0.993 0.608 0.710 0.716 0.969 
-1,-1,0,1,1 0.995 0.567 0.684 0.827 0.826 
-1,-1,0,1,2 0.993 0.571 0.682 0.813 0.949 
-1,-1,0,2,2 0.993 0.590 0.714 0.968 0.963 
-1,-1,1,1,1 0.997 0.543 0.830 0.826 0.838 
-1,-1,1,1,2 0.996 0.589 0.835 0.841 0.971 
-1,-1,1,2,2 0.993 0.543 0.807 0.938 0.929 
-1,-1,2,2,2 0.999 0.593 0.952 0.944 0.946 
-1,0,0,0,0 0.995 0.709 0.716 0.712 0.699 
-1,0,0,0,1 0.996 0.687 0.705 0.696 0.823 
-1,0,0,0,2 0.995 0.726 0.721 0.711 0.973 
-1,0,0,1,1 0.995 0.688 0.696 0.812 0.817 
-1,0,0,1,2 0.992 0.716 0.682 0.806 0.930 
-1,0,0,2,2 0.992 0.704 0.700 0.951 0.954 
-1,0,1,1,1 0.998 0.707 0.807 0.825 0.836 
-1,0,1,1,2 0.995 0.685 0.829 0.790 0.937 
-1,0,1,2,2 0.997 0.716 0.822 0.955 0.955 
-1,0,2,2,2 0.993 0.671 0.944 0.945 0.924 
-1,1,1,1,1 0.991 0.816 0.809 0.829 0.832 
-1,1,1,1,2 0.994 0.834 0.832 0.836 0.952 
-1,1,1,2,2 0.993 0.827 0.824 0.949 0.945 
-1,1,2,2,2 0.992 0.834 0.947 0.966 0.938 
-1,2,2,2,2 0.999 0.955 0.948 0.961 0.950 
0,0,0,0,0 0.997 0.628 0.629 0.612 0.629 
0,0,0,0,1 0.999 0.636 0.620 0.654 0.742 
0,0,0,0,2 0.998 0.598 0.627 0.613 0.843 
0,0,0,1,1 0.999 0.632 0.633 0.737 0.733 
0,0,0,1,2 0.998 0.632 0.633 0.735 0.822 
0,0,0,2,2 0.995 0.680 0.695 0.878 0.875 
0,0,1,1,1 0.998 0.642 0.738 0.747 0.746 
0,0,1,1,2 0.997 0.624 0.730 0.738 0.843 
0,0,1,2,2 0.999 0.646 0.758 0.851 0.854 
0,0,2,2,2 0.998 0.658 0.854 0.859 0.857 
0,1,1,1,1 0.999 0.749 0.742 0.752 0.737 
0,1,1,1,2 0.998 0.753 0.745 0.756 0.842 
0,1,1,2,2 0.996 0.762 0.758 0.836 0.838 
0,1,2,2,2 0.997 0.722 0.833 0.839 0.823 
0,2,2,2,2 0.997 0.841 0.837 0.858 0.836 
1,1,1,1,1 0.999 0.657 0.667 0.651 0.646 
1,1,1,1,2 0.999 0.653 0.632 0.638 0.712 
1,1,1,2,2 0.998 0.637 0.642 0.703 0.714 
1,1,2,2,2 0.997 0.664 0.721 0.726 0.715 
1,2,2,2,2 0.999 0.718 0.732 0.715 0.727 
2,2,2,2,2 0.999 0.546 0.563 0.555 0.550 
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Table C. 8  Resource Usage by KOCHEN under (2, 2, 2, 2, 2) 
 

Correlation 1st Const. 2nd Const. 3rd Const. 4th Const. 5th Const. 

-2,-2,-2,-2,-2 0.961 0.979 0.971 0.978 0.973 
-2,-2,-2,-2,-1 0.925 0.924 0.929 0.923 0.998 
-2,-2,-2,-2,0 0.869 0.861 0.876 0.876 1.000 
-2,-2,-2,-2,1 0.788 0.797 0.789 0.790 0.999 
-2,-2,-2,-2,2 0.653 0.639 0.647 0.643 1.000 
-2,-2,-2,-1,-1 0.888 0.871 0.908 0.980 0.993 
-2,-2,-2,-1,0 0.834 0.851 0.845 0.941 0.998 
-2,-2,-2,-1,1 0.775 0.779 0.766 0.873 1.000 
-2,-2,-2,-1,2 0.592 0.602 0.586 0.672 1.000 
-2,-2,-2,0,0 0.833 0.843 0.826 0.993 0.998 
-2,-2,-2,0,1 0.720 0.726 0.735 0.952 1.000 
-2,-2,-2,0,2 0.624 0.644 0.643 0.826 1.000 
-2,-2,-2,1,1 0.701 0.717 0.710 0.995 0.999 
-2,-2,-2,1,2 0.613 0.611 0.605 0.928 1.000 
-2,-2,-2,2,2 0.630 0.645 0.625 0.998 0.999 

-2,-2,-1,-1,-1 0.908 0.899 0.990 0.988 0.990 
-2,-2,-1,-1,0 0.873 0.834 0.950 0.938 0.997 
-2,-2,-1,-1,1 0.737 0.757 0.837 0.863 1.000 
-2,-2,-1,-1,2 0.638 0.644 0.731 0.746 1.000 
-2,-2,-1,0,0 0.798 0.778 0.889 0.991 0.994 
-2,-2,-1,0,1 0.736 0.730 0.829 0.964 1.000 
-2,-2,-1,0,2 0.573 0.590 0.701 0.802 1.000 
-2,-2,-1,1,1 0.700 0.727 0.821 0.997 0.997 
-2,-2,-1,1,2 0.642 0.634 0.743 0.914 1.000 
-2,-2,-1,2,2 0.644 0.671 0.721 0.998 0.999 
-2,-2,0,0,0 0.779 0.779 0.993 0.992 0.994 
-2,-2,0,0,1 0.724 0.762 0.955 0.951 1.000 
-2,-2,0,0,2 0.625 0.646 0.853 0.804 1.000 
-2,-2,0,1,1 0.676 0.701 0.911 0.996 0.999 
-2,-2,0,1,2 0.613 0.609 0.808 0.939 1.000 
-2,-2,0,2,2 0.649 0.630 0.827 0.993 0.999 
-2,-2,1,1,1 0.671 0.681 0.996 0.996 0.994 
-2,-2,1,1,2 0.585 0.605 0.906 0.913 1.000 
-2,-2,1,2,2 0.610 0.610 0.912 0.998 0.997 
-2,-2,2,2,2 0.723 0.714 0.996 0.996 0.997 

-2,-1,-1,-1,-1 0.886 0.987 0.973 0.976 0.983 
-2,-1,-1,-1,0 0.825 0.907 0.920 0.905 0.999 
-2,-1,-1,-1,1 0.762 0.868 0.881 0.858 1.000 
-2,-1,-1,-1,2 0.620 0.709 0.709 0.727 1.000 
-2,-1,-1,0,0 0.777 0.900 0.906 0.993 0.998 
-2,-1,-1,0,1 0.746 0.835 0.848 0.959 1.000 
-2,-1,-1,0,2 0.605 0.682 0.695 0.808 1.000 
-2,-1,-1,1,1 0.732 0.813 0.830 0.998 0.998 
-2,-1,-1,1,2 0.645 0.713 0.727 0.927 1.000 
-2,-1,-1,2,2 0.613 0.711 0.698 0.993 0.999 
-2,-1,0,0,0 0.822 0.916 0.995 0.987 0.995 
-2,-1,0,0,1 0.722 0.858 0.953 0.942 1.000 
-2,-1,0,0,2 0.623 0.711 0.805 0.821 1.000 
-2,-1,0,1,1 0.696 0.823 0.934 0.995 0.999 
-2,-1,0,1,2 0.641 0.736 0.831 0.938 1.000 
-2,-1,0,2,2 0.608 0.695 0.796 0.999 1.000 
-2,-1,1,1,1 0.704 0.800 0.997 0.993 0.997 
-2,-1,1,1,2 0.614 0.706 0.914 0.925 1.000 
-2,-1,1,2,2 0.609 0.703 0.919 0.998 0.999 
-2,-1,2,2,2 0.623 0.722 0.991 0.999 0.996 
-2,0,0,0,0 0.797 0.995 0.992 0.994 0.989 
-2,0,0,0,1 0.719 0.928 0.946 0.948 1.000 
-2,0,0,0,2 0.642 0.827 0.818 0.819 1.000 
-2,0,0,1,1 0.729 0.937 0.939 0.999 0.998 
-2,0,0,1,2 0.620 0.808 0.824 0.927 1.000 
-2,0,0,2,2 0.649 0.824 0.820 0.999 0.998 
-2,0,1,1,1 0.663 0.909 0.997 0.996 0.998 
-2,0,1,1,2 0.644 0.835 0.919 0.923 1.000 
-2,0,1,2,2 0.669 0.838 0.910 0.998 1.000 
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Correlation 1st Const. 2nd Const. 3rd Const. 4th Const. 5th Const. 

-2,0,2,2,2 0.639 0.817 0.996 0.998 0.996 
-2,1,1,1,1 0.720 0.997 0.993 0.996 0.991 
-2,1,1,1,2 0.620 0.922 0.920 0.914 1.000 
-2,1,1,2,2 0.693 0.936 0.918 1.000 0.999 
-2,1,2,2,2 0.655 0.915 0.998 0.999 0.995 
-2,2,2,2,2 0.760 0.996 0.996 0.993 0.995 

-1,-1,-1,-1,-1 0.981 0.981 0.992 0.979 0.995 
-1,-1,-1,-1,0 0.924 0.950 0.931 0.947 0.999 
-1,-1,-1,-1,1 0.877 0.884 0.877 0.877 1.000 
-1,-1,-1,-1,2 0.695 0.715 0.695 0.715 1.000 
-1,-1,-1,0,0 0.917 0.928 0.927 0.995 0.993 
-1,-1,-1,0,1 0.846 0.866 0.850 0.943 1.000 
-1,-1,-1,0,2 0.699 0.704 0.704 0.810 1.000 
-1,-1,-1,1,1 0.825 0.812 0.814 0.998 0.996 
-1,-1,-1,1,2 0.683 0.689 0.684 0.929 1.000 
-1,-1,-1,2,2 0.717 0.733 0.720 0.999 1.000 
-1,-1,0,0,0 0.885 0.915 0.995 0.996 0.988 
-1,-1,0,0,1 0.811 0.839 0.947 0.949 1.000 
-1,-1,0,0,2 0.734 0.734 0.840 0.842 1.000 
-1,-1,0,1,1 0.803 0.811 0.927 0.995 0.999 
-1,-1,0,1,2 0.707 0.687 0.818 0.911 1.000 
-1,-1,0,2,2 0.736 0.743 0.809 0.998 0.997 
-1,-1,1,1,1 0.774 0.777 0.985 0.999 0.994 
-1,-1,1,1,2 0.696 0.724 0.918 0.902 1.000 
-1,-1,1,2,2 0.697 0.689 0.905 0.997 0.999 
-1,-1,2,2,2 0.700 0.738 0.998 0.997 0.997 
-1,0,0,0,0 0.898 0.993 0.985 0.987 0.995 
-1,0,0,0,1 0.833 0.952 0.949 0.951 1.000 
-1,0,0,0,2 0.727 0.823 0.837 0.829 1.000 
-1,0,0,1,1 0.836 0.942 0.947 0.997 0.999 
-1,0,0,1,2 0.748 0.831 0.816 0.928 1.000 
-1,0,0,2,2 0.686 0.781 0.774 0.995 0.995 
-1,0,1,1,1 0.814 0.919 0.998 0.996 0.997 
-1,0,1,1,2 0.718 0.811 0.920 0.928 1.000 
-1,0,1,2,2 0.710 0.813 0.911 0.999 0.997 
-1,0,2,2,2 0.721 0.835 1.000 0.998 0.998 
-1,1,1,1,1 0.788 0.992 0.992 0.994 0.989 
-1,1,1,1,2 0.696 0.900 0.906 0.910 1.000 
-1,1,1,2,2 0.760 0.930 0.937 0.999 0.999 
-1,1,2,2,2 0.741 0.914 0.998 0.998 0.995 
-1,2,2,2,2 0.679 0.997 0.994 0.995 0.994 
0,0,0,0,0 0.976 0.994 0.985 0.987 0.988 
0,0,0,0,1 0.945 0.953 0.943 0.944 1.000 
0,0,0,0,2 0.812 0.803 0.833 0.808 1.000 
0,0,0,1,1 0.931 0.928 0.936 1.000 0.995 
0,0,0,1,2 0.798 0.828 0.820 0.925 1.000 
0,0,0,2,2 0.834 0.837 0.823 0.999 0.996 
0,0,1,1,1 0.918 0.913 0.997 0.993 0.995 
0,0,1,1,2 0.830 0.822 0.919 0.918 1.000 
0,0,1,2,2 0.821 0.805 0.900 0.994 1.000 
0,0,2,2,2 0.776 0.784 0.999 0.998 0.993 
0,1,1,1,1 0.895 0.995 0.995 0.991 0.995 
0,1,1,1,2 0.828 0.926 0.930 0.913 1.000 
0,1,1,2,2 0.829 0.918 0.910 0.998 0.999 
0,1,2,2,2 0.823 0.922 0.996 0.995 0.996 
0,2,2,2,2 0.829 0.994 0.992 0.998 0.998 
1,1,1,1,1 0.988 0.990 0.995 0.992 0.992 
1,1,1,1,2 0.919 0.915 0.899 0.915 1.000 
1,1,1,2,2 0.913 0.925 0.909 0.999 0.999 
1,1,2,2,2 0.909 0.903 0.997 0.996 0.995 
1,2,2,2,2 0.925 0.995 0.997 0.997 0.998 
2,2,2,2,2 0.999 0.995 0.996 0.995 0.998 
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Appendix D.  GLOVER and PIRKUL Results under Correlation Structures 
 

Table D.1  Relative Errors by GLOVER and PIRKUL under 2KP Correlation Structure 
 

GLOVER Relative Error PIRKUL Relative Error Correlation 
Structures 1 Iteration 50 Iteration 1st Solution Best 

Solution 
# of 

Comparison 

Best Legacy 
Relative 
Error 

2,2,2 0.257 0.106 0.257 0.047 42.1 0.272 
2,1,1 0.261 0.064 0.261 0.016 44.4 0.364 
2,0,0 0.387 0.081 0.387 0.022 43.1 0.685 

2,-1,-1 0.384 0.143 0.384 0.035 45.9 0.815 
2,-2,-2 0.364 0.181 0.364 0.079 45.8 0.709 
1,2,1 0.186 0.083 0.186 0.008 41.0 0.252 
1,1,2 0.111 0.045 0.111 0.024 50.6 0.092 
1,1,1 0.247 0.105 0.247 0.024 49.7 0.177 
1,1,0 0.299 0.112 0.299 0.043 46.4 0.178 
1,0,1 0.231 0.089 0.231 0.017 52.2 0.292 
1,0,0 0.216 0.061 0.216 0.038 49.9 0.254 
1,0,-1 0.328 0.151 0.328 0.081 47.8 0.363 
1,-1,0 0.244 0.109 0.244 0.027 52.0 0.331 
1,-1,-1 0.344 0.092 0.344 0.054 50.8 0.323 
1,-1,-2 0.452 0.081 0.452 0.154 47.7 0.334 
1,-2,-1 0.197 0.077 0.197 0.026 52.7 0.223 
0,2,0 0.214 0.071 0.214 0.024 42.3 0.621 
0,1,1 0.285 0.103 0.285 0.012 51.2 0.315 
0,1,0 0.246 0.125 0.246 0.055 49.7 0.318 
0,1,-1 0.374 0.198 0.374 0.066 47.2 0.307 
0,0,2 0.125 0.074 0.125 0.009 54.4 0.050 
0,0,1 0.196 0.058 0.196 0.028 54.1 0.178 
0,0,0 0.236 0.097 0.236 0.045 51.7 0.220 
0,0,-1 0.275 0.100 0.275 0.068 50.2 0.257 
0,0,-2 0.246 0.168 0.246 0.152 48.1 0.218 
0,-1,1 0.149 0.058 0.149 0.035 54.5 0.110 
0,-1,0 0.239 0.099 0.239 0.038 53.2 0.218 
0,-1,-1 0.251 0.066 0.251 0.051 52.3 0.316 
0,-2,0 0.290 0.133 0.290 0.058 55.6 0.198 
-1,2,-1 0.229 0.085 0.229 0.008 44.5 0.582 
-1,1,0 0.250 0.073 0.250 0.022 51.7 0.265 
-1,1,-1 0.281 0.105 0.281 0.043 50.8 0.358 
-1,1,-2 0.310 0.158 0.310 0.044 47.7 0.290 
-1,0,1 0.277 0.083 0.277 0.024 54.6 0.203 
-1,0,0 0.292 0.085 0.292 0.026 53.9 0.223 
-1,0,-1 0.371 0.131 0.371 0.027 52.3 0.189 
-1,-1,2 0.124 0.061 0.124 0.023 57.9 0.111 
-1,-1,1 0.203 0.065 0.203 0.027 56.0 0.139 
-1,-1,0 0.139 0.029 0.139 0.020 55.4 0.162 
-1,-2,1 0.177 0.056 0.177 0.016 58.5 0.064 
-2,2,-2 0.677 0.306 0.677 0.131 42.4 0.618 
-2,1,-1 0.213 0.055 0.213 0.024 52.4 0.185 
-2,0,0 0.313 0.056 0.313 0.041 54.6 0.122 
-2,-1,1 0.214 0.072 0.214 0.015 57.9 0.120 
-2,-2,2 0.009 0.000 0.009 0.001 60.2 0.005 
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Table D.2  Relative Errors by GLOVER and PIRKUL under 5KP Correlation Structure 
 

GLOVER Relative Error PIRKUL Relative Error 
Correlation 
Structures 1 Iteration 50 Iteration 1st Solution Best 

Solution 
# of 

Comparison 

Best Legacy 
Relative Error 

-2,-2,-2,-2,-2 0.189 0.060 0.189 0.068 56.4 0.123 
-2,-2,-2,-2,-1 0.186 0.053 0.186 0.060 55.7 0.179 
-2,-2,-2,-2,0 0.311 0.080 0.311 0.073 54.3 0.371 
-2,-2,-2,-2,1 0.414 0.104 0.414 0.107 53.4 0.623 
-2,-2,-2,-2,2 0.548 0.214 0.548 0.078 51.1 0.874 
-2,-2,-2,-1,-1 0.347 0.155 0.347 0.103 54.5 0.356 
-2,-2,-2,-1,0 0.343 0.100 0.343 0.081 54.0 0.443 
-2,-2,-2,-1,1 0.404 0.068 0.404 0.082 52.7 0.825 
-2,-2,-2,-1,2 0.360 0.118 0.360 0.093 50.2 0.638 
-2,-2,-2,0,0 0.304 0.131 0.304 0.048 52.5 0.573 
-2,-2,-2,0,1 0.350 0.094 0.350 0.047 51.3 0.713 
-2,-2,-2,0,2 0.526 0.180 0.526 0.120 49.9 1.171 
-2,-2,-2,1,1 0.344 0.102 0.344 0.091 49.7 0.888 
-2,-2,-2,1,2 0.633 0.247 0.633 0.167 48.2 1.744 
-2,-2,-2,2,2 0.492 0.211 0.492 0.144 46.6 1.678 

-2,-2,-1,-1,-1 0.428 0.123 0.428 0.053 53.5 0.307 
-2,-2,-1,-1,0 0.376 0.137 0.376 0.108 52.4 0.382 
-2,-2,-1,-1,1 0.361 0.081 0.361 0.054 51.6 0.648 
-2,-2,-1,-1,2 0.618 0.141 0.618 0.146 49.5 1.162 
-2,-2,-1,0,0 0.359 0.105 0.359 0.063 51.4 0.529 
-2,-2,-1,0,1 0.408 0.129 0.408 0.096 50.2 0.862 
-2,-2,-1,0,2 0.653 0.228 0.653 0.112 48.5 1.231 
-2,-2,-1,1,1 0.459 0.163 0.459 0.088 49.2 1.047 
-2,-2,-1,1,2 0.455 0.193 0.455 0.100 48.1 1.639 
-2,-2,-1,2,2 0.763 0.396 0.763 0.202 47.0 1.658 
-2,-2,0,0,0 0.377 0.118 0.377 0.077 49.1 0.442 
-2,-2,0,0,1 0.447 0.167 0.447 0.115 49.1 0.865 
-2,-2,0,0,2 0.436 0.143 0.436 0.069 48.3 1.820 
-2,-2,0,1,1 0.530 0.196 0.530 0.098 47.7 0.847 
-2,-2,0,1,2 0.597 0.259 0.597 0.098 46.9 2.068 
-2,-2,0,2,2 0.770 0.207 0.770 0.110 45.9 1.779 
-2,-2,1,1,1 0.721 0.230 0.721 0.139 46.7 1.069 
-2,-2,1,1,2 0.703 0.343 0.703 0.127 45.5 1.478 
-2,-2,1,2,2 0.748 0.308 0.748 0.148 44.6 1.668 
-2,-2,2,2,2 0.906 0.349 0.906 0.204 43.4 1.258 

-2,-1,-1,-1,-1 0.455 0.093 0.455 0.097 51.9 0.317 
-2,-1,-1,-1,0 0.397 0.078 0.397 0.093 51.1 0.540 
-2,-1,-1,-1,1 0.516 0.215 0.516 0.103 49.6 0.781 
-2,-1,-1,-1,2 0.402 0.099 0.402 0.089 48.8 1.221 
-2,-1,-1,0,0 0.487 0.135 0.487 0.104 50.0 0.737 
-2,-1,-1,0,1 0.510 0.133 0.510 0.111 49.0 0.877 
-2,-1,-1,0,2 0.398 0.161 0.398 0.115 47.7 1.106 
-2,-1,-1,1,1 0.382 0.143 0.382 0.050 47.7 0.940 
-2,-1,-1,1,2 0.517 0.196 0.517 0.092 47.2 1.581 
-2,-1,-1,2,2 0.541 0.185 0.541 0.131 45.8 1.633 
-2,-1,0,0,0 0.494 0.196 0.494 0.093 48.6 0.677 
-2,-1,0,0,1 0.513 0.200 0.513 0.109 47.7 0.851 
-2,-1,0,0,2 0.682 0.184 0.682 0.130 46.3 1.326 
-2,-1,0,1,1 0.560 0.181 0.560 0.111 46.8 0.978 
-2,-1,0,1,2 0.484 0.268 0.484 0.112 46.3 1.480 
-2,-1,0,2,2 0.565 0.297 0.565 0.118 44.3 1.698 
-2,-1,1,1,1 0.625 0.233 0.625 0.123 45.7 1.114 
-2,-1,1,1,2 0.729 0.210 0.729 0.170 45.2 1.743 
-2,-1,1,2,2 0.753 0.234 0.753 0.102 43.9 1.739 
-2,-1,2,2,2 0.983 0.330 0.983 0.186 42.9 1.365 
-2,0,0,0,0 0.641 0.237 0.641 0.156 47.0 0.502 
-2,0,0,0,1 0.814 0.220 0.814 0.161 46.1 0.913 
-2,0,0,0,2 0.558 0.151 0.558 0.099 44.7 1.710 
-2,0,0,1,1 0.619 0.220 0.619 0.156 45.4 0.935 
-2,0,0,1,2 0.604 0.212 0.604 0.105 44.4 1.426 
-2,0,0,2,2 0.671 0.257 0.671 0.133 44.2 1.562 
-2,0,1,1,1 0.642 0.227 0.642 0.131 44.1 0.848 
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GLOVER Relative Error PIRKUL Relative Error 
Correlation 
Structures 1 Iteration 50 Iteration 1st Solution Best 

Solution 
# of 

Comparison 

Best Legacy 
Relative Error 

-2,0,1,1,2 0.766 0.390 0.766 0.143 43.8 1.494 
-2,0,1,2,2 0.821 0.277 0.821 0.167 43.2 1.684 
-2,0,2,2,2 0.835 0.219 0.835 0.166 42.1 1.449 
-2,1,1,1,1 0.582 0.231 0.582 0.158 43.2 0.573 
-2,1,1,1,2 0.754 0.339 0.754 0.162 43.0 1.633 
-2,1,1,2,2 0.756 0.345 0.756 0.182 42.5 1.654 
-2,1,2,2,2 1.029 0.427 1.029 0.214 41.6 1.434 
-2,2,2,2,2 0.778 0.311 0.778 0.197 39.8 0.945 

-1,-1,-1,-1,-1 0.443 0.148 0.443 0.157 50.2 0.340 
-1,-1,-1,-1,0 0.564 0.172 0.564 0.140 49.6 0.451 
-1,-1,-1,-1,1 0.567 0.103 0.567 0.085 48.2 0.869 
-1,-1,-1,-1,2 0.558 0.191 0.558 0.097 47.1 1.025 
-1,-1,-1,0,0 0.587 0.201 0.587 0.172 48.6 0.565 
-1,-1,-1,0,1 0.689 0.281 0.689 0.196 47.8 0.664 
-1,-1,-1,0,2 0.680 0.184 0.680 0.120 47.0 1.396 
-1,-1,-1,1,1 0.526 0.261 0.526 0.137 46.7 1.212 
-1,-1,-1,1,2 0.629 0.220 0.629 0.139 45.5 1.672 
-1,-1,-1,2,2 0.603 0.184 0.603 0.114 44.6 1.455 
-1,-1,0,0,0 0.364 0.116 0.364 0.117 47.4 0.725 
-1,-1,0,0,1 0.592 0.189 0.592 0.149 46.7 0.852 
-1,-1,0,0,2 0.555 0.175 0.555 0.149 45.9 1.600 
-1,-1,0,1,1 0.518 0.160 0.518 0.126 45.8 0.968 
-1,-1,0,1,2 0.569 0.192 0.569 0.129 45.2 1.503 
-1,-1,0,2,2 0.717 0.183 0.717 0.165 44.5 1.681 
-1,-1,1,1,1 0.710 0.252 0.710 0.114 44.2 1.079 
-1,-1,1,1,2 0.669 0.279 0.669 0.119 44.4 1.736 
-1,-1,1,2,2 0.762 0.275 0.762 0.150 42.7 1.697 
-1,-1,2,2,2 0.616 0.266 0.616 0.151 42.3 1.653 
-1,0,0,0,0 0.561 0.228 0.561 0.132 45.9 0.690 
-1,0,0,0,1 0.515 0.190 0.515 0.101 44.9 0.942 
-1,0,0,0,2 0.817 0.331 0.817 0.116 44.9 1.386 
-1,0,0,1,1 0.686 0.331 0.686 0.157 44.2 1.144 
-1,0,0,1,2 0.784 0.210 0.784 0.136 43.8 1.778 
-1,0,0,2,2 0.495 0.287 0.495 0.173 42.9 1.759 
-1,0,1,1,1 0.676 0.294 0.676 0.184 43.1 0.867 
-1,0,1,1,2 0.566 0.207 0.566 0.102 43.2 1.909 
-1,0,1,2,2 0.920 0.341 0.920 0.194 42.7 1.675 
-1,0,2,2,2 0.831 0.248 0.831 0.135 40.9 1.891 
-1,1,1,1,1 0.628 0.309 0.628 0.201 41.9 0.940 
-1,1,1,1,2 0.690 0.358 0.690 0.138 41.9 1.444 
-1,1,1,2,2 0.944 0.405 0.944 0.153 41.9 1.561 
-1,1,2,2,2 0.648 0.288 0.648 0.177 41.1 1.499 
-1,2,2,2,2 0.609 0.229 0.609 0.158 39.0 1.041 
0,0,0,0,0 0.578 0.340 0.578 0.131 44.0 0.542 
0,0,0,0,1 0.595 0.261 0.595 0.191 43.6 0.827 
0,0,0,0,2 0.631 0.318 0.631 0.148 42.2 1.409 
0,0,0,1,1 0.767 0.443 0.767 0.158 42.2 1.119 
0,0,0,1,2 0.687 0.288 0.687 0.211 42.3 1.833 
0,0,0,2,2 0.840 0.268 0.840 0.111 41.6 1.797 
0,0,1,1,1 0.745 0.344 0.745 0.183 41.7 0.771 
0,0,1,1,2 0.820 0.397 0.820 0.220 41.6 1.539 
0,0,1,2,2 0.763 0.429 0.763 0.177 41.6 1.537 
0,0,2,2,2 0.743 0.286 0.743 0.156 40.3 1.675 
0,1,1,1,1 0.654 0.387 0.654 0.193 40.5 1.007 
0,1,1,1,2 1.084 0.347 1.084 0.169 41.0 1.718 
0,1,1,2,2 0.916 0.419 0.916 0.173 40.0 1.739 
0,1,2,2,2 0.596 0.263 0.596 0.176 40.2 1.341 
0,2,2,2,2 0.523 0.256 0.523 0.188 39.5 1.231 
1,1,1,1,1 0.623 0.379 0.623 0.193 39.1 0.668 
1,1,1,1,2 0.601 0.305 0.601 0.180 39.6 1.261 
1,1,1,2,2 0.652 0.336 0.652 0.186 39.2 1.464 
1,1,2,2,2 0.637 0.408 0.637 0.154 39.3 1.475 
1,2,2,2,2 0.655 0.316 0.655 0.209 38.3 1.269 
2,2,2,2,2 0.641 0.362 0.641 0.191 37.9 0.485 
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Appendix E.  Results by Correlation Structures for New Heuristics 
 

Table E.1  Number of Times Equal to Best by TYPE under 2KP Correlation Structure 
 

 TYPE TOYODA S-T L-M M1 FOX KOCHEN Total 
Probs 

2,2,2 5 0 0 0 5 5 20 
2,1,1 13 1 0 1 13 1 20 
2,0,0 11 0 0 1 11 3 20 

2,-1,-1 14 0 0 0 12 5 20 
2,-2,-2 14 1 1 0 9 9 20 
1,2,1 14 1 2 1 14 0 20 
1,1,2 1 0 0 0 6 1 20 
1,1,1 12 0 5 0 4 8 40 
1,1,0 12 0 6 0 0 6 20 
1,0,1 4 0 0 0 9 4 20 
1,0,0 24 1 5 0 1 22 40 
1,0,-1 17 0 7 0 0 10 20 
1,-1,0 6 1 1 0 6 8 20 
1,-1,-1 23 0 9 0 3 18 40 
1,-1,-2 15 0 5 0 0 12 20 
1,-2,-1 5 0 1 0 2 7 20 
0,2,0 14 0 1 0 14 1 20 
0,1,1 3 0 1 0 9 2 20 
0,1,0 23 0 5 1 1 21 40 
0,1,-1 17 0 7 0 0 11 20 
0,0,2 0 2 0 1 1 0 20 
0,0,1 7 2 2 2 4 8 40 
0,0,0 12 1 6 1 1 10 40 
0,0,-1 18 1 11 0 0 9 40 
0,0,-2 10 0 8 1 0 3 20 
0,-1,1 4 3 0 0 4 4 20 
0,-1,0 15 0 3 4 3 13 40 
0,-1,-1 7 1 3 4 1 4 20 
0,-2,0 3 1 0 1 6 3 20 
-1,2,-1 15 1 1 1 14 2 20 
-1,1,0 7 0 0 2 5 7 20 
-1,1,-1 23 0 7 1 3 23 40 
-1,1,-2 12 1 5 2 0 11 20 
-1,0,1 2 1 0 0 7 2 20 
-1,0,0 17 1 4 3 2 15 40 
-1,0,-1 8 1 2 2 0 6 20 
-1,-1,2 0 1 0 3 1 0 20 
-1,-1,1 3 2 1 2 6 4 40 
-1,-1,0 3 1 2 3 0 3 20 
-1,-2,1 5 0 1 0 3 4 20 
-2,2,-2 14 0 1 2 11 4 20 
-2,1,-1 6 0 0 1 3 9 20 
-2,0,0 5 0 1 3 4 4 20 
-2,-1,1 3 0 0 0 5 3 20 
-2,-2,2 0 0 0 0 0 0 20 
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Table E.2  Number of Times Equal to Best by TYPE under 5KP Correlation Structure 
 

Correlation TYPE TOYODA S-T L-M M1 FOX KOCHEN Total Probs 
-2,-2,-2,-2,-2 2 0 0 6 8 2 30 
-2,-2,-2,-2,-1 6 1 1 5 6 5 30 
-2,-2,-2,-2,0 5 2 1 7 7 6 30 
-2,-2,-2,-2,1 3 0 3 6 6 3 30 
-2,-2,-2,-2,2 15 2 0 5 9 10 30 
-2,-2,-2,-1,-1 9 0 1 7 4 9 30 
-2,-2,-2,-1,0 5 1 0 13 2 5 30 
-2,-2,-2,-1,1 8 0 0 14 3 8 30 
-2,-2,-2,-1,2 14 1 0 7 10 6 30 
-2,-2,-2,0,0 12 2 3 9 0 11 30 
-2,-2,-2,0,1 17 0 3 3 1 15 30 
-2,-2,-2,0,2 14 2 0 5 8 12 30 
-2,-2,-2,1,1 19 0 4 8 0 15 30 
-2,-2,-2,1,2 9 0 1 8 5 14 30 
-2,-2,-2,2,2 17 1 2 3 3 19 30 

-2,-2,-1,-1,-1 14 1 1 4 3 15 30 
-2,-2,-1,-1,0 10 2 0 8 2 10 30 
-2,-2,-1,-1,1 8 0 1 12 4 10 30 
-2,-2,-1,-1,2 17 0 0 5 8 13 30 
-2,-2,-1,0,0 18 0 2 4 1 17 30 
-2,-2,-1,0,1 12 0 2 12 0 12 30 
-2,-2,-1,0,2 19 0 0 4 8 17 30 
-2,-2,-1,1,1 15 0 3 10 0 14 30 
-2,-2,-1,1,2 12 1 1 5 5 15 30 
-2,-2,-1,2,2 22 0 0 3 4 23 30 
-2,-2,0,0,0 13 1 1 7 4 13 30 
-2,-2,0,0,1 19 1 3 4 1 17 30 
-2,-2,0,0,2 21 0 1 2 5 22 30 
-2,-2,0,1,1 20 1 1 6 0 20 30 
-2,-2,0,1,2 14 0 1 9 3 15 30 
-2,-2,0,2,2 18 1 0 5 3 21 30 
-2,-2,1,1,1 22 0 2 5 0 21 30 
-2,-2,1,1,2 12 1 0 4 1 23 30 
-2,-2,1,2,2 18 0 1 0 3 25 30 
-2,-2,2,2,2 20 1 1 3 3 22 30 

-2,-1,-1,-1,-1 16 0 1 7 1 15 30 
-2,-1,-1,-1,0 10 0 1 14 2 10 30 
-2,-1,-1,-1,1 11 1 2 10 3 9 30 
-2,-1,-1,-1,2 17 1 1 4 7 13 30 
-2,-1,-1,0,0 15 1 0 8 0 16 30 
-2,-1,-1,0,1 21 0 3 7 0 19 30 
-2,-1,-1,0,2 18 3 1 5 9 10 30 
-2,-1,-1,1,1 22 0 4 4 0 18 30 
-2,-1,-1,1,2 12 0 1 5 4 18 30 
-2,-1,-1,2,2 15 1 2 3 3 16 30 
-2,-1,0,0,0 21 1 2 4 0 19 30 
-2,-1,0,0,1 15 0 0 11 1 15 30 
-2,-1,0,0,2 17 0 0 6 6 17 30 
-2,-1,0,1,1 20 0 0 7 0 20 30 
-2,-1,0,1,2 17 0 0 4 5 21 30 
-2,-1,0,2,2 15 2 0 6 1 21 30 
-2,-1,1,1,1 23 0 2 3 0 21 30 
-2,-1,1,1,2 16 0 1 5 2 22 30 
-2,-1,1,2,2 18 0 0 3 1 25 30 
-2,-1,2,2,2 18 0 2 4 3 21 30 
-2,0,0,0,0 18 0 2 2 2 18 30 
-2,0,0,0,1 19 0 1 7 0 18 30 
-2,0,0,0,2 17 0 1 3 4 19 30 
-2,0,0,1,1 25 1 2 1 0 23 30 
-2,0,0,1,2 14 2 1 6 2 19 30 
-2,0,0,2,2 21 1 0 3 2 22 30 
-2,0,1,1,1 25 0 1 2 0 24 30 
-2,0,1,1,2 17 0 1 3 2 24 30 
-2,0,1,2,2 18 0 1 5 0 24 30 
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Correlation TYPE TOYODA S-T L-M M1 FOX KOCHEN Total Probs 
-2,0,2,2,2 20 0 0 2 2 25 30 
-2,1,1,1,1 21 5 2 1 1 19 30 
-2,1,1,1,2 14 0 0 2 1 27 30 
-2,1,1,2,2 19 0 0 2 0 25 30 
-2,1,2,2,2 22 0 1 2 1 26 30 
-2,2,2,2,2 17 3 0 0 0 25 30 

-1,-1,-1,-1,-1 8 1 1 2 1 9 30 
-1,-1,-1,-1,0 9 3 1 10 1 8 30 
-1,-1,-1,-1,1 12 1 3 7 3 12 30 
-1,-1,-1,-1,2 16 0 3 5 7 10 30 
-1,-1,-1,0,0 18 1 5 4 0 15 30 
-1,-1,-1,0,1 16 2 3 4 0 14 30 
-1,-1,-1,0,2 18 0 4 6 7 10 30 
-1,-1,-1,1,1 21 1 4 4 0 18 30 
-1,-1,-1,1,2 12 2 1 4 2 17 30 
-1,-1,-1,2,2 17 1 1 4 2 17 30 
-1,-1,0,0,0 17 0 0 3 0 18 30 
-1,-1,0,0,1 15 1 1 3 3 16 30 
-1,-1,0,0,2 17 0 5 5 3 15 30 
-1,-1,0,1,1 21 0 6 4 0 18 30 
-1,-1,0,1,2 17 0 3 3 5 15 30 
-1,-1,0,2,2 21 1 3 3 4 16 30 
-1,-1,1,1,1 19 2 1 3 0 22 30 
-1,-1,1,1,2 14 2 2 7 1 18 30 
-1,-1,1,2,2 19 0 2 3 1 23 30 
-1,-1,2,2,2 22 2 4 0 2 19 30 
-1,0,0,0,0 22 2 2 1 0 20 30 
-1,0,0,0,1 21 1 2 5 0 19 30 
-1,0,0,0,2 18 0 2 4 3 18 30 
-1,0,0,1,1 26 0 2 1 0 25 30 
-1,0,0,1,2 16 0 4 5 1 17 30 
-1,0,0,2,2 21 0 2 2 0 24 30 
-1,0,1,1,1 28 0 3 0 0 27 30 
-1,0,1,1,2 17 0 4 3 0 22 30 
-1,0,1,2,2 20 0 2 5 0 21 30 
-1,0,2,2,2 25 0 4 2 1 23 30 
-1,1,1,1,1 25 2 4 0 1 22 30 
-1,1,1,1,2 19 0 4 6 1 18 30 
-1,1,1,2,2 22 0 4 3 0 23 30 
-1,1,2,2,2 23 0 3 0 0 27 30 
-1,2,2,2,2 25 1 4 1 2 22 30 
0,0,0,0,0 14 3 5 1 0 12 30 
0,0,0,0,1 13 1 5 3 1 13 30 
0,0,0,0,2 14 1 7 2 3 12 30 
0,0,0,1,1 17 2 6 2 0 17 30 
0,0,0,1,2 14 0 8 2 2 15 30 
0,0,0,2,2 19 1 2 3 0 20 30 
0,0,1,1,1 23 1 6 1 0 21 30 
0,0,1,1,2 16 1 5 2 2 17 30 
0,0,1,2,2 16 1 5 5 0 16 30 
0,0,2,2,2 22 0 5 1 1 20 30 
0,1,1,1,1 27 0 4 0 0 24 30 
0,1,1,1,2 17 0 2 2 0 24 30 
0,1,1,2,2 22 0 2 2 0 23 30 
0,1,2,2,2 25 0 5 0 0 25 30 
0,2,2,2,2 24 0 4 0 0 25 30 
1,1,1,1,1 21 1 3 0 1 19 30 
1,1,1,1,2 9 4 7 4 0 12 30 
1,1,1,2,2 19 1 5 3 0 19 30 
1,1,2,2,2 22 0 6 2 1 19 30 
1,2,2,2,2 24 1 4 0 1 23 30 
2,2,2,2,2 21 0 2 0 1 20 30 
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Table E.3  Sign Test for NG V1 based on Constraint Slackness 
 

Prob 
Type 

Constraint 
Slackness NG V1 Heuristic vs. Legacy Heuristic Pr(X ≥ U) 

Reject 
Region 

(α = 0.1) 
216 TOYODA 51 0.000  
229 S-T 39 0.000  
247 L-MM1 26 0.000  
219 FOX 44 0.000  

1, 1 NG V1 

125 KOCHEN 99 0.047  
220 TOYODA 25 0.000  
100 S-T 53 0.000  
246 L-MM1 13 0.000  
184 FOX 20 0.000  

1, 2 NG V1 

112 KOCHEN 48 0.000  
215 TOYODA 24 0.000  
98 S-T 58 0.001  

250 L-MM1 9 0.000  
169 FOX 21 0.000  

2, 1 NG V1 

103 KOCHEN 53 0.000  
205 TOYODA 48 0.000  
211 S-T 45 0.000  
217 L-MM1 37 0.000  
160 FOX 59 0.000  

2KP 

2, 2 NG V1 

123 KOCHEN 78 0.001  
587 TOYODA 39 0.000  
622 S-T 7 0.000  
533 L-MM1 90 0.000  
561 FOX 69 0.000  

1,1,1,1,1 NG V1 

273 KOCHEN 287 0.263  
559 TOYODA 62 0.000  
595 S-T 25 0.000  
542 L-MM1 77 0.000  
597 FOX 32 0.000  

1,1,1,1,2 NG V1 

273 KOCHEN 307 0.073  
523 TOYODA 90 0.000  
557 S-T 62 0.000  
531 L-MM1 67 0.000  
603 FOX 23 0.000  

1,1,1,2,2 NG V1 

311 KOCHEN 267 0.037  
529 TOYODA 85 0.000  
483 S-T 123 0.000  
483 L-MM1 85 0.000  
617 FOX 8 0.000  

1,1,2,2,2 NG V1 

335 KOCHEN 240 0.000  
575 TOYODA 37 0.000  
360 S-T 115 0.000  
471 L-MM1 91 0.000  
597 FOX 5 0.000  

1,2,2,2,2 NG V1 

360 KOCHEN 160 0.000  
578 TOYODA 36 0.000  
591 S-T 27 0.000  
549 L-MM1 46 0.000  
524 FOX 87 0.000  

5KP 

2,2,2,2,2 NG V1 

297 KOCHEN 272 0.157  

U ~ the number times best heuristic is better than compared heuristic 
                                               indicates NG V1 as the best 
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Table E.4  Number of Times Best by NG V1 and Each Heuristic under 2KP Correlation 
Structure 

 NG V1 TOYODA S-T L-M M1 FOX KOCHEN Sign 
Test 

2,2,2 10 0 0 0 2 1  
2,1,1 2 1 0 1 12 0  
2,0,0 2 0 0 1 10 1  

2,-1,-1 4 0 0 0 8 1  
2,-2,-2 5 1 0 0 7 1  
1,2,1 2 1 0 1 12 0  
1,1,2 0 0 0 0 4 1  
1,1,1 5 0 4 0 1 6  
1,1,0 5 0 3 0 0 5  
1,0,1 7 0 0 0 2 2  
1,0,0 20 0 2 0 0 6  
1,0,-1 2 0 5 0 0 9  
1,-1,0 5 1 1 0 5 2  
1,-1,-1 20 0 3 0 0 5  
1,-1,-2 6 0 0 0 0 8  
1,-2,-1 4 0 1 0 2 0  
0,2,0 4 0 0 0 11 0  
0,1,1 4 0 1 0 3 0  
0,1,0 18 0 1 1 0 7  
0,1,-1 4 0 4 0 0 7  
0,0,2 0 2 0 1 0 0  
0,0,1 8 2 1 1 2 4  
0,0,0 7 1 2 1 1 7  
0,0,-1 12 1 2 0 0 9  
0,0,-2 5 0 1 1 0 3  
0,-1,1 1 3 0 0 1 3  
0,-1,0 13 0 2 2 2 5  
0,-1,-1 6 1 1 3 0 1  
0,-2,0 5 1 0 0 1 1  
-1,2,-1 4 1 1 1 11 0  
-1,1,0 5 0 0 2 3 1  
-1,1,-1 12 0 2 0 1 10  
-1,1,-2 9 1 2 1 0 3  
-1,0,1 3 1 0 0 3 0  
-1,0,0 11 1 2 0 0 7  
-1,0,-1 6 0 2 1 0 2  
-1,-1,2 0 1 0 3 1 0  
-1,-1,1 4 2 1 2 1 3  
-1,-1,0 3 1 1 2 0 2  
-1,-2,1 2 0 1 0 1 3  
-2,2,-2 3 0 0 2 9 2  
-2,1,-1 3 0 0 0 3 3  
-2,0,0 3 0 1 1 0 2  
-2,-1,1 4 0 0 0 2 0  
-2,-2,2 0 0 0 0 0 0  

       (  indicates NG V1 as the best, Reject Region: α = 0.1)  
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Table E. 5  Number of Times Best by NG V1 and Each Heuristic under 5KP Correlation 
Structure 

 
Correlation NG V1 TOYODA S-T L-M M1 FOX KOCHEN Sign Test 

-2,-2,-2,-2,-2 5 0 0 2 6 0  
-2,-2,-2,-2,-1 6 1 1 3 3 1  
-2,-2,-2,-2,0 8 1 0 3 5 5  
-2,-2,-2,-2,1 7 0 2 4 5 0  
-2,-2,-2,-2,2 5 1 0 3 9 5  
-2,-2,-2,-1,-1 8 0 1 3 3 3  
-2,-2,-2,-1,0 12 0 0 4 2 0  
-2,-2,-2,-1,1 10 0 0 6 2 2  
-2,-2,-2,-1,2 8 1 0 5 10 1  
-2,-2,-2,0,0 8 1 1 2 0 9  
-2,-2,-2,0,1 11 0 3 2 1 3  
-2,-2,-2,0,2 10 1 0 1 7 4  
-2,-2,-2,1,1 10 0 1 3 0 11  
-2,-2,-2,1,2 9 0 1 7 3 8  
-2,-2,-2,2,2 6 0 1 2 2 16  

-2,-2,-1,-1,-1 8 0 0 3 1 6  
-2,-2,-1,-1,0 11 2 0 2 1 2  
-2,-2,-1,-1,1 11 0 0 4 2 7  
-2,-2,-1,-1,2 6 0 0 3 8 9  
-2,-2,-1,0,0 11 0 1 2 1 8  
-2,-2,-1,0,1 15 0 1 5 0 3  
-2,-2,-1,0,2 11 0 0 2 8 3  
-2,-2,-1,1,1 12 0 1 3 0 8  
-2,-2,-1,1,2 15 1 0 0 5 6  
-2,-2,-1,2,2 3 0 0 2 4 18  
-2,-2,0,0,0 5 0 1 3 3 8  
-2,-2,0,0,1 12 1 1 1 0 6  
-2,-2,0,0,2 15 0 0 0 2 9  
-2,-2,0,1,1 12 1 1 1 0 11  
-2,-2,0,1,2 21 0 1 3 0 4  
-2,-2,0,2,2 8 1 0 3 2 15  
-2,-2,1,1,1 7 0 2 2 0 16  
-2,-2,1,1,2 15 0 0 2 0 10  
-2,-2,1,2,2 8 0 0 0 3 17  
-2,-2,2,2,2 7 1 0 1 3 16  

-2,-1,-1,-1,-1 11 0 0 5 0 7  
-2,-1,-1,-1,0 11 0 1 3 1 5  
-2,-1,-1,-1,1 12 1 1 5 1 1  
-2,-1,-1,-1,2 8 1 0 2 7 4  
-2,-1,-1,0,0 12 0 0 3 0 9  
-2,-1,-1,0,1 12 0 2 2 0 11  
-2,-1,-1,0,2 9 1 0 3 9 7  
-2,-1,-1,1,1 8 0 1 2 0 12  
-2,-1,-1,1,2 15 0 0 2 3 6  
-2,-1,-1,2,2 8 1 1 1 2 13  
-2,-1,0,0,0 10 1 1 3 0 11  
-2,-1,0,0,1 10 0 0 3 0 9  
-2,-1,0,0,2 12 0 0 4 5 6  
-2,-1,0,1,1 13 0 0 1 0 10  
-2,-1,0,1,2 17 0 0 1 3 7  
-2,-1,0,2,2 8 0 0 2 1 14  
-2,-1,1,1,1 11 0 0 1 0 14  
-2,-1,1,1,2 15 0 1 3 0 7  
-2,-1,1,2,2 15 0 0 1 0 13  
-2,-1,2,2,2 4 0 2 1 3 18  
-2,0,0,0,0 8 0 1 1 0 12  
-2,0,0,0,1 15 0 0 1 0 9  
-2,0,0,0,2 12 0 0 0 2 9  
-2,0,0,1,1 9 0 1 1 0 14  
-2,0,0,1,2 18 1 0 2 0 7  
-2,0,0,2,2 11 0 0 2 2 14  
-2,0,1,1,1 12 0 0 1 0 11  
-2,0,1,1,2 17 0 1 1 1 9  
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Correlation NG V1 TOYODA S-T L-M M1 FOX KOCHEN Sign Test 
-2,0,1,2,2 11 0 0 5 0 14  
-2,0,2,2,2 8 0 0 1 2 18  
-2,1,1,1,1 5 5 1 1 1 14  
-2,1,1,1,2 16 0 0 1 0 12  
-2,1,1,2,2 11 0 0 1 0 15  
-2,1,2,2,2 9 0 0 2 0 15  
-2,2,2,2,2 11 1 0 0 0 15  

-1,-1,-1,-1,-1 8 1 1 1 1 7  
-1,-1,-1,-1,0 7 1 1 4 1 6  
-1,-1,-1,-1,1 11 1 2 3 2 4  
-1,-1,-1,-1,2 10 0 2 3 7 3  
-1,-1,-1,0,0 6 1 2 2 0 12  
-1,-1,-1,0,1 15 0 2 1 0 4  
-1,-1,-1,0,2 13 0 4 1 4 3  
-1,-1,-1,1,1 15 0 3 0 0 11  
-1,-1,-1,1,2 15 1 0 3 1 6  
-1,-1,-1,2,2 7 0 0 2 2 13  
-1,-1,0,0,0 10 0 0 1 0 9  
-1,-1,0,0,1 17 1 1 2 0 5  
-1,-1,0,0,2 9 0 2 3 2 9  
-1,-1,0,1,1 14 0 2 2 0 9  
-1,-1,0,1,2 13 0 2 2 4 4  
-1,-1,0,2,2 5 1 3 2 4 11  
-1,-1,1,1,1 10 1 0 2 0 14  
-1,-1,1,1,2 18 0 0 3 0 7  
-1,-1,1,2,2 18 0 1 1 0 9  
-1,-1,2,2,2 3 2 1 0 2 15  
-1,0,0,0,0 9 2 1 1 0 12  
-1,0,0,0,1 14 0 0 1 0 13  
-1,0,0,0,2 10 0 1 3 2 11  
-1,0,0,1,1 12 0 0 1 0 14  
-1,0,0,1,2 19 0 1 1 0 6  
-1,0,0,2,2 13 0 1 2 0 11  
-1,0,1,1,1 8 0 1 0 0 21  
-1,0,1,1,2 21 0 0 1 0 7  
-1,0,1,2,2 9 0 2 4 0 13  
-1,0,2,2,2 9 0 2 0 1 16  
-1,1,1,1,1 11 1 0 0 0 15  
-1,1,1,1,2 16 0 0 1 0 9  
-1,1,1,2,2 11 0 1 1 0 13  
-1,1,2,2,2 10 0 1 0 0 17  
-1,2,2,2,2 8 0 1 0 1 18  
0,0,0,0,0 12 2 3 0 0 8  
0,0,0,0,1 13 1 3 0 0 7  
0,0,0,0,2 13 1 1 2 3 5  
0,0,0,1,1 15 2 5 0 0 8  
0,0,0,1,2 18 0 3 1 2 4  
0,0,0,2,2 4 1 1 2 0 15  
0,0,1,1,1 8 1 3 0 0 13  
0,0,1,1,2 15 0 3 0 0 5  
0,0,1,2,2 7 1 3 5 0 10  
0,0,2,2,2 7 0 2 1 1 15  
0,1,1,1,1 10 0 1 0 0 18  
0,1,1,1,2 19 0 0 0 0 10  
0,1,1,2,2 12 0 1 1 0 13  
0,1,2,2,2 10 0 1 0 0 15  
0,2,2,2,2 6 0 0 0 0 20  
1,1,1,1,1 14 0 0 0 0 12  
1,1,1,1,2 16 3 3 1 0 3  
1,1,1,2,2 12 0 1 1 0 11  
1,1,2,2,2 8 0 2 0 0 15  
1,2,2,2,2 11 0 1 0 0 17  
2,2,2,2,2 11 0 0 0 0 14  

       (  indicates NG V1 as the best, Reject Region: α = 0.2) 
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Table E.6  Sign Test for NG V2 based on Constraint Slackness 
 

Prob 
Type 

Constraint 
Slackness NG V2 Heuristic vs. Legacy Heuristic Pr(X ≥ U) 

Reject 
Region 

(α = 0.1) 
221 TOYODA 19 0.000  
230 S-T 17 0.000  
264 L-MM1 7 0.000  
240 FOX 20 0.000  

1, 1 NG V2 

130 KOCHEN 40 0.000  
217 TOYODA 27 0.000  
98 S-T 71 0.023  

250 L-MM1 11 0.000  
179 FOX 5 0.000  

1, 2 NG V2 

107 KOCHEN 65 0.001  
214 TOYODA 26 0.000  
101 S-T 72 0.017  
249 L-MM1 11 0.000  
167 FOX 5 0.000  

2, 1 NG V2 

103 KOCHEN 55 0.000  
208 TOYODA 15 0.000  
212 S-T 14 0.000  
242 L-MM1 14 0.000  
186 FOX 33 0.000  

2KP 

2, 2 NG V2 

109 KOCHEN 10 0.000  
618 TOYODA 9 0.000  
621 S-T 8 0.000  
616 L-MM1 13 0.000  
622 FOX 6 0.000  

1,1,1,1,1 NG V2 

553 KOCHEN 41 0.000  
587 TOYODA 30 0.000  
604 S-T 20 0.000  
593 L-MM1 30 0.000  
623 FOX 5 0.000  

1,1,1,1,2 NG V2 

441 KOCHEN 90 0.000  
568 TOYODA 31 0.000  
575 S-T 27 0.000  
554 L-MM1 61 0.000  
622 FOX 7 0.000  

1,1,1,2,2 NG V2 

366 KOCHEN 116 0.000  
552 TOYODA 53 0.000  
480 S-T 78 0.000  
511 L-MM1 91 0.000  
620 FOX 4 0.000  

1,1,2,2,2 NG V2 

308 KOCHEN 136 0.000  
544 TOYODA 64 0.000  
302 S-T 223 0.000  
426 L-MM1 156 0.000  
598 FOX 2 0.000  

1,2,2,2,2 NG V2 

249 KOCHEN 193 0.000  
597 TOYODA 10 0.000  
602 S-T 8 0.000  
582 L-MM1 26 0.000  
582 FOX 34 0.000  

5KP 

2,2,2,2,2 NG V2 

472 KOCHEN 53 0.000  

U ~ the number times best heuristic is better than compared heuristic 
                                               indicates NG V2 as the best 
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Table E.7  Number of Times Best by NG V2 and Each Heuristic under 2KP Correlation 
Structures 

 
 NG V2 TOYODA S-T L-M M1 FOX KOCHEN Sign 

Test 
2,2,2 4 0 0 0 2 1   
2,1,1 7 1 0 1 4 0  
2,0,0 8 0 0 0 3 0  

2,-1,-1 10 0 0 0 1 2  
2,-2,-2 16 0 0 0 0 2  
1,2,1 5 1 0 0 7 0  
1,1,2 0 0 0 0 6 0  
1,1,1 3 0 4 0 0 2  
1,1,0 3 0 4 0 0 1  
1,0,1 6 0 0 0 3 1  
1,0,0 14 0 1 0 0 6  
1,0,-1 5 0 5 0 0 3  
1,-1,0 4 1 1 0 3 2  
1,-1,-1 14 0 4 0 0 3  
1,-1,-2 6 0 4 0 0 2  
1,-2,-1 6 0 1 0 0 1  
0,2,0 9 0 1 0 1 0  
0,1,1 6 0 1 0 1 0  
0,1,0 14 0 1 0 0 5  
0,1,-1 3 0 6 0 0 1  
0,0,2 0 2 0 1 1 0  
0,0,1 4 2 1 2 1 1  
0,0,0 11 1 3 0 0 2  
0,0,-1 11 1 2 0 0 3  
0,0,-2 1 0 7 0 0 2  
0,-1,1 2 3 0 0 1 1  
0,-1,0 9 0 2 2 1 3  
0,-1,-1 5 0 1 2 0 0  
0,-2,0 5 1 0 0 0 0  
-1,2,-1 9 1 1 1 1 0  
-1,1,0 5 0 0 2 1 1  
-1,1,-1 12 0 3 1 1 6  
-1,1,-2 8 1 4 1 0 1  
-1,0,1 2 1 0 0 3 0  
-1,0,0 7 1 1 2 0 3  
-1,0,-1 3 0 2 1 0 1  
-1,-1,2 0 1 0 3 1 0  
-1,-1,1 3 2 1 2 1 2  
-1,-1,0 2 0 1 2 0 1  
-1,-2,1 2 0 1 0 2 1  
-2,2,-2 11 0 0 0 2 0  
-2,1,-1 3 0 0 1 2 4  
-2,0,0 5 0 1 1 0 1  
-2,-1,1 4 0 0 0 3 0  
-2,-2,2 0 0 0 0 0 0  

       (  indicates NG V2 as the best, Reject Region: α = 0.1) 
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Table E.8  Number of Times Best by NG V2 and Each Heuristic under 5KP Correlation 
Structures 

 
Correlation NG V2 TOYODA S-T L-M M1 FOX KOCHEN Sign Test 

-2,-2,-2,-2,-2 6 0 0 2 4 0  
-2,-2,-2,-2,-1 5 1 1 2 5 1  
-2,-2,-2,-2,0 9 1 1 5 4 2  
-2,-2,-2,-2,1 9 0 3 3 2 1  
-2,-2,-2,-2,2 10 1 0 5 3 2  
-2,-2,-2,-1,-1 6 0 0 3 2 0  
-2,-2,-2,-1,0 8 1 0 6 1 0  
-2,-2,-2,-1,1 14 0 0 7 1 1  
-2,-2,-2,-1,2 12 1 0 3 4 2  
-2,-2,-2,0,0 11 1 0 5 0 4  
-2,-2,-2,0,1 14 0 3 2 1 1  
-2,-2,-2,0,2 17 0 0 3 0 3  
-2,-2,-2,1,1 16 0 4 2 0 5  
-2,-2,-2,1,2 19 0 1 3 0 3  
-2,-2,-2,2,2 20 0 1 2 0 4  

-2,-2,-1,-1,-1 6 0 1 4 1 4  
-2,-2,-1,-1,0 12 2 0 5 1 1  
-2,-2,-1,-1,1 16 0 1 3 0 4  
-2,-2,-1,-1,2 19 0 0 3 0 3  
-2,-2,-1,0,0 15 0 1 2 1 0  
-2,-2,-1,0,1 12 0 2 7 0 2  
-2,-2,-1,0,2 13 0 0 3 2 4  
-2,-2,-1,1,1 17 0 1 6 0 3  
-2,-2,-1,1,2 20 0 1 2 1 2  
-2,-2,-1,2,2 20 0 0 1 0 4  
-2,-2,0,0,0 11 0 1 5 1 2  
-2,-2,0,0,1 21 1 2 0 0 1  
-2,-2,0,0,2 21 0 1 0 0 5  
-2,-2,0,1,1 15 1 1 2 0 6  
-2,-2,0,1,2 24 0 1 1 0 2  
-2,-2,0,2,2 20 1 0 2 0 5  
-2,-2,1,1,1 15 0 2 4 0 5  
-2,-2,1,1,2 20 0 0 1 0 4  
-2,-2,1,2,2 20 0 1 0 1 3  
-2,-2,2,2,2 22 1 1 1 0 4  

-2,-1,-1,-1,-1 9 0 0 5 0 2  
-2,-1,-1,-1,0 14 0 1 5 1 1  
-2,-1,-1,-1,1 16 0 2 3 1 1  
-2,-1,-1,-1,2 16 0 1 1 1 5  
-2,-1,-1,0,0 17 0 0 3 0 3  
-2,-1,-1,0,1 15 0 2 2 0 5  
-2,-1,-1,0,2 16 2 1 3 1 2  
-2,-1,-1,1,1 19 0 3 1 0 1  
-2,-1,-1,1,2 19 0 1 1 0 4  
-2,-1,-1,2,2 18 0 2 2 0 2  
-2,-1,0,0,0 11 0 1 1 0 6  
-2,-1,0,0,1 18 0 0 3 0 1  
-2,-1,0,0,2 17 0 0 3 1 4  
-2,-1,0,1,1 16 0 0 4 0 3  
-2,-1,0,1,2 19 0 0 1 0 5  
-2,-1,0,2,2 19 2 0 3 0 6  
-2,-1,1,1,1 20 0 2 1 0 2  
-2,-1,1,1,2 21 0 1 2 0 4  
-2,-1,1,2,2 26 0 0 0 0 2  
-2,-1,2,2,2 19 0 2 3 0 4  
-2,0,0,0,0 10 0 2 0 0 4  
-2,0,0,0,1 16 0 1 3 0 4  
-2,0,0,0,2 19 0 1 0 0 3  
-2,0,0,1,1 18 0 1 1 0 4  
-2,0,0,1,2 19 0 0 2 0 5  
-2,0,0,2,2 21 1 0 1 0 2  
-2,0,1,1,1 15 0 1 0 0 7  
-2,0,1,1,2 22 0 1 1 1 5  
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Correlation NG V2 TOYODA S-T L-M M1 FOX KOCHEN Sign Test 
-2,0,1,2,2 20 0 1 3 0 5  
-2,0,2,2,2 22 0 0 1 0 5  
-2,1,1,1,1 14 3 2 1 0 4  
-2,1,1,1,2 19 0 0 1 0 4  
-2,1,1,2,2 23 0 0 0 0 5  
-2,1,2,2,2 24 0 1 2 0 1  
-2,2,2,2,2 17 0 0 0 0 7  

-1,-1,-1,-1,-1 5 1 1 1 0 4  
-1,-1,-1,-1,0 6 3 1 5 0 1  
-1,-1,-1,-1,1 16 1 1 2 2 0  
-1,-1,-1,-1,2 11 0 3 3 1 3  
-1,-1,-1,0,0 12 1 1 3 0 4  
-1,-1,-1,0,1 12 2 2 2 0 3  
-1,-1,-1,0,2 15 0 4 4 1 2  
-1,-1,-1,1,1 22 1 2 1 0 2  
-1,-1,-1,1,2 17 2 1 1 0 2  
-1,-1,-1,2,2 17 0 1 3 0 1  
-1,-1,0,0,0 14 0 0 1 0 2  
-1,-1,0,0,1 15 1 0 2 0 2  
-1,-1,0,0,2 12 0 5 1 2 6  
-1,-1,0,1,1 17 0 1 1 0 4  
-1,-1,0,1,2 17 0 3 1 1 1  
-1,-1,0,2,2 18 1 3 2 0 1  
-1,-1,1,1,1 17 1 1 1 0 5  
-1,-1,1,1,2 22 2 2 1 0 1  
-1,-1,1,2,2 21 0 2 3 0 2  
-1,-1,2,2,2 20 2 4 0 0 1  
-1,0,0,0,0 15 0 1 0 0 3  
-1,0,0,0,1 16 1 1 2 0 4  
-1,0,0,0,2 17 0 0 0 0 7  
-1,0,0,1,1 19 0 0 1 0 2  
-1,0,0,1,2 22 0 2 1 0 2  
-1,0,0,2,2 18 0 2 1 0 3  
-1,0,1,1,1 17 0 2 0 0 6  
-1,0,1,1,2 24 0 3 0 0 0  
-1,0,1,2,2 19 0 2 0 0 4  
-1,0,2,2,2 20 0 3 1 0 5  
-1,1,1,1,1 17 1 3 0 0 6  
-1,1,1,1,2 23 0 3 0 0 1  
-1,1,1,2,2 22 0 3 1 0 3  
-1,1,2,2,2 22 0 3 0 0 3  
-1,2,2,2,2 21 1 4 1 0 1  
0,0,0,0,0 8 2 2 1 0 4  
0,0,0,0,1 14 1 3 0 0 2  
0,0,0,0,2 15 0 3 0 0 4  
0,0,0,1,1 20 2 4 0 0 3  
0,0,0,1,2 22 0 1 0 0 3  
0,0,0,2,2 19 1 2 0 0 3  
0,0,1,1,1 16 0 3 0 0 4  
0,0,1,1,2 19 0 3 0 0 2  
0,0,1,2,2 19 1 5 0 0 3  
0,0,2,2,2 22 0 2 0 0 2  
0,1,1,1,1 19 0 2 0 0 5  
0,1,1,1,2 22 0 2 0 0 3  
0,1,1,2,2 23 0 2 0 0 1  
0,1,2,2,2 21 0 3 0 0 3  
0,2,2,2,2 23 0 3 0 0 1  
1,1,1,1,1 12 1 1 0 0 3  
1,1,1,1,2 16 1 3 1 0 3  
1,1,1,2,2 19 1 0 0 0 5  
1,1,2,2,2 23 0 2 0 0 1  
1,2,2,2,2 25 0 1 0 0 2  
2,2,2,2,2 11 0 1 0 0 5   

       (  indicates NG V2 as the best, Reject Region: α = 0.1) 
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Table E.9  Sign Test for NG V3 based on Constraint Slackness 
 

Prob 
Type 

Constraint 
Slackness NG V3 Heuristic vs. Legacy Heuristic Pr(X ≥ U) 

Reject 
Region 

(α = 0.1) 
223 TOYODA 18 0.000  
230 S-T 17 0.000  
263 L-MM1 8 0.000  
242 FOX 15 0.000  

1, 1 NG V3 

139 KOCHEN 49 0.000  
222 TOYODA 24 0.000  
103 S-T 69 0.006  
249 L-MM1 11 0.000  
174 FOX 7 0.000  

1, 2 NG V3 

116 KOCHEN 67 0.000  
216 TOYODA 25 0.000  
104 S-T 65 0.002  
250 L-MM1 11 0.000  
166 FOX 6 0.000  

2, 1 NG V3 

116 KOCHEN 59 0.000  
208 TOYODA 16 0.000  
213 S-T 14 0.000  
241 L-MM1 15 0.000  
187 FOX 28 0.000  

2KP 

2, 2 NG V3 

125 KOCHEN 18 0.000  
617 TOYODA 10 0.000  
622 S-T 7 0.000  
616 L-MM1 12 0.000  
625 FOX 5 0.000  

1,1,1,1,1 NG V3 

552 KOCHEN 49 0.000  
592 TOYODA 25 0.000  
604 S-T 18 0.000  
602 L-MM1 20 0.000  
624 FOX 4 0.000  

1,1,1,1,2 NG V3 

460 KOCHEN 89 0.000  
571 TOYODA 30 0.000  
577 S-T 24 0.000  
562 L-MM1 48 0.000  
622 FOX 5 0.000  

1,1,1,2,2 NG V3 

396 KOCHEN 120 0.000  
558 TOYODA 52 0.000  
491 S-T 69 0.000  
526 L-MM1 74 0.000  
620 FOX 4 0.000  

1,1,2,2,2 NG V3 

350 KOCHEN 135 0.000  
562 TOYODA 46 0.000  
348 S-T 166 0.000  
460 L-MM1 110 0.000  
596 FOX 1 0.000  

1,2,2,2,2 NG V3 

330 KOCHEN 164 0.000  
597 TOYODA 10 0.000  
601 S-T 9 0.000  
586 L-MM1 21 0.000  
594 FOX 19 0.000  

5KP 

2,2,2,2,2 NG V3 

484 KOCHEN 58 0.000  
U ~ the number times best heuristic is better than compared heuristic 

                                               indicates NG V3 as the best 
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Table E.10  Number of Times Best by NG V3 and Each heuristic under 2KP Correlation 
Structures  

 NG V3 TOYODA S-T L-M M1 FOX KOCHEN Sign 
Test 

2,2,2 4 0 0 0 2 1  
2,1,1 8 1 0 0 4 0  
2,0,0 9 0 0 0 2 0  

2,-1,-1 9 0 0 0 1 2  
2,-2,-2 13 0 1 0 0 2  
1,2,1 6 1 0 0 6 0  
1,1,2 0 0 0 0 6 0  
1,1,1 3 0 4 0 0 2  
1,1,0 4 0 4 0 0 0  
1,0,1 5 0 0 0 3 2  
1,0,0 15 0 1 0 0 5  
1,0,-1 4 0 2 0 0 5  
1,-1,0 4 1 1 0 2 5  
1,-1,-1 19 0 3 0 0 3  
1,-1,-2 8 0 2 0 0 3  
1,-2,-1 7 0 1 0 0 1  
0,2,0 11 0 0 0 0 0  
0,1,1 6 0 1 0 1 0  
0,1,0 18 0 1 1 0 5  
0,1,-1 3 0 3 0 0 2  
0,0,2 0 2 0 1 1 0  
0,0,1 3 1 1 2 1 2  
0,0,0 12 0 4 0 0 3  
0,0,-1 14 1 2 0 0 3  
0,0,-2 5 0 2 0 0 2  
0,-1,1 3 3 0 0 1 1  
0,-1,0 10 0 2 3 1 4  
0,-1,-1 7 1 1 2 0 0  
0,-2,0 4 1 0 0 0 2  
-1,2,-1 9 1 1 1 1 0  
-1,1,0 6 0 0 2 0 2  
-1,1,-1 14 0 2 0 1 7  
-1,1,-2 8 1 2 1 0 4  
-1,0,1 2 1 0 0 2 0  
-1,0,0 9 0 2 1 0 4  
-1,0,-1 4 1 2 1 0 2  
-1,-1,2 0 1 0 3 1 0  
-1,-1,1 4 2 1 2 1 2  
-1,-1,0 3 0 1 2 0 1  
-1,-2,1 2 0 1 0 2 1  
-2,2,-2 10 0 0 1 1 0  
-2,1,-1 4 0 0 1 1 4  
-2,0,0 4 0 1 0 0 1  
-2,-1,1 5 0 0 0 1 0  
-2,-2,2 0 0 0 0 0 0  

       (  indicates NG V3 as the best, Reject Region: α = 0.1) 
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Table E.11  Number of Times Best by NG V3 and Each Heuristic under 5KP Correlation 
Structures 

 
Correlation NG V3 TOYODA S-T L-M M1 FOX KOCHEN Sign Test 

-2,-2,-2,-2,-2 6 0 0 2 4 0  
-2,-2,-2,-2,-1 5 1 1 2 5 2  
-2,-2,-2,-2,0 8 1 1 5 4 2  
-2,-2,-2,-2,1 11 0 2 3 1 1  
-2,-2,-2,-2,2 13 0 0 4 1 1  
-2,-2,-2,-1,-1 7 0 0 3 1 0  
-2,-2,-2,-1,0 12 1 0 4 1 0  
-2,-2,-2,-1,1 14 0 0 7 0 2  
-2,-2,-2,-1,2 13 1 0 2 2 1  
-2,-2,-2,0,0 12 1 0 5 0 4  
-2,-2,-2,0,1 16 0 1 1 1 1  
-2,-2,-2,0,2 19 0 0 2 0 3  
-2,-2,-2,1,1 16 0 3 2 0 5  
-2,-2,-2,1,2 19 0 1 3 0 4  
-2,-2,-2,2,2 20 0 1 2 0 4  

-2,-2,-1,-1,-1 7 0 1 4 1 5  
-2,-2,-1,-1,0 14 2 0 2 1 3  
-2,-2,-1,-1,1 16 0 1 3 0 6  
-2,-2,-1,-1,2 19 0 0 3 0 5  
-2,-2,-1,0,0 16 0 1 2 0 2  
-2,-2,-1,0,1 16 0 1 4 0 3  
-2,-2,-1,0,2 21 0 0 2 0 4  
-2,-2,-1,1,1 17 0 1 5 0 4  
-2,-2,-1,1,2 22 0 1 1 0 3  
-2,-2,-1,2,2 22 0 0 0 0 2  
-2,-2,0,0,0 11 0 1 4 1 4  
-2,-2,0,0,1 22 1 2 0 0 0  
-2,-2,0,0,2 21 0 1 0 0 6  
-2,-2,0,1,1 17 1 1 1 0 7  
-2,-2,0,1,2 23 0 1 1 0 2  
-2,-2,0,2,2 21 1 0 2 0 4  
-2,-2,1,1,1 16 0 2 3 0 5  
-2,-2,1,1,2 21 0 0 1 0 4  
-2,-2,1,2,2 21 0 1 0 0 3  
-2,-2,2,2,2 20 1 1 1 0 6  

-2,-1,-1,-1,-1 9 0 0 6 0 1  
-2,-1,-1,-1,0 11 0 1 7 1 1  
-2,-1,-1,-1,1 18 0 2 3 1 1  
-2,-1,-1,-1,2 18 0 1 1 0 5  
-2,-1,-1,0,0 19 0 0 2 0 4  
-2,-1,-1,0,1 16 0 2 1 0 6  
-2,-1,-1,0,2 15 2 1 3 1 5  
-2,-1,-1,1,1 21 0 2 0 0 2  
-2,-1,-1,1,2 21 0 0 1 0 6  
-2,-1,-1,2,2 20 0 2 1 0 1  
-2,-1,0,0,0 14 0 0 1 0 6  
-2,-1,0,0,1 18 0 0 3 0 1  
-2,-1,0,0,2 20 0 0 2 0 6  
-2,-1,0,1,1 18 0 0 2 0 3  
-2,-1,0,1,2 19 0 0 0 0 6  
-2,-1,0,2,2 19 2 0 2 0 5  
-2,-1,1,1,1 19 0 1 1 0 2  
-2,-1,1,1,2 21 0 1 0 0 4  
-2,-1,1,2,2 25 0 0 0 0 3  
-2,-1,2,2,2 20 0 1 1 0 7  
-2,0,0,0,0 9 0 2 0 0 6  
-2,0,0,0,1 18 0 1 0 0 4  
-2,0,0,0,2 19 0 1 0 0 4  
-2,0,0,1,1 19 0 1 1 0 4  
-2,0,0,1,2 21 0 0 2 0 5  
-2,0,0,2,2 22 1 0 0 0 3  
-2,0,1,1,1 17 0 1 0 0 8  
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Correlation NG V3 TOYODA S-T L-M M1 FOX KOCHEN Sign Test 
-2,0,1,1,2 24 0 1 1 0 4  
-2,0,1,2,2 23 0 1 2 0 2  
-2,0,2,2,2 22 0 0 0 0 5  
-2,1,1,1,1 9 3 2 0 0 10  
-2,1,1,1,2 20 0 0 1 0 6  
-2,1,1,2,2 22 0 0 0 0 6  
-2,1,2,2,2 24 0 1 2 0 3  
-2,2,2,2,2 13 0 0 0 0 11  

-1,-1,-1,-1,-1 6 1 1 1 0 4  
-1,-1,-1,-1,0 6 3 1 5 0 0  
-1,-1,-1,-1,1 17 1 0 2 2 1  
-1,-1,-1,-1,2 15 0 2 2 0 5  
-1,-1,-1,0,0 15 1 1 3 0 4  
-1,-1,-1,0,1 17 2 2 1 0 2  
-1,-1,-1,0,2 18 0 4 1 0 1  
-1,-1,-1,1,1 21 1 2 0 0 3  
-1,-1,-1,1,2 19 2 1 1 0 2  
-1,-1,-1,2,2 19 0 1 3 0 1  
-1,-1,0,0,0 16 0 0 1 0 1  
-1,-1,0,0,1 18 1 0 1 0 3  
-1,-1,0,0,2 17 0 2 1 2 6  
-1,-1,0,1,1 24 0 2 0 0 2  
-1,-1,0,1,2 19 0 1 0 1 2  
-1,-1,0,2,2 20 1 2 1 0 0  
-1,-1,1,1,1 18 1 0 1 0 5  
-1,-1,1,1,2 24 1 1 0 0 1  
-1,-1,1,2,2 21 0 2 3 0 1  
-1,-1,2,2,2 21 2 3 0 0 1  
-1,0,0,0,0 17 0 1 0 0 5  
-1,0,0,0,1 19 1 0 1 0 4  
-1,0,0,0,2 18 0 1 0 0 6  
-1,0,0,1,1 21 0 0 1 0 2  
-1,0,0,1,2 23 0 2 1 0 2  
-1,0,0,2,2 20 0 1 1 0 3  
-1,0,1,1,1 19 0 1 0 0 5  
-1,0,1,1,2 26 0 1 0 0 1  
-1,0,1,2,2 23 0 1 0 0 4  
-1,0,2,2,2 22 0 2 0 0 6  
-1,1,1,1,1 18 1 1 0 0 5  
-1,1,1,1,2 23 0 3 0 0 2  
-1,1,1,2,2 22 0 3 1 0 3  
-1,1,2,2,2 24 0 2 0 0 1  
-1,2,2,2,2 25 1 3 0 0 1  
0,0,0,0,0 6 2 2 1 0 6  
0,0,0,0,1 18 0 3 0 0 3  
0,0,0,0,2 15 0 2 0 0 4  
0,0,0,1,1 22 2 3 0 0 3  
0,0,0,1,2 23 0 2 0 0 2  
0,0,0,2,2 19 1 1 0 0 2  
0,0,1,1,1 13 0 2 0 0 11  
0,0,1,1,2 19 1 2 0 0 3  
0,0,1,2,2 20 1 3 0 0 3  
0,0,2,2,2 22 0 1 0 0 1  
0,1,1,1,1 24 0 1 0 0 2  
0,1,1,1,2 23 0 0 0 0 6  
0,1,1,2,2 26 0 1 0 0 1  
0,1,2,2,2 25 0 1 0 0 1  
0,2,2,2,2 23 0 2 0 0 3  
1,1,1,1,1 12 1 1 0 0 3  
1,1,1,1,2 17 2 2 0 0 2  
1,1,1,2,2 20 0 2 0 0 2  
1,1,2,2,2 23 0 2 0 0 2  
1,2,2,2,2 25 0 1 0 0 0  
2,2,2,2,2 11 0 0 0 0 3  

       (  indicates NG V3 as the best, Reject Region: α = 0.1) 
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Table E.12  Sign Test for New Reduction Heuristic (Core Solved by NG V3)  
 

Prob 
Type 

Constraint 
Slackness NG V3 Heuristic vs. Legacy Heuristic Pr(X ≥ U) 

Reject 
Region 

(α = 0.1) 
220 TOYODA 36 0.000  
232 S-T 28 0.000  
255 L-MM1 18 0.000  
239 FOX 18 0.000  

1, 1 New 
Reduction

135 KOCHEN 86 0.001  
219 TOYODA 29 0.000  
102 S-T 73 0.017  
248 L-MM1 11 0.000  
173 FOX 13 0.000  

1, 2 New 
Reduction 

114 KOCHEN 73 0.002  
215 TOYODA 27 0.000  
103 S-T 66 0.003  
248 L-MM1 10 0.000  
167 FOX 9 0.000  

2, 1 New 
Reduction 

116 KOCHEN 61 0.000  
206 TOYODA 23 0.000  
210 S-T 21 0.000  
230 L-MM1 22 0.000  
172 FOX 20 0.000  

2KP 

2, 2 New 
Reduction 

134 KOCHEN 51 0.000  
614 TOYODA 12 0.000  
620 S-T 8 0.000  
614 L-MM1 14 0.000  
628 FOX 2 0.000  

1,1,1,1,1 New 
Reduction

553 KOCHEN 64 0.000  
588 TOYODA 40 0.000  
604 S-T 26 0.000  
586 L-MM1 31 0.000  
622 FOX 3 0.000  

1,1,1,1,2 New 
Reduction

460 KOCHEN 146 0.000  
562 TOYODA 52 0.000  
573 S-T 45 0.000  
546 L-MM1 65 0.000  
621 FOX 4 0.000  

1,1,1,2,2 New 
Reduction

391 KOCHEN 193 0.000  
540 TOYODA 76 0.000  
483 S-T 99 0.000  
490 L-MM1 100 0.000  
619 FOX 6 0.000  

1,1,2,2,2 New 
Reduction

328 KOCHEN 222 0.000  
565 TOYODA 54 0.000  
367 S-T 153 0.000  
451 L-MM1 113 0.000  
595 FOX 2 0.000  

1,2,2,2,2 New 
Reduction

349 KOCHEN 195 0.000  
594 TOYODA 17 0.000  
601 S-T 14 0.000  
586 L-MM1 24 0.000  
591 FOX 9 0.000  

5KP 

2,2,2,2,2 New 
Reduction

495 KOCHEN 84 0.000  
U ~ the number times best heuristic is better than compared heuristic 

                                               indicates New Reduction Heuristic as the best 
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Table E.13  Number of Times Best by New Reduction Heuristic (Core Solved by NG V3) and 
Each Heuristic under 2KP Correlation Structure 

 
 New 

Reduction TOYODA S-T L-M M1 FOX KOCHEN Sign 
Test 

2,2,2 5 0 0 0 3 1  
2,1,1 10 1 0 1 3 0  
2,0,0 8 0 0 0 3 0  

2,-1,-1 8 0 0 0 2 2  
2,-2,-2 13 0 0 0 1 3  
1,2,1 5 1 0 0 4 0  
1,1,2 1 0 0 0 6 0  
1,1,1 3 0 4 0 0 1  
1,1,0 5 0 4 0 0 2  
1,0,1 6 0 0 0 1 3  
1,0,0 16 0 1 0 0 7  
1,0,-1 6 0 3 0 0 5  
1,-1,0 3 1 1 0 0 6  
1,-1,-1 14 0 2 0 0 6  
1,-1,-2 8 0 1 0 0 5  
1,-2,-1 5 0 1 0 1 1  
0,2,0 10 0 0 0 2 0  
0,1,1 6 0 1 0 0 0  
0,1,0 15 0 1 0 0 7  
0,1,-1 6 0 3 0 0 5  
0,0,2 0 2 0 1 0 0  
0,0,1 3 1 1 2 1 1  
0,0,0 12 0 4 0 0 5  
0,0,-1 12 1 2 0 0 6  
0,0,-2 4 0 2 1 0 2  
0,-1,1 2 3 0 0 1 3  
0,-1,0 10 0 2 3 0 6  
0,-1,-1 5 1 1 2 0 2  
0,-2,0 2 1 0 0 1 3  
-1,2,-1 9 1 1 1 2 0  
-1,1,0 7 0 0 2 0 1  
-1,1,-1 15 0 2 0 1 10  
-1,1,-2 4 1 2 2 0 6  
-1,0,1 3 1 0 0 1 0  
-1,0,0 10 0 2 0 0 5  
-1,0,-1 4 1 2 1 0 5  
-1,-1,2 0 1 0 3 1 0  
-1,-1,1 4 2 1 1 1 3  
-1,-1,0 3 1 1 2 0 2  
-1,-2,1 2 0 1 0 1 2  
-2,2,-2 7 0 0 1 3 2  
-2,1,-1 4 0 0 0 0 4  
-2,0,0 2 0 1 0 1 2  
-2,-1,1 3 0 0 0 0 1  
-2,-2,2 0 0 0 0 0 0  

(  indicates New Reduction Heuristic as the best, Reject Region: α = 0.1) 
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Table E.14  Number of Times Best by New Reduction Heuristic (Core Solved by NG V3) and 
Each Heuristic under 5KP Correlation Structure 

 
Correlation NR TOYODA S-T L-M M1 FOX KOCHEN Sign Test 

-2,-2,-2,-2,-2 8 0 0 1 4 1  
-2,-2,-2,-2,-1 5 1 1 1 2 2  
-2,-2,-2,-2,0 10 1 1 2 1 4  
-2,-2,-2,-2,1 12 0 2 1 0 0  
-2,-2,-2,-2,2 13 0 0 4 0 4  
-2,-2,-2,-1,-1 11 0 0 3 0 4  
-2,-2,-2,-1,0 13 0 0 4 0 2  
-2,-2,-2,-1,1 13 0 0 4 0 4  
-2,-2,-2,-1,2 13 0 0 3 2 4  
-2,-2,-2,0,0 13 1 1 4 0 5  
-2,-2,-2,0,1 18 0 2 1 0 2  
-2,-2,-2,0,2 22 1 0 2 0 3  
-2,-2,-2,1,1 17 0 2 1 0 6  
-2,-2,-2,1,2 22 0 1 2 0 5  
-2,-2,-2,2,2 17 1 1 2 0 6  

-2,-2,-1,-1,-1 9 1 1 2 1 9  
-2,-2,-1,-1,0 12 2 0 3 1 4  
-2,-2,-1,-1,1 17 0 1 1 0 8  
-2,-2,-1,-1,2 18 0 0 2 0 5  
-2,-2,-1,0,0 14 0 1 3 1 5  
-2,-2,-1,0,1 16 0 1 6 0 3  
-2,-2,-1,0,2 16 0 0 2 0 8  
-2,-2,-1,1,1 19 0 1 2 0 3  
-2,-2,-1,1,2 19 1 1 0 0 5  
-2,-2,-1,2,2 18 0 0 1 0 8  
-2,-2,0,0,0 9 0 1 4 1 8  
-2,-2,0,0,1 18 1 1 0 0 4  
-2,-2,0,0,2 20 0 1 0 0 9  
-2,-2,0,1,1 15 1 1 1 0 7  
-2,-2,0,1,2 22 0 0 3 0 3  
-2,-2,0,2,2 22 1 0 1 0 3  
-2,-2,1,1,1 13 0 2 2 0 7  
-2,-2,1,1,2 21 0 0 0 0 7  
-2,-2,1,2,2 22 0 1 0 0 5  
-2,-2,2,2,2 18 1 1 2 0 7  

-2,-1,-1,-1,-1 11 0 0 7 0 2  
-2,-1,-1,-1,0 15 0 1 7 0 3  
-2,-1,-1,-1,1 15 0 1 4 1 3  
-2,-1,-1,-1,2 16 1 1 1 0 7  
-2,-1,-1,0,0 15 0 0 3 0 5  
-2,-1,-1,0,1 16 0 2 3 0 5  
-2,-1,-1,0,2 15 1 1 3 2 4  
-2,-1,-1,1,1 19 0 2 1 0 2  
-2,-1,-1,1,2 19 0 0 1 0 7  
-2,-1,-1,2,2 22 0 1 0 0 2  
-2,-1,0,0,0 15 0 0 3 0 7  
-2,-1,0,0,1 20 0 0 2 0 5  
-2,-1,0,0,2 22 0 0 1 0 4  
-2,-1,0,1,1 17 0 0 3 0 5  
-2,-1,0,1,2 21 0 0 2 0 6  
-2,-1,0,2,2 21 1 0 2 0 5  
-2,-1,1,1,1 19 0 0 1 0 3  
-2,-1,1,1,2 22 0 1 2 0 4  
-2,-1,1,2,2 25 0 0 0 0 4  
-2,-1,2,2,2 22 0 0 1 0 5  
-2,0,0,0,0 9 0 1 0 1 7  
-2,0,0,0,1 18 0 0 2 0 7  
-2,0,0,0,2 17 0 0 0 0 7  
-2,0,0,1,1 16 0 1 1 0 9  
-2,0,0,1,2 17 1 1 3 0 6  
-2,0,0,2,2 22 1 0 1 0 4  
-2,0,1,1,1 16 0 1 0 0 9  
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Correlation NR TOYODA S-T L-M M1 FOX KOCHEN Sign Test 

-2,0,1,1,2 22 0 1 1 0 6  
-2,0,1,2,2 24 0 1 2 0 3  
-2,0,2,2,2 24 0 0 0 0 3  
-2,1,1,1,1 7 3 1 1 0 13  
-2,1,1,1,2 22 0 0 1 0 7  
-2,1,1,2,2 23 0 0 0 0 5  
-2,1,2,2,2 20 0 1 1 0 8  
-2,2,2,2,2 16 0 0 0 0 11  

-1,-1,-1,-1,-1 7 1 1 1 0 6  
-1,-1,-1,-1,0 10 2 1 3 0 2  
-1,-1,-1,-1,1 17 0 1 1 0 5  
-1,-1,-1,-1,2 18 0 2 1 0 4  
-1,-1,-1,0,0 15 1 1 1 0 8  
-1,-1,-1,0,1 14 2 2 3 0 3  
-1,-1,-1,0,2 19 0 3 2 0 4  
-1,-1,-1,1,1 19 1 2 1 0 4  
-1,-1,-1,1,2 20 2 1 1 0 3  
-1,-1,-1,2,2 19 1 1 3 0 2  
-1,-1,0,0,0 16 0 0 2 0 3  
-1,-1,0,0,1 16 1 0 1 0 4  
-1,-1,0,0,2 17 0 2 1 1 4  
-1,-1,0,1,1 21 0 3 1 0 4  
-1,-1,0,1,2 19 0 1 1 1 4  
-1,-1,0,2,2 21 1 2 0 0 3  
-1,-1,1,1,1 23 1 0 0 0 4  
-1,-1,1,1,2 24 1 1 1 0 3  
-1,-1,1,2,2 20 0 1 3 0 3  
-1,-1,2,2,2 21 1 1 0 0 2  
-1,0,0,0,0 15 0 1 0 0 9  
-1,0,0,0,1 22 0 0 0 0 4  
-1,0,0,0,2 17 0 1 0 0 10  
-1,0,0,1,1 19 0 0 1 0 4  
-1,0,0,1,2 20 0 2 1 0 5  
-1,0,0,2,2 21 0 1 1 0 4  
-1,0,1,1,1 18 0 1 0 0 10  
-1,0,1,1,2 26 0 0 0 0 3  
-1,0,1,2,2 23 0 0 0 0 3  
-1,0,2,2,2 22 0 2 0 0 5  
-1,1,1,1,1 17 1 1 0 0 8  
-1,1,1,1,2 23 0 1 0 0 2  
-1,1,1,2,2 21 0 2 1 0 6  
-1,1,2,2,2 24 0 1 0 0 3  
-1,2,2,2,2 24 0 1 0 0 4  
0,0,0,0,0 8 1 2 1 0 9  
0,0,0,0,1 21 1 3 0 0 3  
0,0,0,0,2 16 0 1 0 0 6  
0,0,0,1,1 22 2 4 0 0 2  
0,0,0,1,2 22 0 2 0 0 4  
0,0,0,2,2 18 0 1 0 0 5  
0,0,1,1,1 14 0 2 1 0 9  
0,0,1,1,2 18 1 2 0 0 4  
0,0,1,2,2 20 1 2 0 0 3  
0,0,2,2,2 23 0 1 0 0 1  
0,1,1,1,1 19 0 1 0 0 7  
0,1,1,1,2 23 0 0 0 0 6  
0,1,1,2,2 25 0 1 0 0 2  
0,1,2,2,2 22 0 1 0 0 4  
0,2,2,2,2 23 0 2 0 0 3  
1,1,1,1,1 12 1 1 0 0 10  
1,1,1,1,2 18 1 2 0 0 3  
1,1,1,2,2 20 1 1 0 0 5  
1,1,2,2,2 24 0 2 0 0 1  
1,2,2,2,2 22 0 1 0 0 3  
2,2,2,2,2 11 0 1 0 0 10  

(  indicates New Reduction Heuristic as the best, Reject Region: α = 0.1) 
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