
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2006

Simulation Of Random Set Covering Problems With Known Simulation Of Random Set Covering Problems With Known

Optimal Solutions And Explicitly Induced Correlations Amoong Optimal Solutions And Explicitly Induced Correlations Amoong

Coefficients Coefficients

Nabin Sapkota
University of Central Florida

 Part of the Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Sapkota, Nabin, "Simulation Of Random Set Covering Problems With Known Optimal Solutions And
Explicitly Induced Correlations Amoong Coefficients" (2006). Electronic Theses and Dissertations,
2004-2019. 1032.
https://stars.library.ucf.edu/etd/1032

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Fetd%2F1032&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/1032?utm_source=stars.library.ucf.edu%2Fetd%2F1032&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

SIMULATION OF RANDOM SET COVERING PROBLEMS
WITH KNOWN OPTIMAL SOLUTIONS AND

EXPLICITLY INDUCED CORRELATION AMONG COEFFICIENTS

by

NABIN SAPKOTA
B.E. Regional Engineering College, Tamilnadu, India, 1998

M.S. University of Central Florida, 2003

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in the Department of Industrial Engineering and Management Systems
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Fall Term
2006

Major Professor: Charles H. Reilly

ii

© 2006 Nabin Sapkota

iii

ABSTRACT

 The objective of this research is to devise a procedure to generate random Set

Covering Problem (SCP) instances with known optimal solutions and correlated

coefficients. The procedure presented in this work can generate a virtually unlimited

number of SCP instances with known optimal solutions and realistic characteristics,

thereby facilitating testing of the performance of SCP heuristics and algorithms.

 A four-phase procedure based on the Karush-Kuhn-Tucker (KKT) conditions is

proposed to generate SCP instances with known optimal solutions and correlated

coefficients. Given randomly generated values for the objective function coefficients and

the sum of the binary constraint coefficients for each variable and a randomly selected

optimal solution, the procedure: (1) calculates the range for the number of possible

constraints, (2) generates constraint coefficients for the variables with value one in the

optimal solution, (3) assigns values to the dual variables, and (4) generates constraint

coefficients for variables with value 0 in the optimal solution so that the KKT conditions

are satisfied.

 A computational demonstration of the procedure is provided. A total of 525 SCP

instances are simulated under seven correlation levels and three levels for the number of

constraints. Each of these instances is solved using three simple heuristic procedures. The

iv

performance of the heuristics on the SCP instances generated is summarized and

analyzed. The performance of the heuristics generally worsens as the expected correlation

between the coefficients increases and as the number of constraints increases. The results

provide strong evidence of the benefits of the procedure for generating SCP instances

with correlated coefficients, and in particular SCP instances with known optimal

solutions.

v

To my parents and friends who believed in me

vi

ACKNOWLEDGMENTS

 There were several people that impacted this work with their generous support. I

am truly grateful to my advisor Dr. Charles H. Reilly for his constant support, motivation

and encouragement throughout the research phase of the Ph.D. program. He was the

principal source of inspiration while pursuing my dream of achieving the highest

academic degree. His guidance and optimism gave me enough confidence to sail through

the uncharted territory of research.

 I would also like to thank my friend Mr. Sudhir Shakya for the time we spent

together brainstorming about how to make the software codes foolproof and efficient. I

would also like to thank my friend Mr. Ali Ahmad for his help in several occasions with

his valuable advice regarding research techniques and software tools.

 Last but not the least, I would like to thank my committee members for their

productive advice, as well as, professors and staff members of the Department of

Industrial Engineering and Management Systems at UCF for all the support they have

extended over the years, making my experience at UCF pleasant and fruitful.

vii

TABLE OF CONTENTS

LIST OF FIGURES .. x

LIST OF TABLES.. xii

LIST OF ABBREVIATIONS.. xiv

CHAPTER ONE: INTRODUCTION... 1

Definition of SCP.. 1

Applications of SCPs .. 2

Relevance and Potential Contribution of the Research... 3

CHAPTER TWO: LITERATURE REVIEW.. 6

Background... 7

Implicit Correlation Induction (ICI) Methods .. 8

Explicit Correlation Induction (ECI) Methods ... 11

ECI Procedure for SCP Instances ... 13

Comparison of ICI and ECI Methods ... 13

Algorithms and Heuristics for SCPs ... 15

Simulating Test Problems with Known Optimal Solutions.. 17

CHAPTER THREE: METHODOLOGY ... 19

Karush-Kuhn-Tucker Conditions for SCP.. 20

viii

SCP Generation Procedure Overview... 22

Terminology and Notation.. 22

Four-Phase SCP Generation Procedure .. 23

Phase 1 -Initialization ... 25

Phase 2 - Column generation for variables with optimal value 1 27

Phase 3 - Dual variables assignment and adjustment 37

Phase 4 - Column generation for variables with optimal value 0 53

Discussion... 67

Superfluous Variable Conditions.. 68

Infeasibility Conditions... 69

Calculation of the Number of Constraints .. 71

Consecutive and Unique Values Case .. 73

Consecutive Value Case ... 75

General Case ... 78

Rationale behind Recommended Guidelines .. 79

Value for Adjusted Dual Variable .. 79

Column Generation for Variable with Optimal value 0.................................. 80

CHAPTER FOUR: COMPUTATIONAL STUDIES AND FINDINGS 83

Experimental Setup and Preparation... 83

SCP Coefficient Generation.. 84

J* and m in the Generated SCP Instances ... 87

Other Observations Made during SCP Instances Generation 88

ix

Computational Experiments and Findings.. 89

Drop Heuristic (DH) or Primal Heuristic.. 89

Add Heuristic (AH) or Dual Heuristic.. 89

Add/Drop Heuristic (ADH) or Dual/Primal Tandem Heuristic............................ 90

Relative Error.. 91

Drop Heuristic... 92

Add Heuristic .. 94

Add/Drop Heuristic... 95

Optimality ... 97

Number of discrepancies... 99

CHAPTER FIVE: CONCLUSIONS .. 103

Future Work .. 105

APPENDIX A: AN EXAMPLE OF SCP GENERATION .. 107

APPENDIX B: AVOIDING SUPERFLUOUS VARIABLE CONDITION................. 116

LIST OF REFERENCES.. 123

x

LIST OF FIGURES

Figure 1: Schematic flow diagram of SCP generation procedure..................................... 24

Figure 2: Schematic diagram for initialization phase ... 27

Figure 3: Schematic diagram for the function columnGenerate() 35

Figure 4: Schematic diagram for function nbRowAdjustment() 35

Figure 5: Schematic diagram for generation of columns *j J∈ 36

Figure 6: Dual variable assignment procedure ... 40

Figure 7: Schematic diagram of dual variables checking and adjustment procedure....... 49

Figure 8: Checking possibility of the unique configurations for the columns with jA = k 50

Figure 9: Schematic diagram for generation of columns *\j J J∈ 64

Figure 10: Schematic diagram for function inValidate() ... 65

Figure 11: Schematic diagram for function reArrange() ... 65

Figure 12: Schematic diagram of row sum adjustment .. 66

Figure 13: Schematic diagram of row sums adjustment procedure (second) 67

Figure 14: Average relative error for different correlation levels..................................... 92

Figure 15: Average relative error for Drop Heuristic ... 93

Figure 16: Average relative error for Add Heuristic .. 95

Figure 17: Average relative error for Add/Drop Heuristic ... 96

xi

Figure 18: Average number of discrepancies in solution vectors................................... 100

Figure 19: Count of discrepancies in solution vectors.. 100

xii

LIST OF TABLES

Table 1 Example of π<i> and their ranks ... 41

Table 2 A partial list of cost coefficients and column sums ... 43

Table 3 An example of the initial dual variable assignments ... 51

Table 4 An example showing calculation of q.. 52

Table 5 An example of the dual variable adjustments.. 52

Table 6 Checking possibility of the unique configurations for the columns with jA =6.. 53

Table 7 Maximum possible number of variables for given m and jA 70

Table 8 Configuration of 1s for minm ... 75

Table 9 Experimental factor and their levels .. 84

Table 10 ECI parameters used for SCP generation ... 86

Table 11 Summary of sample coefficient correlations in the SCP instances generated... 86

Table 12 Number of variables with optimal value 1... 87

Table 13 Summary Statistics for number of constraints for SCP instances 88

Table 14 Average relative error for each correlation level for individual heuristics........ 91

Table 15 Average relative errors for Drop Heuristic .. 92

Table 16 Average relative errors for Add Heuristic ... 94

Table 17 Average relative errors for Add/Drop Heuristic .. 95

xiii

Table 18 Counts of optimality achieved for all heuristics .. 98

Table 19 Average number of discrepancies for the heuristics .. 99

Table 20 Summary of alternate optimal solutions found by SCP heuristics 102

xiv

LIST OF ABBREVIATIONS

ADH Add/Drop Heuristic (for set covering problem)

AH Add Heuristic (for set covering problem)

DH Drop Heuristic (for set covering problem)

ECI Explicit Correlation Induction

GAP Generalized Assignment Problem

ICI Implicit Correlation Induction

KKT Karush-Kuhn-Tucker (conditions)

KP01 One Dimensional Knapsack Problem

SCP Set Covering Problem

SVC Superfluous Variable Condition

TSP Traveling Salesman Problem

1

CHAPTER ONE: INTRODUCTION

 The primary objective of this research is to devise a procedure for simulating

random Set Covering Problem (SCP) instances with known optimal solutions and with

specified population correlation among the coefficients. An additional objective is to

develop a software program that will generate random, valid SCP instances given a

specified optimal solution and correlated coefficients simulated based on a desired

population correlation level.

 This chapter begins with an overview of the SCP structure and its common

applications. The chapter also explains the relevance of this research and its potential

contributions to the field of optimization.

Definition of SCP

 Let A = (ija) be a binary m n× matrix and c ()jc= be a positive integer-valued n-

vectorn − . Let the indices of the rows and columns of this matrix be represented by

{1,2,3,..., }I m= and {1,2,3,..., }J n= , respectively. The binary coefficients in each

column of A represent a subset of I . Any column j J∈ covers row i I∈ if ija =1. The

2

cost of including the jth subset in the solution (or cover) is jc . The objective of the SCP is

to choose a minimum-cost collection of subsets whose union covers I.

 SCP may be formulated as follows. Define

1 if subset is included in the cover
0 otherwise j

j
x

⎧
= ⎨

⎩

for all j J∈ . Then a complete mathematical representation of SCP is:

Minimize j j
j J

c x
∈
∑

Subject to the constraints 1ij j
j J

a x
∈

≥∑ for all i I∈ ,

 { }0,1jx ∈ , for all j J∈ ,

where { }0,1ija ∈ ,i I j J∀ ∈ ∈ .

 The first constraint set includes m structural constraints that ensure that every

row i I∈ is covered by at least one subset j J∈ . The second constraint set requires that

each subset is either included in the cover or not. The objective is to find a collection of

columns (subsets) that covers all of the structural constraints at minimum total cost.

Applications of SCPs

 There have been and are many practical applications of SCPs in various

optimization scenarios. Balas and Padberg (1976) provide a bibliography on applications

3

of SCP. According to their paper, some of the diverse SCP application areas are crew

scheduling (e.g., airlines and railroads), airline fleet scheduling, truck delivery, cutting

stock, line and capacity balancing, facility location, capital investment, switching current

design and symbolic logic, information retrieval, marketing and political districting.

Other applications include bus crew scheduling (Smith, 1988), naval vessel scheduling

(Brown, Graves, and Ronen, 1987; Fisher and Rosenwein, 1989), steel mill operations

(Vasco, Wolf, and Stott, 1987), improving wireless sensor network lifetime (Cardei and

Du, 2005), and preference scheduling for nurses (Bard and Purnomo, 2005). Certainly

there have been many applications of SCPs in diverse settings over many years.

Furthermore, there is every reason to think that SCP will continue to be an important

optimization problem.

Relevance and Potential Contribution of the Research

 New algorithms and heuristics to solve optimization problems, including SCP, are

developed on an ongoing basis. Any new solution method should be tested for its efficacy

and, if possible, comparative evaluations with other solution methods for the same class

of optimization problems should be made. This practice would not only determine

whether the newly coined solution procedure is trustworthy, but also would show how its

performance compares to that of existing solution methods. In general, testing of solution

procedures is necessary to determine their practical capabilities and limitations (Reilly,

4

1999).

 Selection of test problem families and their pros and cons have been addressed by

Reilly (1999). He explains that the inferences drawn from computational studies might be

influenced by the family of problems chosen. An adequate number of test problems is

needed to make any inference from a computational study. The limited number of real-

world problems might be overcome by the use of synthetic optimization problems. To

some extent, these problems could be made to resemble real-world problems with an

appropriate selection of an input model for simulating problem instances (Reilly, 1999).

 Research over the last 25 years or so has shown that one of the factors that

influences the efficiency of solution methods is correlation among the objective function

and constraint coefficients. Presumably, the coefficients in practical instances of SCP and

other optimization problems are correlated. Several techniques can be used to induce

correlation among the coefficients. Explicit correlation induction (ECI) is one of the

methods for inducing correlation among the coefficients. ECI and other widely used

methods are discussed in Chapter 2.

 Some of the reasons why this research would be an important contribution in the

field of synthetic optimization problems, and consequently for the optimization field as a

whole, include:

• Synthetic optimization problems with known optima would certainly prove useful

in evaluating the quality of solutions found by heuristics.

• Synthetic SCP problems with known optima and correlated coefficients would

facilitate testing algorithms and heuristics on problems with realistic

5

characteristics.

• Virtually, an unlimited number of SCP test problems with known optima and

correlated coefficients could be simulated.

The organization of this dissertation can be summarized as follows.

 Chapter 2 briefly explains some relevant past research on correlation induction

strategies and their pros and cons. The general overview of algorithms and heuristics for

SCP and a few notable past works in simulating random optimization problems with

known/unknown optimal solutions are also reviewed in this chapter. Chapter 3 is

dedicated to explaining the detailed procedure of generating random SCP instances with

known optimal solutions and correlated coefficients. Chapter 4 summarizes the design

and the results of the computational demonstration performed during the research.

Specifically, the performances of three greedy heuristics on simulated SCP instances with

known optimal solutions and correlated coefficients are reported and analyzed. In

Chapter 5, conclusions drawn from the research, as well as possible extensions for future

work in this area, are reported and discussed.

6

CHAPTER TWO: LITERATURE REVIEW

This chapter discusses research on the generation of synthetic optimization

problems with correlated coefficients. Research on SCP solution methods and generation

of optimization problems with known optimal solution are also reviewed.

Experimenting with simulated test problems is not new, and test problems with

correlated coefficients are becoming increasingly common. For example, researchers

have generated test problems with correlated coefficients under implicit correlation

induction for classical optimization problems such as the 0-1 Knapsack Problem (KP01),

Generalized Assignment Problem (GAP), Capital Budgeting (or Multidimensional

Knapsack) Problem and SCP. Reilly (2006a) stresses that induced correlation levels are

rarely quantified. Instead, inadequate descriptors like “strong”, “weak”, “almost strongly

correlated” and “inversely strongly correlated” are used to characterize the induced

correlation levels.

Reilly (2006a) suggests that generating optimization test problems with correlated

coefficients and conducting experiments with such problems would ultimately contribute

to the science of algorithms that Hooker (1994) proposes. For generating correlated

coefficients, two kinds of methods have been proposed in the literature. In the implicit

correlation induction (ICI) methods, the desired correlation level is not specified;

7

however, some population correlation is implied by specifying parameters of the ICI

problem generation method (Reilly, 1997). In the explicit correlation induction (ECI)

methods, at least a desired population correlation or a joint distribution of coefficient

values is specified. Procedures to induce correlation by these two techniques are

discussed briefly and their pros and cons are considered.

Background

 Let X and Y be random variables representing the values of two types of

coefficients in simulated optimization problems. The correlation measure of interest

between these random variables is the Pearson product-moment correlation given by:

E() E()E() Cov(,)Corr(,)
Var()Var() Var()Var()
XY X Y X YX Y

X Y X Y
−

= =

If the marginal distributions of X and Y are fixed, E()X , E()Y , Var()X and

Var()Y are also fixed. The only way to change Corr(,)X Y is to change E()XY , or the

joint distribution of X and Y. ECI assumes the marginal distributions of X and Y are fixed.

If, on the other hand, the marginal distributions of either or both random variables are

altered as happens in ICI methods, then the resulting correlation level may also be

altered.

Hill and Reilly (2000a) report on a technique for generating correlated

coefficients and quantifying the correlation structure based on a multivariate composite

8

distribution. In this research, however, emphasis will be on bivariate distributions of

coefficient values only, one for cost coefficients and another for the column sums of the

constraint-coefficient matrix, A.

Implicit Correlation Induction (ICI) Methods

 Reilly (1997) defines an ICI method as a problem simulation scheme that induces

correlation among coefficient types through a user’s specification of parameters for the

problem generation procedure. He has quantified correlation levels which otherwise have

only been qualified for various ICI generation methods used to simulate classical

optimization problems. Reilly (2006a) also provides formulas to determine ICI

parameters that would approximate target population correlation levels, thereby enabling

some control over the target correlation in ICI problem generation methods.

 Much attention has been paid to the performance of solution methods on KP01

instances with correlated coefficients. KP01 has the following form:

1

1

Maximize

Subject to ,

n

j j
j

n

j j
j

p x

w x b

=

=

≤

∑

∑

 {0,1}, 1, 2,...,jx j n∈ =

where all 0jp > , all 0 jw b< < and
1

n

j j
j

w x b
=

>∑ .

9

 Martello and Toth (1979, 1997), Martello, Pisinger and Toth (1999, 2000) and

Pisinger (1997) report computational results for simulated KP01 problems on the basis of

qualified correlation levels like “uncorrelated”, “weakly correlated”, “value

independent”, “almost strongly correlated”, “inversely strongly correlated” and “strongly

correlated”. They implement an ICI method, which can be described as follows.

 Let α be a positive integer and δ and γ be nonnegative integers. Let jW be the

random variable representing constraint coefficient values and jP be the random variable

representing objective coefficient values for KP01 instances. Then, the KP01 simulator

looks like:

~ {1,2,..., }

~ { , 1,..... }

~

j j

j j

j j j j

w W U

t T U

p P w t

α

δ δ δ

γ

←

← − − +

← + +

Reilly (1997) provides a formula for the implied population correlation level for the

coefficient generation technique shown above:

2

2

1Corr(,)
4 (1) 1j jW P α

α δ δ
−

=
+ + −

.

 Martello and Toth (1979) use several combinations of δ and γ to yield different

(qualified) correlation levels in KP01 instances. Reilly (1997) shows that the coefficient

correlation is very strong (at least 0.97) for the KP01 instances that Martello and Toth

(1979) and others classify as “weakly correlated”. He also points out that the correlation

is perfect for the instances Martello and Toth (1979) claim to be “strongly correlated”.

Further, it is practically impossible to have a population correlation level of zero with this

10

method as it requires the parameter δ to be + ∞ (Cario, Clifford, Hill, J. Yang, K. Yang

and Reilly, 2002). The effect of changing ICI parameters on the level of correlation has

been demonstrated in Reilly (1997, 2006a). He also provides an expression for

approximating δ if the desired population correlation is ρ :

2 2 21 1 (1)(1) /
2

α ρ ρ
δ

− + + − −
≈ .

 Rushmeier and Nemhauser (1993) generate SCP instances with an ICI method

that can be described as follows:

1

~ Bernoulli()

,

~ { , 1,...... },

ij ij

m

j ij
i

j j j j j

a A d

s a

c C U S S Sω
=

←

=

← +

∑

where d is the expected density of the binary constraint-coefficient matrix and ω is a

positive integer. jS , which is the column sum of binary constraint coefficients, is the

binomial random variable with m trials and success probability d. For this correlation

induction strategy, Reilly (2006a) quantifies the population correlation level between the

objective function coefficients and the column sums in the constraint matrix as:

2 2

3(1)Corr(,) (1)
(1) 4 (1)(4 4 2)j j

dS C
md d d

ω
ω ω ω ω

−
= +

− − + + − +
.

Additionally, he also shows that, with all other ICI parameters kept constant, increasing

any one parameter decreases the implied population correlation. He also provides an

expression for approximating ω if the desired population correlation is ρ for given

11

values of m and d :

()
()

2 2 2

2

(2 4) 6 6(1) 2 12(1) (1)(1)
2 (4) 4 6(1)

m d d d d m
m d d

ρ ρ ρ ρ
ω

ρ
+ − + − + + − − −

≈
− + − −

.

 ICI techniques for GAP instances and Capital Budgeting Problem instances

proposed by several other authors have been analyzed and the correlation levels induced

in the resulting problems have been quantified by Reilly (1997, 2006a).

Explicit Correlation Induction (ECI) Methods

 With an ECI method, either a joint distribution of coefficient values is specified or

a marginal distribution of values for each type of coefficient and a correlation structure

are specified (Reilly, 1999). Nelson (1987) shows how to construct bivariate probability

distributions for dependent random variables with arbitrary marginal distributions and a

feasible correlation level. If (,)g a c+ and (,)g a c− are the maximum-correlation and

minimum-correlation joint distributions for (,)A C , respectively, then two classes of

composite distributions for (,)A C are:

 (,) (1) (,)g a c g a cλ λ− ++ − (2.1)

where 0 1λ≤ ≤ , and

 (1) () () (,) (,)A Cf a f c g a c g a cα β α β− +− − + + (2.2)

12

where , 0α β ≥ , 1α β+ ≤ , and ()Af a and ()Cf c are the marginal distributions of A and

C , respectively. These composite distributions are convex combinations of the extreme-

correlation distributions for (,)A C , and in the case of (2.2), the joint distribution under

independence. Distribution (2.1) is sometimes referred to as an extreme mixture, whereas

distribution (2.2) is referred to as a conventional mixture when either α or β is equal to

zero (Hill and Reilly, 2000b).

 If ρ − and ρ + are the theoretical minimum and maximum correlations possible for

(,)A C , respectively, then families of distribution with any correlation ρ such that

ρ ρ ρ− +≤ ≤ are possible from the composite distribution (2.2). The composite

distribution (2.2) can be rewritten as:

 0 1 2() () (,) (,)A Cf a f c g a c g a cλ λ λ− ++ + , (2.3)

where 0 1 2 1λ λ λ+ + = and 0iλ ≥ for 0, 1, and 2i = .

When 1 0λ = in (2.3), the distribution represents a positively correlated bivariate random

variable with correlation 2λ ρ + . Similarly, when 2 0λ = , the distribution represents a

negatively correlated bivariate random variable with correlation 1λ ρ − (Nelson, 1987).

 Peterson and Reilly (1993), Reilly (1993, 1994), Hill and Reilly (1994) and Cario

et al. (2002) refer to (2.3) as a parametric mixture. This composite distribution (2.3) has

been used as the basis to generate SCP coefficients in this research. For in-depth

knowledge of ECI methods, interested readers are referred to the research cited above.

13

ECI Procedure for SCP Instances

 Let A and C be the random variables with distributions representing the column

sums of the constraint matrix and the objective function coefficients, respectively. Let

()Af a and ()Cf c denote the marginal distributions for the random variables A and C , and

let (,)g a c− and (,)g a c+ be the minimum-correlation and maximum-correlation joint

distributions of A and C , respectively. A procedure for SCP generating coefficients from

the composite distribution shown above is:

a. Generate 1 2 3, , ~ (0,1)u u u U

b. If 1 0u λ≤ then generate 1
1 2()ja F u−← and 1

2 3()jc F u−← independently.

c. If 0 1 0 2uλ λ λ< ≤ + , then generate 1
1 2()ja F u−← and 1

2 2()jc F u−← using common

random numbers (CRN).

d. Otherwise, generate 1
1 2()ja F u−← and 1

2 2(1)jc F u−← − using antithetic random

numbers.

Comparison of ICI and ECI Methods

 In general, ICI and ECI methods provide great opportunities to simulate test

problems for testing optimization algorithms and heuristics. A thorough empirical

evaluation should be based on a variety of test problems. Not enough real problems are

14

available for testing (Moore et al., 1990). Sampling under independence only would not

be sufficient to determine the quality of a solution procedure. Reilly (1991) suggests that

the coefficients in practical optimization problems may not be probabilistically

independent. Therefore, the ICI and ECI methods certainly have opened new possibilities

where a huge number of very large random problems with a wide range of correlation

levels may be generated.

 Following the work by Reilly (2006a) on various ICI methods suggested by many

authors for different discrete optimization problems, users not only can determine the

level of correlation but also can have fairly good control over the induced level of

population correlation under ICI. However, ICI methods have some drawbacks and

Reilly (1997) warns users to have sufficient familiarity with characteristics of practical

problem instances and characteristics of problem instances generated under ICI. It is

practically impossible to have zero correlation in an ICI method (Cario et al., 2002).

Under ICI, population correlation levels can be altered only by altering the parameters of

an ICI method which, in turn, also alters the marginal distributions of the coefficients

values. Therefore, the confounded effects of problem generation parameters and

correlation on algorithm performance should be considered while drawing inferences

from computational experiments. Most ICI methods, as presented in the literature,

generate either positively correlated or negatively correlated coefficients, but not both.

Exceptions include Cario et al., (2002) and Reilly (2006b). Although there are some

shortcomings in the ICI methods, they are very easy to implement and effective at

inducing correlation. They are already widely used in research.

15

Some of the drawbacks encountered in ICI methods are remedied in ECI methods.

One cannot only specify the required population correlation level, but also can

systematically control it. The marginal distributions of the random variables need not be

changed to alter the population correlation. An infinite number of composite distributions

is possible for the same marginal distributions in an ECI method based on (2.3). There is

no confounding effect of marginal distributions and correlation level, so it is easier to

determine the effect of correlation alone on solution method performance. Additionally, it

is possible and straightforward to simulate instances for a wide range (ρ − to ρ +) of

correlation levels with ECI methods.

Algorithms and Heuristics for SCPs

 SCP is well-known to be an NP-hard optimization problem (Karp, 1972). Many

researchers have suggested algorithms and heuristics for unicost SCP instances and non-

unicost SCP instances. Unicost SCPs are those SCPs where all of the cost coefficients in

the objective functions are all one or any other common positive value. The SCP

instances generated in this research are non-unicost instances only because correlation

has no meaning in unicost instances of SCP.

 There are many solution procedures, algorithms and heuristics, suggested and

tested for SCP. A bibliography of heuristics and algorithms developed through the 1980s

is mentioned in Ceria, Nobili, and Sassano (1997). They broadly categorize all the

16

heuristics as greedy heuristics, Lagrangian heuristics, or local heuristics. They also

categorize exact algorithms in terms of their use of optimization approaches such as

cutting-planes, branch and bound, branch and cut, and polynomially-solvable cases.

 A survey of more recent algorithms and heuristics which have been

computationally evaluated is given in Caprara, Toth, and Fischetti (2000). The authors

classify solution procedures broadly under linear programming relaxation, heuristic

procedures, and exact algorithms. Most of the heuristics and algorithms use some kind of

relaxation with a slight variation in optimization techniques. For greedy heuristics alone,

there are nine different criteria for selecting/ deselecting subsets or decision variables. An

interesting heuristic for SCP is the one by Balas and Carrera (1996). The authors report

extensive test results for the problems created by Beasley (1990), Balas and Ho (1982),

and other real-life problem instances. They also report that their heuristic usually found

the optimal solution; however, the Lagrangian heuristic by Beasley (1990) finds better

solutions for 9 out of 35 test problems.

 According to Caprara et al. (2000), popular commercially available integer linear

programming solvers such as CPLEX and MINTO deploy preprocessing based on

heuristics by Caprara, Toth, and Fischetti (1999) and apply LP relaxation. Integer

solutions are determined by using branch-and-bound techniques with smart decision

rules. These solvers are very competitive, in terms of computational time, with any of the

exact algorithms presented in the literature (Caprara et al., 2000). It seems that the

branch-and-bound technique has been the best contender to date, at least as far as exact

solution procedures for SCP are concerned.

17

 In this research, a procedure for simulating SCP instances with known optimal

solutions and specified population correlation levels between the objective function

coefficients and the column sums of the constraint coefficients has been developed. This

new procedure could be incorporated in any computational evaluation of the solution

methods mentioned here.

Simulating Test Problems with Known Optimal Solutions

 The mathematical programming community started using computers to solve

optimization problems but often felt the need for a large number of test problems so that

the validity of the software codes as well as the efficacy of competing algorithms could

be determined. O'Neill (1982) shows that test problems could be generated randomly by

perturbing the problem data of real-world problems. He presents methods to obtain

randomly generated analogs of the real-world problems by randomizing the Boolean

image (0 or 1 element of the constraints matrix) or by perturbing the problem data

(randomizing the elements that are greater than 1 in the constraint matrix) of real-world

linear programming (LP) problems. O'Neill (1982) suggests that randomly generated

analogs of the real-world problems could be used to test the efficacy of the software

codes written for any LP algorithms. However, his technique of generating random

problems is not able to generate problems with known optimal solutions and sometimes

the generated problems are even infeasible.

18

 One of the most studied problems in combinatorial optimization is the Traveling

Salesman Problem (TSP). Arthur and Frendewey (1988) generate symmetric and

asymmetric TSPs with known optimal tours using Karush-Kuhn-Tucker (KKT)

conditions for equivalent 'assignment problem relaxations'. This avoids subtours in the

assignment problem solutions.

 Pilcher and Rardin (1992) also design a problem generation approach based on

the KKT conditions for the TSP. Their approach includes selection of the optimal

solution, randomly generating non-negative dual variables, and finally computing cost

coefficients such that all KKT conditions are satisfied. As the objective function

coefficients are not fixed prior to the generation of a problem instance, there is great

flexibility in choosing the values for the objective function coefficients to force the

problem instance to have all KKT conditions satisfied. Neither Arthur and Frendewey

(1988) nor Pilcher and Rardin (1992) attempt to induce correlation among the

coefficients.

 The present research focuses on generating SCPs with known optima and

specified target (population) correlation between the objective function coefficients and

the corresponding column sums of the constraint matrix. The procedure developed here

offers great promise for evaluating SCP algorithms and heuristics on large instances with

practical characteristics.

19

CHAPTER THREE: METHODOLOGY

 The objective of this research is to devise a procedure for generating synthetic

SCP instances with known optimal solutions and specified target population correlation

between the objective function coefficients and the column sums of the matrix of binary

structural constraint coefficients. This chapter explains the procedure that has been

developed for this purpose. It defines some terms that have been used in the procedure,

explains notations, and discusses observations made during the development of the

methodology. It also highlights the various features and functioning of the software

program coded for this procedure.

 A typical SCP can be mathematically represented as follows. The decision

variables are:

1 if subset is included in the cover
0 otherwise j

j
x

⎧
= ⎨

⎩

for {1,2,3,..., }j J n∈ = . Then, the objective function and the constraints may be

expressed as:

Minimize j j
j J

c x
∈
∑

20

Subject to 1ij j
j J

a x
∈

≥∑ for i I∈ ,

 { }0,1jx ∈ , j J∈ ,

where { }0,1ija ∈ , i I j J∀ ∈ ∈ .

 The procedure that is developed for simulating SCP instances is based on the

Karush-Kuhn-Tucker conditions. It can be seen that generating SCP instances with

specified population correlation among the coefficients complicates the simulation

process.

Karush-Kuhn-Tucker Conditions for SCP

 SCP is a pure binary integer program. The linear programming relaxation of SCP,

SCPR, is:

Minimize j j
j J

c x
∈
∑

Subject to 1ij j
j J

a x
∈

≥∑ for i I∈ (3.1)

 1jx− ≥ − , j J∀ ∈ (3.2)

 0jx ≥ , j J∀ ∈ (3.3)

For the dual of SCPR, there would be m dual variables denoted by 1 2, , , mπ π π for

constraints (3.1) and n dual variables denoted by 1λ , 2λ ,….., nλ for constraints (3.2). The

21

dual of SCPR is:

Maximize i j
i I j J

π λ
∈ ∈

−∑ ∑

Subject to ,ij i j j
i I

a c j Jπ λ
∈

− ≤ ∀ ∈∑ (3.4)

 0iπ ≥ ,i I∀ ∈ (3.5)

 0jλ ≥ j J∀ ∈ (3.6)

The Karush-Kuhn-Tucker (KKT) necessary and sufficient conditions for optimality for

SCPR and its dual are:

• Primal feasibility (Eqs. 3.1, 3.2, and 3.3)

• Dual feasibility (Eqs. 3.4, 3.5, and 3.6)

• Complementary slackness (Eqs. 3.7, 3.8, and 3.9 given below)

The complementary slackness conditions (CSC) in this case may be expressed as follows:

()

1 0, , (3.7)

1 0 , (3.8)

0 , (3.9)

ij j i
j J

j j

j ij i j j
i I

a x i I

x j J

x a c j J

π

λ

π λ

∈

∈

⎛ ⎞
− = ∀ ∈⎜ ⎟

⎝ ⎠

− = ∀ ∈

⎛ ⎞
− − = ∀ ∈⎜ ⎟

⎝ ⎠

∑

∑

Condition (3.9) will sometimes be denoted in matrix form as (jπA − λj- jc) jx for

convenience.

22

SCP Generation Procedure Overview

 This section explains the procedure to generate SCP instances with correlated

coefficients. For SCP, correlation between objective function coefficients and the

corresponding column sums has been induced by Rushmeier and Nemhauser (1993)

using an ICI method. Moore et al. (1990) simulate SCP instances with an ECI

(conventional mixture) approach. In this research, the correlation induction strategy used

is ECI and the optimal solutions are known as well. The problem generation procedure is

based on the KKT conditions and the Strong Duality Theorem, which states that, if

complementary solutions to the primal (that is SCPR) and the dual problems are feasible,

the solutions to both the primal and dual problems are optimal solutions.

Terminology and Notation

 Some of the terminology and notations that have been used in this procedure are:

jA = i j
i I

a
∈
∑ , the sum of the jth column of the binary matrix of structural constraints

coefficients.

iπ = Dual variable corresponding to the ith constraint of SCPR.

jλ = Dual variable corresponding to the upper bound constraint of jx .

J = Set of positions (indexes) of 1s in an optimal solution vector x. If the optimal

23

solution x* is (1 0 1 0 1 0), then *J is {1, 3, 5}.

*
kn = Number of constraint matrix columns such that j J ∗∈ and jA = k. For example,

 *
2n = 3 means there are three columns j J ∗∈ with jA = 2.

kn = Number of constraint matrix columns such that jA = k. For example, 5n = 3 means

 there are three column sums equal to 5.

minm = Minimum number of structural constraints possible for a given optimal solution

 and simulated coefficients.

maxm = Maximum number of structural constraints possible for a given optimal solution

 and simulated coefficients.

m = Actual number of structural constraints that satisfies min maxm m m≤ ≤ .

Furthermore, m =| I |. Note that kn ≥ *
kn k∀ .

Four-Phase SCP Generation Procedure

 This procedure generates random SCP instances with a known optimum and

explicitly induced correlation among the objective function coefficients and column sums

of constraint coefficients. In the first phase, the coefficients are generated, an optimal

solution is selected, and the number of structural constraints is chosen. The constraint

columns for variable with optimal value 1 are constructed in the second phase. The

values of the dual variables are assigned in the third phase. In the final phase, the

24

columns for variables with optimal value 0 are constructed. The phases are designed so

that no trivial preprocessing will effectively reduce the size of the instance. The

schematic flow diagram of this procedure is shown in Figure 1. Each of the phases of this

procedure is described in the following sections.

Begin

Phase 1
Initialization of number of

variables, coefficients, number of
constraints, and solution vector

Phase 2
Column generation
for variables with

indices in J*

Phase 3
Dual variable

assignment and
adjustment

Phase 4
Column generation
for variables with

indices in J\J*

End

Figure 1: Schematic flow diagram of SCP generation procedure

25

Phase 1 -Initialization

1. Generate n random variates from a bivariate distribution with specified correlation

and marginal distributions. One marginal distribution represents the values of the

column sums ()jA of the structural constraints and the other distribution represents

the coefficients in the objective function ()jc .

2. Generate a binary column vector x* with dimension n . Every element of this vector

represents the optimal value of a decision variable. One way to generate x* is to

simulate n Bernoulli trials with probability of success p (i.e., p = Pr(1jx =) for all j).

The expected proportion of decision variables with value 1 in the optimal solution is

then p. (Another option would be to draw np elements from the set J without

replacement. In this case, the proportion of decision variables with value 1 in the

optimal solution is exactly p).

3. Select a feasible number of structural constraints m such that min maxm m m≤ ≤ . The

minimum and maximum possible numbers of constraints can be calculated using the

following formulas:

 () () []
* *

*
min max

: 0 : 0

2 1 1 1
k k

k
k n k n

m k n
> =

= − + − −∑ ∑

*

max j
j J

m A
∈

= ∑

 where maxk = { }*
max j

j J
A

∈
 and mink = { }*

min jj J
A

∈
.The justification of these formulas is

 explained in the Discussion section in this chapter.

26

4. Initialize kn , 1,2,..., max{ }.jj
k A= If k

m
n

k
⎛ ⎞

≥⎜ ⎟
⎝ ⎠

 for every value of kn , go to Step 5.

Otherwise discard x* and go to Step 2.

5. Initialize every element of the constraint matrix, 0 and ija i I j J= ∀ ∈ ∈ . With this

Phase 1 terminates.

 It is recommended to check whether or not, for the selected number of constraints

and the column sums, it is possible to generate the columns uniquely. Step 4 of the

initialization phase checks for every kn , whether there exists enough possible

configurations of 1s. If there is an insufficient number of possible combinations of 1s for

any kn , the procedure regenerates the solution vector x*.

 The schematic diagram of the initialization phase is shown in Figure 2.

27

Begin
 Phase 1

Generate n coefficients for
cj and Aj with specified
population correlation

Create a binary vector x* of size n
representing success (1) or failure (0)

in n consecutive Bernoulli’s trials with
p as the probability of success.

Select the probability p for
variables to have value 1
in the optimal solution

Let k=2

Yes

Yes

No

No

Select the number of
constraints m such that

min maxm m m≤ ≤

End
 Phase 1

Initialize for
1, 2,...,max{ }

k

jj

n
k A=

k=k+1

Initialize all
0 ,ija i I j J= ∀ ∈ ∈

max jj
k A<

k

m
n

k
⎛ ⎞

≥⎜ ⎟
⎝ ⎠

Figure 2: Schematic diagram for initialization phase

Phase 2 - Column generation for variables with optimal value 1

Here are some additional definitions and notations used to explain this procedure.

Notation:

* *\J J J J= − is the set of indices of variables that have value 0 in the optimal solution

28

vector.

*

*
j

j J

A A
∈

= ∑ = sum of jA s for all *j J∈ .

'
jA = the remaining number of 1s still to be assigned in column j , *,j J∈ during the

column generation process. (At the beginning of the process, '
jA = jA .)

*

'
r j

j J

A A
∈

= ∑ . (At the beginning of the process, *
rA A= .)

, if i I∈ , is the Boolean value (true/false) for row i , that indicates whether or not the

corresponding row is a potential recipient of a 1 in column j , *j J∈ . (At the start of the

column generation for *j J∈ , if = 'true' for all i .)

uI = the set of indices of rows that are uniquely covered by exactly one *j J∈ , so that

| uI |= | *J |. (In order to avoid further consideration of these rows for other *j J∈ , their if

values are set to 'false'.)

is = for all ij
j J

a i
∈
∑ . (At the beginning of this phase, is = 0 for all i . After the generation

of a column, is is updated for all i accordingly and used to verify whether the generated

column is a valid column. The generated column is valid if the remaining columns,

j , *j J∈ , can be generated covering all the constraints with at least one constraint

covered uniquely. After the generation of all columns j , *j J∈ , is will equal the left

hand side value of constraint i .) Also, is′ = is , i∀ . If it is determined that a newly

generated column is valid, then the is′ are updated with the is .

29

 Define 0I = { | \ and 0}u ii i I I s∈ = , i.e., the row indices of the currently violated

constraints, 1I ={ | \ and 1}u ii i I I s∈ = , i.e., the row indices of the currently binding

constraints, and 2I ={ | \ and 1}u ii i I I s∈ > , i.e., the row indices of the constraints that are

currently non-binding and satisfied.

 For any variable *j J∈ , only 1jA − 1s are to be assigned in the rows whose

indices are in \ uI I . Let G be the set which stores the possible row indices for

*j J∈ during column generation where ija s can be assigned 1s in the rows \ ui I I∈ .

Basically, G can be considered a sampling bin where 1jA − numbers of row indices from

\ uI I are stored and if they are found to be valid (i.e., 0| |rA I≥), then assignments ija = 1

are performed for all i G∈ . Otherwise, G is discarded and another search for a valid G is

carried out. The condition 0| |rA I≥ ensures that there are enough 1s associated with

variables *j J∈ , that have not yet been considered, left to be assigned to the rows.

 Let 0 1 2, and I I I′ ′ ′ be the exact replicas of 0I , 1I , and 2I respectively, created right

before column generation for some *j J∈ . After the generation of any column, 0I , 1I ,

and 2I are updated based on the is if the column is valid; otherwise, 0I , 1I , and 2I are

restored to their original values that were stored prior to the column generation as

0 1 2, and I I I′ ′ ′ .

 Let be the number of rows that are to be considered for generation of a column

pertaining to any *j J∈ . At the beginning of column generation = m . When any

30

column *j J∈ is to be generated, row 1 is considered and if 1 ' 'f true= for that row, 1 ja is

assigned value 1 with probability as '
jA / . If 1 ja is assigned value 1, both '

jA and are

decreased by 1. Otherwise, only is decreased by 1. If 1 ' 'f false= , then only is

decreased by 1 and row 2 is considered for the assignment and the process continues until

'
jA becomes zero.

 Let b be the current number of constraints that are binding. Similarly, let cb be the

current number of constraints that are satisfied but not binding. Define

{ }*
max maxmin , | |cb m m m J= − − as the maximum number of non-binding rows that can be

generated by the procedure.

 Phase 2 assigns 1s in such a way that all the rows are covered by at least one

*j J∈ and also every *j J∈ covers at least one unique row. At the end of the generation,

the number of non-binding rows is adjusted to have the maximum possible number of

non-binding rows. Since the dual variable corresponding to any non-binding row is 0, this

condition guarantees that 1s can be assigned in that row for any *\j J J∈ without

violating the dual constraints. Although this adjustment is optional, the generation

procedure adopts this scheme so as to limit the number of unsuccessful trials to generate

valid SCP instances.

 The procedure for the column generation for the variables with optimal value 1 is

outlined below. Refer to Figure 5 for a schematic diagram of this procedure.

1. The following values and sets are created and initialized.

31

i. Initialize all if = ‘ true ’, i∀ .

ii. Initialize all si = 0.

iii. Assign rA = *A .

iv. Initialize uI φ= .

2. Consider the first value in *J and let this value be j .

3. Assign i =1 and = m .

4. If if true= , go to Step 5. Otherwise, assign i = i +1, = -1 and go to Step 4.

5. Generate ~ (0,1)u U . If u > /jA , assign i = i +1, = -1 and go to Step 4.

Otherwise,

i. 1ija =

ii. if = ‘ false ’

iii. 1i is s= +

iv. uI = { }uI i∪

v. 1r rA A= −

6. If all indices in *J have been considered, go to Step 7. Otherwise let j be the next

value in *J and go to Step 3.

7. Determine the set \ uI I . Create sets 0I , 1I , 2I based on is and let i is s′ = , i∀ .

8. Consider the first value in *J . Let this value be j .

9. Create the sets 0 0 1 1 2 2, = and I I I I I I′ ′ ′= = .

32

10. Execute the function columnGenerate(). Refer to Figure 3 for a schematic flow

diagram for function columnGenerate().This function is a search technique which

ensures random assignments of 1s for *j J∈ . The sub-steps of this function are:

i. Consider the first value in \ uI I . Let this value be i .

ii. Assign G = φ , L= | \ uI I | and ' 1j jA A= − . '
jA is decremented by 1 each time the

procedure finds a valid row (' 'if true=) for *j J∈ .

iii. Check if ' 'if true= .

a. If yes, generate ~ (0,1)u U . If u ≤ ' /jA , then G = G ∪ { i }, = -1,

'
jA = '

jA -1, is = is +1 and go to Step 10-iv. Otherwise, go to Step 10-iii-b.

b. Else, = -1, consider the next value in \ uI I . Let this value be i and go to

Step 10-iii.

iv. Check if '
jA > 0.

a. If yes, consider the next value in \ uI I . Let this value i and go to Step 10-iii.

b. Else, this procedure terminates.

11. Update 0I , 1I and 2I based on is , i I∈ .

12. If 01 | |r jA A I− + ≥ , 1ija = ∀ i G∈ , i is s′ = , 1r r jA A A= − + and go to Step 13.

Otherwise, restore 0I , 1I , 2I and is based on 0 1 2, , I I I′ ′ ′ and '
is , respectively. Let

G φ= and go to Step 10.

13. Check if 0| |rA I=

33

i. If yes,

a. Assign ' 'if false= ∀ 1 2i I I∈ ∪ .

b. Check if there is any value in *J yet to be considered.

• If yes, go to Step 13-ii.

• Else, go to Step 14.

ii. Otherwise, proceed as follows,

a. Consider the next value in *J . Let this value be j .

b. Update the sets 0 1 2, and I I I′ ′ ′ based on 0I , 1I , and 2I , respectively, and go to

Step 10.

14. Check if cb = max
cb

a. If yes, column generation for *j J∈ terminates.

b. Else, go to Step 15.

15. This step executes the function nbRowAdjustment(). Refer to Figure 4 for the

schematic flow diagram for this function. This function searches for the column

covering the largest number of non-binding rows and assigns a 1 in one of the

corresponding non-binding rows. A 1 is removed from the row with the largest row

sum and it is reassigned in the same column it was removed from but in one of the

non-binding rows. Details of the procedure for this function are outlined below.

i. Determine a column index pertaining to a variable which covers the maximum

number of non-binding rows. If there is a tie, the one with the smaller jc is

34

chosen. Let this column index be
maxj .

ii. Determine the row with the largest row sum. Let this row be r.

iii. Create a list of column indices such that max1 and rja j j= ≠ and randomly select

any value from the list. Let this value be d .

iv. Along column maxj randomly choose row k such that max 1
kj

a = and 1k I∈ .

v. Assign 1, 0kd rda a= = , 1 and 1k k r rs s s s= + = − .

vi. Update 0I , 1I and 2I based on the new is .

vii. If cb = max
cb the function terminates. Otherwise, go to Step 15.

35

' 0?jA =

'

Initialize ,
| \ | and

1
u

j j

G
l I I

A A

φ=
=

= −
If ' 'if true=

'~ (0,1) ju U A≤
-1=

' '

{ }
1

1

1
j j

i i

G G i

A A

s s

= ∪
= −

= −

= +

Figure 3: Schematic diagram for the function columnGenerate()

Begin

Determine a column index
pertaining to a variable which covers

the maximum number of non-
binding rows. If there is a tie, the

one with the smaller cj is chosen. Let
this column index be jmax.

Create a list of column indices such
that arj =1 and j ≠ jmax and randomly

select any one value from this list. Let
this value be d.

Update I1 and I2 based
on changed si.

End

No

Yes

Determine the row with
the largest row sum.

Let this row be r.

max

1

Randomly select a
row in column
such that

k j
k I∈

1, 0
1 and 1

kd rd

k k r r

a a
s s s s

= =

= + = −max
c cb b=

Figure 4: Schematic diagram for function nbRowAdjustment()

36

Is there a next
value in J*? Yes

Yes

No

Call columnGenerate()

No

Yes

No

Yes

Is there a next
value in J*to

consider?
Yes

No

End Yes
Call Non binding row
adjustment procedure,
nbRowAdjustment()

No

Consider the next value in
J*. Let this value be j

01 | |r jA A I− + ≥

Consider the first value in
J*. Let this value be j

Yes

No

0| | ?rA I=

' ' '
0 0 1 1 2 2

Initialize the following sets as
, and I I I I I I= = =

1 2 :if false i i I I= ∀ ∈ ∪

max
c cb b=

Initialize I0 =I\Iu,
I1 = I2 = and

i is s′ =

1,

1
{ }
1

ij i

i i

u u

r r

a f false

s s
I I i
A A

= =

= +

= ∪

= −

~ (0,1)
/j

if u U
A l<=

0 1

2

Update , and
 based on si

I I
I

1 ,

1

ij

i i

r r j

a i G

s s
A A A

= ∀ ∈

′ =
= − +

Restore

based on

0 1 2, , and iI I I s
' ' '
0 1 2, , and iI I I s′

Begin
Take first value

from J* and let this
value be j

Consider next
value from J* and

let this be j.

If fi = ‘true’ No

*
sumA

Create J*

fi=’true’ and si=0 for all i
Assign Ar=A*

Initialize Iu= 1i
m

=
=

1
1

i i= +
= −

Figure 5: Schematic diagram for generation of columns *j J∈

37

Phase 3 - Dual variables assignment and adjustment

 In this third phase, dual variable values are assigned. Then these dual variables

are checked for the possibility of generating a valid SCP instance. If an adjustment is

required, the values of these variables are adjusted. The adjustment of dual variables

arises in two conditions: either it is impossible to assign 1s for at least one *\j J J∈ and

maintain j jcλ− ≤jπA , or there are not enough configurations of 1s so as to have unique

columns. A column is considered unique if it is somehow different from the rest of the

columns with the same jA . The dual variable assignment and adjustment procedures are

explained below. Refer to Figure 6 for a flowchart of the dual variable assignment

procedure.

Dual variable assignment procedure

1. Assign 0 1i ii sπ = ∀ ∋ > . Since only columns pertaining to *j J∈ have been

generated
*

i ij
j J

s a
∈

= ∑ for all i . Therefore, is is the value of the left hand side of

constraint i .

2. Consider the first value in *J and let this value be j .

3. Define a set jM , which stores the row indices such that ija =1 and =1 is . (The set

jM stores the rows indices of the binding constraints covered by jx).

38

4. Assign
| |

j
i j

j

c
i M

M
π = ∀ ∈ . For example if *j J∈ , jc = 65 and jM =3, then

65 for all
3i ji Mπ = ∈ .

5. Check if there is another value in *J to consider.

i. If yes, consider the next value in *J and let this value be j . Go to Step 3.

ii. Otherwise go to Step 6.

6. Create a separate list of ordered dual variables iπ< > such that 1 2 ... mπ π π< > < > < >≤ ≤ ≤ .

7. Create another list based on the list created in Step 6. Every value in this second list is

given by
1

i

r
r

π< >
=

∑ . (For example, in the list of
1

i

r
r

π< >
=

∑ , entry '5' will have the number

that is the sum of first five dual variables in the list of the iπ< > .)

8. The assignment procedure terminates.

 The assignment strategy explained above assumes jλ = 0 for columns *j J∈ .

KKT condition (3.8), requires that jλ =0 for all *\j J J∈ to satisfy ()1 0 j jx j Jλ− = ∀ ∈ .

However, jλ for column, *j J∈ can have any non-negative value if KKT condition (3.9),

0 ,j ij i j j
i I

x a c j Jπ λ
∈

⎛ ⎞
− − = ∀ ∈⎜ ⎟

⎝ ⎠
∑ is satisfied. In doing so, the dual variables iπ s

corresponding to the binding rows covered by *j J∈ column will be greater as,

ij i j j
i I

a cπ λ
∈

= +∑ to satisfy (3.9). In the case where jλ = 0, ij i j
i I

a cπ
∈

=∑ , and iπ s

39

corresponding to the binding rows covered by *j J∈ column will be relatively smaller.

During the generation of column *\j J J∈ , (3.9) is automatically satisfied whereas the

dual constraint j jcλ− ≤jπA should also be satisfied with the valid configuration of 1s.

Any generated column *\j J J∈ is valid if and only if the column is not the replica of

another column and the dual constraint is satisfied. In the case of larger values of iπ s ,

the number of possible combinations of 1s along the columns *\j J J∈ is reduced

compared to the case with relatively smaller values of iπ s (i.e., case where 0jλ =). This

scenario may lead to the case where valid columns *\j J J∈ may not be generated and

regeneration of columns *\j J J∈ should be performed, beginning with the new values

for the dual variables.

 The scheme of assigning jλ = 0 is for all j J∈ is not mandatory. As explained

earlier, the objective here is to minimize the number of regeneration of dual variables by

maintaining higher probability of generating valid columns *\j J J∈ .

40

Begin

End

If si > 1? πi =0 i =i+1Yes

No

If i >m

i =1

No

Yes

Is there a next
value in Mj?

Consider the first value
in J* and let this be j

Consider first value in Mj
and let this value be i.

No

Consider next
value in Mj and let

this value be i.

Yes

Is there a next
value in J*?No

Consider next
value in J* and let

this value be j.
Yes

Create a list of dual
variables in ascending

order (π<i>’s)

No

For this j, create the set Mj
of row indices such that

1 and 1ij ia s= =

Assign

| |
j

i
j

c
M

π =

Create a list such
that ith member of
the list is given by

the formula

1

i

r
r

π< >
=

∑

Figure 6: Dual variable assignment procedure

 Consider a problem with 50 variables and 25 constraints. Suppose that for the

selected solution vector, 11 and 29 are the theoretical minimum and maximum numbers

of constraints possible. After the assignment of dual variables as mentioned above, iπ< > ,

1

i

r
r

π< >
=

∑ and i< > are as follows:

41

Table 1 Example of π<i> and their ranks

i iπ< >
1

i

r
r

π< >
=

∑ i< >

5 0 0 1
6 0 0 2
9 0 0 3

11 0 0 4
12 4 4 5
13 4 8 6
4 19 27 7
7 19 46 8
8 19 65 9

10 19 84 10
17 20 104 11
20 22 126 12
24 22 148 13
25 23 171 14
14 33 204 15
15 33 237 16
18 33 270 17
19 33 303 18
1 37 340 19
2 37 377 20
3 38 415 21

16 43 458 22
21 43 501 23
22 43 544 24
23 48 592 25

The actual row in the constraint matrix that each dual variable corresponds to is the first

column denoted by i in Table 1 and the last column i< > is the ranking number for iπ< > .

Some useful information can be drawn from Table 1:

• There are four rows that have more than one 1 in columns *j J∈ . Though all these

extra 1s can go in one dense row and still yield a valid problem instance, spreading

these 1s over as many rows as possible makes many rows inactive, thereby forcing

42

the corresponding rows to have dual variables = 0.

• The entries in the
1

i

r
r

π< >
=

∑ column give the least possible jc for *\j J J∈ with

jA i=< > to satisfy the dual constraints. For example,
5

1
r

r
π< >

=
∑ = 4 means, if any

*\j J J∈ with 5jA = has jc < 4 in the SCP instance being generated, then it is

impossible to satisfy the dual constraints pertaining to that jx . Furthermore, an SCP

instance cannot be generated if *\j J J∈ and jA = 2, 3 or 4 and jc < 0 (which is not

encountered as all jc > 0).

• For any *\j J J∈ , the number of different configurations of 1s possible can be

deduced. For example, let us consider a partial list of decision variables and their

coefficients shown in Table 2.

Consider 14x , which has 4c = 124 and 4A = 4. In Table 1, 104 is the largest value of

1

i

r
r

π< >
=

∑ less than or equal to 124. This means that there are 11 rows that can have 1s

allowing
11
4

⎛ ⎞
⎜ ⎟
⎝ ⎠

 ways to configure those four 1s. Similarly, for 2x , there are
13
5

⎛ ⎞
⎜ ⎟
⎝ ⎠

configurations of 1s possible. Checking all columns *\j J J∈ for the possibility of

acquiring a unique column has to be ensured prior to generation of columns *\j J J∈ .

43

Table 2 A partial list of cost coefficients and column sums

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

jc 67 157 167 130 50 14 53 52 48 140 169 8 18 124 15 114 116 36 112 185

jA 4 5 5 4 3 3 3 3 3 5 5 5 2 4 2 2 4 5 4 5

 Generally, the adjustment of dual variables is very likely needed when a problem

instance is created for the maximum possible number of constraints because all the dual

variables assume non-negative values since none of the constraints are non-binding. This

kind of configuration of dual variables may make assignment of 1s for some columns

*\j J J∈ impossible without violating the dual constraints.

 The columns pertaining to *\j J J∈ have a typical characteristic when a problem

instance is created with the maximum number of constraints. Every row is binding,

ensuring non-negative values for the corresponding dual variables. As per the assignment

procedure for dual variables explained earlier, in this case, every dual variable

corresponding to some row assumes value /j jc A where *j J∈ covers that row, thereby

making 0j ij i j j
i I

x a cπ λ
∈

⎛ ⎞
− − =⎜ ⎟

⎝ ⎠
∑ . Upon completion of the assignment of dual variables,

if there is no difficulty in assigning 1s for all columns pertaining to *\j J J∈ and

maintaining their uniqueness, the adjustment of dual variables is not necessary.

Otherwise, a procedure for checking and adjusting the dual variables is implemented as

outlined below.

44

Dual variable checking and adjustment procedure

Some new notation used in this procedure includes:

max max{ }jj J
k A

∈
=

q = maximum number of adjustments of dual variables needed for any column

*\j J J∈ in order to satisfy the dual constraint jπA − λj ≤ jc .

w = the number of binding rows covered by a column *j J∈ .

k = jA corresponding to the column *\J J that demands q adjustments.

1. Consider the kn s initialized earlier in Phase 1 Step 4. As defined earlier, kn stores the

count of jA = k for all j J∈ , where 1, 2, , max{ }jj
k A= . It is also possible to have

other 0kn = for k such that max2 k k≤ ≤ .

2. Create a list of min
kc which stores Min jc for jA = k . (Obviously, min

1 0c = as the

generation procedure does not consider columns with jA =1.)

3. Initialize q = 0 and k = 0.

4. Determine the value of q as follows:

i. Assign k = 2.

ii. Find the largest i< > such that
1

i

r
r

π< >
=

∑ ≤ min
kc . If the first value in the

1

i

r
r

π< >
=

∑ column is greater than min
kc , then i< > =0.

45

iii. Calculate the possible number of configurations of 1s as
i
k

< >⎛ ⎞
⎜ ⎟
⎝ ⎠

.

a. If
i
k

< >⎛ ⎞
⎜ ⎟
⎝ ⎠

≥ kn , then check if k = maxk .

• If no, assign k = k +1 and go to Step 4-ii.

• Otherwise go to Step 5.

b. Otherwise, assign q = max{ q ,(k - i< > + 1)}, k = k and check if k = maxk .

• If yes, assign k = k +1 and go to Step 4-ii.

• Otherwise go to Step 5.

5. If q = 0 go to Step 9, otherwise, change the dual variable as follows.

i. Create a list Z of column indices such that *j J∈ and jx covers more than two

binding constraints and is sorted in descending order of number of binding

constraints covered. If there is a tie, then the j with smaller jc comes first in the

list. Check if Z = φ,

a. If yes, go to Step 5-v.

b. Otherwise, go to Step 5-ii.

ii. Let the first value in Z be 1z . Determine the number of binding rows w

corresponding to the column 1z .

iii. If q ≤ w -2 (that is if the number of adjustments required is less than the number

of binding rows covered by
1z

x minus 2), randomly select q binding rows and do

46

the following.

a. Assign the dual variables corresponding to the rows selected above a small

non-negative value say ∂ . (Refer to the Discussion section of this chapter on

the calculation of ∂ .)

b. Reassign the value of the dual variables corresponding to the rows not

selected as
1

() /()zc q w q− ∂ − . Go to Step 9.

iv. If q > w -2 (number of adjustment required is greater than the possible number of

adjustment of dual variables corresponding to the rows with 1s in column of (
1z

x -

2), randomly select w -2 binding rows and do the following.

a. Assign the dual variables corresponding to the rows selected above a small

non-negative value say ∂ .

b. Reassign the value of the dual variables corresponding to the rows not

selected as ((2)) / 2jc w− ∂ − . Decrease q by (2)w − .

c. Z = Z - { 1z }.

d. Check if Z = φ

• If yes, go to Step 5-v.

• Otherwise, go to Step 5-ii.

v. Create a list Z of column indices such that *j J∈ covers exactly two binding

constraints in ascending order of jc . If Z = φ go to Step 5-viii, otherwise, go to

Step 5-vi.

47

vi. Let the first value in Z be 1z .

vii. Select one binding row randomly out of the two binding rows covered by column

1z and do the following:

a. Assign the corresponding dual variable for the selected row a small value ∂ .

b. Assign the dual variable corresponding to the binding row that was not

selected as jc - ∂ .

c. Decrease q by 1.

d. Z = Z-{ 1z }.

e. If q > 0 and Z ≠ φ go to Step 5-vi, otherwise go to Step 5-viii.

viii. Check the following conditions.

a. If q = 0, go to Step 9.

b. If q = 1 and Z = φ, go to Step 6.

c. If q > 1 and Z = φ, go to Step 10.

6. Calculate
1

i

r
r

π< >
=

∑ and i< > for the adjusted dual variables.

7. Create a list of jc s for variables with jA = k for all j J∈ and sort it in descending

order of jc . Create a temporary variable h and initialize h =
k

n− (i.e., k k=).

8. Consider the first value in the list above and do the following:

i. Determine the corresponding i< > for the greatest value in the
1

i

r
r

π< >
=

∑ column

48

that is less than or equal to jc .

ii. Check if
i
k

< >⎛ ⎞
⎜ ⎟
⎝ ⎠

≥ h ,

a. If yes do the following

• Assign h = h -1.

• Check if there is any value of jc in the list created in Step 7.

o If yes, consider next value of jc and go to Step 8-i.

o Otherwise, go to Step 9.

b. Otherwise go to Step 10.

9. The process of the checking and adjustment of the dual variables terminates with

success.

10. Print error message "Dual Variables Assignment unachievable". Restart the

generation process Phase 2 with different J* columns.

 The schematic diagram for checking and adjustment of all dual variables is shown

in Figure 7 and the schematic diagram of checking the possibility of the unique

configurations for columns with jA = k is shown in Figure 8.

49

Begin

k = k+1

Yes

No

No

Yes

Create the set Z of column
indices in J* which cover
more than two binding
constraints in order of
number of binding
constraints covered

No
Consider first value in Z
and let this be z1.

No

Yes

Randomly select q
binding rows covered
by column z1 and assign
corresponding i = .

Randomly select w-2
binding rows covered by
column z1 and assign
corresponding i = .

No

Assign q = q-(w-2)

Z = Z-{ z1}

Determine the number
of binding rows (= w)
covered by column z1

2?if q w≤ −

Create new Z as indices of
columns in J *which covers
exactly two binding rows

if
?if Z φ=

Yes

Consider first value in Z
and let this be z1.

Z = Z-{ z1}

if
0 &

?
q
Z φ

>
≠

Yes

End Yes
No

if
0?q =

if
1 &

?
q
Z φ

=
=

No

No End Process
without success

Yes

End Process
with successYes

Consider the
list of nk.

min
i

<i>
r=1

such that corresponding

Find the largest

k

i

cπ

< >

≤∑

Initialize 0 and
0. Let 2

q
k k

=

= =

?if Z φ=

 0?if q =

Create a list of min
kc

if

(,) kC i k n< > ≥

Assign i corresponding
to binding rows not

selected in the previous
step are assigned as

1
((2) / 2zc w− ∂ −

 and

 =max{ , 1}

 k k

q q k i

Assign =

− < > +

Check the possibility of
unique configurations for
columns with jA k=

Assign i ‘s corresponding
to binding rows not selected

in the previous step as

1
() /()zc q w q− ∂ −

Randomly select one
binding row covered by
column z1 and assign
corresponding i =
Assign q = q-1

∂

Assign i corresponding
to the binding row not
selected in the previous
step as

1
()zc − ∂

if
Max jk A=

Figure 7: Schematic diagram of dual variables checking and adjustment procedure

50

Consider first value of cj
in the list and find
corresponding <i>

Determine <i>
corresponding to

this cj value

Assign
h=h-1

Is there a
next value of cj in

the list?

Consider the
next value of cj

Begin

No

Yes

Yes

End Process
without success

End

No

Assign temporary
variable

kh n=

If
i

h
k

< >⎛ ⎞
≥⎜ ⎟

⎝ ⎠

Create a list of cj for
columns with Aj =

 in descending order of cj

k

Figure 8: Checking possibility of the unique configurations for the columns with jA = k

 To illustrate the assignment of values to the dual variables, an example with 17

constraints and 3 variables with optimal value 1 is presented in Table 3. For this problem,

Table 4 shows that there is one variable with jA = 2 and, with initial dual variable

assignments, there are 105 unique configurations of 1s for this variable. Likewise there

are 4 variables with jA = 3 and, with these dual variable assignments, there are 330

unique configurations of 1s. The same argument is true for variables with jA = 4 and 5 as

well. However, for variables with jA = 6, there are six variables and no possible

configuration of 1s. This condition requires adjustment of the dual variables. The

maximum number of adjustments of dual variables needed (q) in this case is 6n - i< > +1

51

= 6 – 0 +1 = 7. Therefore, seven dual variables have to be adjusted in such a way that

j j jA cπ λ− ≤ is satisfied for the variable with jA =6 and jc = 1 (lowest). In this case that

variable would be 20x . Table 5 shows the problem after the adjustment of 7 dual variables

as per the procedure explained earlier.

Table 3 An example of the initial dual variable assignments

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
cj 52 193 84 64 24 140 108 130 21 12 37 32 171 114 172 62 80 96 85 1

Aj 4 2 3 5 5 3 6 4 6 6 5 5 3 3 6 5 6 4 4 6
xj 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0

si π iπ< >
1

i

k
r

π < >
=

∑ i< >

1 0 1 0 1 28 2 2 1
2 0 0 1 1 12 2 4 2
3 0 0 1 1 12 2 6 3
4 0 0 1 1 12 2 8 4
5 1 0 0 1 2 2 10 5
6 1 0 0 1 2 2 12 6
7 1 0 0 1 2 12 24 7
8 1 0 0 1 2 12 36 8
9 0 0 1 1 12 12 48 9

10 0 0 1 1 14 12 60 10
11 1 0 0 1 2 14 74 11
12 0 1 0 1 28 28 102 12
13 1 0 0 1 2 28 130 13
14 0 1 0 1 28 28 158 14
15 0 1 0 1 28 28 186 15
16 0 1 0 1 28 28 214 16
17 0 1 0 1 32 32 246 17

52

Table 4 An example showing calculation of q

jA kn min
kc

1

i

r
r

π< >
=

∑ i< >
j

i
A

< >⎛ ⎞
⎜ ⎟
⎝ ⎠

j

i
A

< >⎛ ⎞
⎜ ⎟
⎝ ⎠

≥ kn q

2 1 193 186 15 105 TRUE 0
3 4 84 74 11 330 TRUE 0
4 4 52 48 9 126 TRUE 0
5 5 32 32 7 21 TRUE 0
6 6 1 0 0 0 FALSE 7

Table 5 An example of the dual variable adjustments

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
cj 52 193 84 64 24 140 108 130 21 12 37 32 171 114 172 62 80 96 85 1

Aj 4 2 3 5 5 3 6 4 6 6 5 5 3 3 6 5 6 4 4 6
xj 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0

si π iπ< >
1

i

k
r

π < >
=

∑ i< >

1 0 1 0 1 57.2 0.1 0.1 1

2 0 0 1 1 12 0.1 0.2 2
3 0 0 1 1 12 0.1 0.3 3
4 0 0 1 1 12 0.1 0.4 4
5 1 0 0 1 0.1 0.1 0.5 5
6 1 0 0 1 5.8 0.1 0.6 6
7 1 0 0 1 0.1 0.1 0.7 7
8 1 0 0 1 5.8 5.8 6.5 8
9 0 0 1 1 12 5.8 12.3 9

10 0 0 1 1 14 12 24.3 10
11 1 0 0 1 0.1 12 36.3 11
12 0 1 0 1 0.1 12 48.3 12
13 1 0 0 1 0.1 12 60.3 13
14 0 1 0 1 57.2 14 74.3 14
15 0 1 0 1 0.1 57.23 131.5 15
16 0 1 0 1 57.2 57.23 188.8 16
17 0 1 0 1 0.1 57.23 246.0 17

53

Table 6 Checking possibility of the unique configurations for the columns with jA =6

 jA jc

1

i

r
r

π< >
=

∑ i< >
j

i
A

< >⎛ ⎞
⎜ ⎟
⎝ ⎠

Minimum
number of

configurations
required

Flag

1 6 172 131.5 15 5005 6 Ok
2 6 108 74.3 14 3003 5 Ok
3 6 62 60.6 13 1716 4 Ok
4 6 21 12.3 9 84 3 Ok
5 6 12 6.5 8 28 2 Ok
6 6 1 0.6 7 7 1 Ok

 Table 6 shows how the checking procedure works. Each column is checked in

descending order of jc . For example, in the first line, it shows that there are 5005

different configurations of 1s possible and the minimum number of configurations of 1s

required is 6 (because that is the frequency of the variables with jA = 6). Similarly the

second line shows that there are 3003 different combinations of columns possible and the

minimum number of required combinations is 5. When the calculated number of

combinations is greater than or equal to the required number of combinations then one

can proceed with checking of the remaining variables. If, by any chance, this condition is

not met, then the process is terminated and regeneration of the problem beginning with

Phase 2 should be performed.

Phase 4 - Column generation for variables with optimal value 0

 In order to satisfy the dual constraints for columns *\j J J∈ , the configuration of

54

1s should be such that the condition j jcλ− ≤jπA is satisfied for all *\j J J∈ . For such

columns jx = 0 and consequently jλ =0, so in effect, the dual constraint becomes jπA

≤ jc . Independent Bernoulli trials are performed with the success probability equal to the

ratio of the column sum to the number of structural constraints of the primal problem

which have dual variables less than or equal to the corresponding jc . In order to achieve

a column with exactly jA 1s, the success probability is updated depending upon whether

a success was achieved in the previous trial or not.

 Consider a situation where a column to be generated for jA = 4 and the number of

constraints = 25. In this case, the first trial will have probability of jA /25 or 4/25 that the

1 ja will be assigned value 1. If this trial fails, then the probability for the next trial would

be 4/24. But if this trail succeeds, then the probability for the next trial would be 3/24.

This procedure continues and at the end of the 25th trial or sooner, this column will have

exactly four 1s. During this process, in order to minimize the rejection of columns

generated, trials for a row with iπ > jc should be skipped, ija should be set to 0 and the

success probability for the subsequent trial should account for this assignment.

 During the generation of a column, if there is a situation where jλ−jπA > jc then

that column is discarded and a new attempt to generate a column is made. In the event

that some jλ−jπA = jc , then the corresponding jx are potential candidates for optimal

variables in alternate optimal solutions.

55

 The schematic flow diagram of this phase is shown in Figure 9. This procedure is

activated upon verifying that the dual variables have been assigned and that it is possible

to generate columns for all *\j J J∈ .

Some new concepts and notations used to explain this procedure include:

 1 2(, ,...,)mπ π π=π is a vector of dual variables, where iπ is the dual variable

corresponding to the constraints i .

 A stack is a special kind of arrangement of values where any new value can be put

only on the top of the stack. If removal of any value from the stack is required then only

the values from the top can be removed one at a time. This special characteristic is crucial

in assigning 1s for column *\j J J∈ .

 The row stack is the stack of row indices where 1s for column *\j J J∈ can be

assigned. Row stacks for different columns should differ in at least one component. An

invalid stack is the stack of row indices for which 1s can not be assigned for a particular

column *\j J J∈ .

 Let it be the Boolean value (true/false) indicating whether or not row i can be

considered a candidate to accept 1s for column *\j J J∈ . If it = 'false' then ija cannot be

assigned value 1. Every time a new *\j J J∈ is considered for column generation, both

the stacks are initialized as empty stacks and the it s are initialized as 'true'.

 This column generation procedure searches for the combination of 1s and 0s for

any column *\j J J∈ such that the column is unique and the dual constraint pertaining to

56

that variable is also satisfied.

 Let '
jA be the remaining number of 1s still to be assigned for any one

*\j J J∈ during the column generation process. (At the beginning of the process '
jA = jA).

Define '
j

c as jc - πΑj for the column being generated. (At the beginning of the column

generation '
j

c = jc).

 The overall process of column generation for column *\j J J∈ is shown in

Figure 9. The procedure for column generation for variables with optimal value 0 is as

follows:

1. Determine maxk .

2. Consider jA = 2.

3. Create a set 'J that stores the column indices of those columns which have column

sum equal to jA in the ascending order of their jc s for all *\j J J∈ , i.e., '
1j is the

column with the smallest jc among columns with column equal to jA

4. Check if | J' | = 0

i. If yes, go to Step 6-ii.

ii. Otherwise, go to Step 5.

5. Consider the first value in the set 'J and let this value be '
ij .

6. If ' 1
ij

x ≠ , go to Step 7. Otherwise, check if there is a next value in 'J to consider.

i. If yes, let the next value in 'J be '
ij and go to Step 6.

57

ii. Otherwise, check if the column sum of the column being considered is equal to

maxk .

a. If yes, the process terminates as the last variable with column sum as Max

jA has already been generated.

b. Otherwise, jA = jA +1 and go to Step 3.

7. Assign '
' '

i
j j

A A= and '
'

i
j j

c c= . For all rows assign it = ‘true’.

8. Execute function inValidate(). (The schematic flow diagram for this function is

shown in Figure 10.) This function performs the following tasks.

i. Initialize i = 1.

ii. If it = ‘false’, i = i +1 and go to Step 8-iii. Otherwise, do the following:

a. If iπ ≤ '
jc , i = i +1 and go to Step 8-iii. Otherwise, do the following:

• Insert i in the invalid stack.

• Assign it = ‘false’.

• Assign i = i +1 and go to Step 8-iii.

iii. If i > m , insert -1 at the top of the invalid stack and the function terminates.

Otherwise, go to Step 8-ii.

9. Check if there is any iπ , such that it =‘true’.

i. If yes, randomly select any one iπ with corresponding it = ‘true’ and do the

following:

a. Insert i corresponding to this iπ in the row stack

58

b. Assign it = ‘false’ so that this row will not be considered again for this

variable.

c. Decrease the value of '
jA by 1 and '

j
c by iπ . This means, there are ' 1jA − 1s

remaining to assign and not violate the dual constraint. The total sum of the

dual variables corresponding to other rows which would be assigned ' 1jA − 1s

later in this column, should not exceed '
j

c .

d. Go to Step 10.

ii. Otherwise, execute function reArrange(). The schematic flow diagram for this

function is shown in Figure 11. This function performs the following tasks:

a. Remove the topmost value in the invalid stack, which is -1.

b. Remove again the topmost value in the invalid stack and check if this value is

-1. (There can be more than one -1 at the top of the stack)

• If not, assign it = ‘true’ corresponding to the value removed in Step 9-ii-b

and go to Step ii-b.

• Otherwise, remove the topmost value of the row stack (let this value be k)

and do the following:

o Insert k into the invalid stack.

o ' ' 1j jA A= +

o ' '
j j kc c π= +

o Insert -1 at the top of the invalid stack go to Step 10.

59

10. Check if ' 0jA =

i. If not, go to Step 8, i.e., function inValidate() is executed again.

ii. Otherwise, create one temporary binary column vector of size m with all 0's

except in the rows whose indices are in the row stack and go to Step 11.

11. Check for all columns whether this temporary column vector is unique compared to

all the columns with jA = '
ij

A for j J∈ .

i. If yes, then 1s are assigned in the column '
ij at the rows of the primal constraint

matrix whose indices are in the row stack, otherwise 0s are assigned. Discard both

the invalid and row stacks. If there is a next value '
ij in 'J to consider, go to Step

6. Otherwise, go to Step 6-ii.

ii. Otherwise, discard both the row and invalid stacks and go to Step 7 for the

regeneration of column '
ij .

 After coefficients are generated for all the variables, a quick check of the row

sums is performed. This is necessary since a row with row sum 1 must be covered by the

variable which has 1 in that row. This means, by inspection one can tell that this variable

should be in the optimal solution with value 1.

 Under the condition where there are rows with the row sum equal to 1, a

reconfiguration of 1s should be done so that every row sum is at least equal to 2. This can

be done in the following manner. Let a deficient row be the row for which the row sum is

less than 2. Likewise, let a donor row be the row which has the row sum greater than 2.

There may be more than one possible donor row; however, a simple rule can be

60

established to select one row as a donor from the pool of potential donor rows.

1. Initialize the set R φ= .

2. If is < 2, { }R R i= ∪ i I∀ ∈ .

3. If R φ= , go to Step 11-b. Otherwise consider the first value in R and let this

value be 1r and go to Step 4.

4. Create a list Z of the column indices in descending order of j

j

c
A for all

*\j J J∈ except for the column which has
1

1r ja = . (This is because the column

with
1

1r ja = has already 1 in the deficient row.) Let the values stored in this list Z

be 1 2, ,..., kz z z . This is the list of indices of the variables which are potential donor

of 1s for the deficient rows. The column 1z having the highest j

j

c
A will have

better probability of accepting 1s in the deficient row; however, the selection is

restricted by the dual condition jπA − λj ≤ jc . All i which have
1iza =1 and is >2

are the potential donor rows.

5. Consider the first value in Z and let this value be 1z .

6. Initialize a set of indices of donor rows D = φ.

i. Assign i =1.

ii. If
1iza =1 and is >2, then { }D D i= ∪ . Otherwise i = i +1.

iii. If i > m go to Step 7. Otherwise, go to Step 6-ii.

61

7. Consider the first value in D and let this be id .

8. If
1id rπ π≥ , then make

1 1
1r za = ,

1r
s =

1r
s +1,

ids =
ids -1, and

1
0

id za = . Go to step 9.

9. If
kzc − πA 1z ≥

1 ir dπ π− then make
1 1

1r za = ,
1

0
id za = ,

1r
s =

1r
s +1, and

ids =
ids -1 go to

Step 10. Otherwise, { }iD D d= − , check if D φ≠ .

i. If true, consider the first value in D. Let this value be id and go to Step 8.

ii. Otherwise, 1{ }Z Z z= − . If Z φ≠ consider the first value in Z, 1z , and go to

Step 6. Otherwise go to Step 12.

10. Check if the column 1z is unique.

i. If yes, go to Step 11.

ii. Otherwise, assign
1 1

0r za = ,
1r

s =
1r

s -1,
1

1
id za = , and

ids =
ids +1. Check if there

is an another value in D to consider.

a. If yes, consider the next value in D. Let this value be id and go to Step 8.

b. Otherwise, check if there is another value of Z to consider.

• If yes, consider the next value in Z. Let this value be 1z and go to Step

6.

• Otherwise go to Step 12.

11. 1{ }R R r= − and check if R φ≠ ,

a. If true, consider the first value in R. Let this value be 1r and go to Step 4.

b. Otherwise, the process terminates with success.

12. The process terminates with an error message “row-sums adjustment

62

unattainable”.

 The schematic diagram of the procedure to adjust row sums of the constraints

matrix is shown in Figure 12.

 Sometimes, however the procedure explained above can not adjust the 1s along

the *\J J columns. In fact this procedure checks if any 1 along *\J J columns can be

moved to a deficient row along the same column. Generally this method is adequate to

ensure row sums at least equal to 2 after adjustment. If this procedure does not work, a

second row sum adjustment procedure is recommended. The second procedure differs

from the earlier procedure mainly in the scope of change. The second procedure changes

the entire column instead of a single element in a column during the adjustment. The

detail of this procedure is explained below.

1. Initialize the set R φ= .

2. If is < 2, { }R R i= ∪ i I∀ ∈ .

3. If R φ= , go to Step 8-b. Otherwise sort R in decreasing order of the

corresponding dual variables and let the first value be 1r and go to Step 4.

4. Create a temporary list of column indices for *\J J columns such that for any

column j in *\J J , < i > is greater or equal to 1jA − where < i > is the

maximum value for which
1

1
()

i

k j r
k

cπ π< >
=

≤ −∑ . As explained earlier in the dual

variable assignment kπ< > s are the ordered dual variables so that

1 2 ... mπ π π< > < > < >≤ ≤ ≤ .

63

5. Create a list Z of column indices of *\J J columns from the temporary list

created in the previous step 4 such that if these columns are assigned all zeros one

column at a time does not alter the number of deficient rows.

6. If Z φ= , the adjustment process terminates without success. Otherwise, consider

the first value in Z . Let this value be 1z and go the Step 7.

7. Create a new column 1z such that one 1 is assigned in a row 1r and remaining

(
1

1zA −) 1s along the column are assigned in such a way that the corresponding

dual constraint πΑj − λj ≤ jc is satisfied.

8. 1{ }R R r= − and check if R φ≠ ,

a. If true, consider the first value in R. Let this value be 1r and go to Step 4.

b. Otherwise, the process terminates with success.

 The schematic diagram of the second procedure to adjust row sums is shown in

Figure 13.

 With the completion of this phase, the procedure for creating SCP instances with

known optimal solution and correlated coefficients terminates. An example of this SCP

instance generation procedure is illustrated in Appendix A. If the second row sums

adjustment procedure also fails to adjust the row sums it is suggested to regenerate the

problem. Note that the problem generated is still a valid SCP instance, however, the

variables covering the rows with only one 1 should have optimal value 1. To avoid easy

preprocessing it is desired to have at least two 1s in every row of constraint matrix.

64

Begin Determine
 Max Aj for all j

Consider
Aj = 2

if

Max ?j jA A=

Process TerminatesYes

Yes
Is there a next
value in J’ to

consider?

Yes

Call function
inValidate()

Select any πi randomly
corresponding to the

row with ti = true

For all i is
there any πi

corresponding to
the row with

ti = true

Call function
reArrange()

Yes

No

Insert i corresponding
to πi in the row stack

' 0?jA =
No

Create a temporary binary
column vector of size m
with 1's in the rows with
indices in the row stack

Yes

Yes
' 1

row stack
iij

a

i

=

∈
Empty the row and

invalid stack No

No

No

No

Consider
1j jA A= +

No

Yes

Create set J’ for the
considered Aj value

' ' ' ' '
1 2{ , ,., ., }i kJ j j j j=

if
' 1?
ij

x =

Empty the row and
invalid stack

if
'| | 0J =

' '

' '

Assign as follows:
1j j

j j i

A A

c c π

= −

= −

Assign
it false=

Assign as follows:

'

'

' '

'

i

i

j j

j j

i

A A

c c

t true i I

=

=

= ∀ ∈

Consider first value
in J’ and let this

value be '
ij

Consider next value in J’
and let this be '

ij

For all j
 if this column

is unique among
columns with column

sum as
'
ij

A

80

Figure 9: Schematic diagram for generation of columns *\j J J∈

65

Begin Function
Invalid()

Row index i =1

Insert row index i in
invalid stack and
assign ti= ‘false’

If i > m

Insert “-1" in
invalid stack

End
Function

i = i+1No

Yes

Yes

'
ji cπ >

If ti =‘true’
No

Yes

No

Figure 10: Schematic diagram for function inValidate()

Begin
Rearrangement

Remove one index
from the top of the

invalid stack

If index popped
=-1?

Assign ti = ‘true’
corresponding to
the popped value

Remove top index (= p)
from solution stack

Insert this index p into
the invalid stack

Insert -1 at the top
of the invalid stack

Yes

No End
Rearrangement

Remove the
topmost -1 from
the invalid stack

' '

' '

1j j

j j k

A A

c c π

= +

= +

Figure 11: Schematic diagram for function reArrange()

66

Create a a set of indices
of donor rows D which

stores row indices if si>2.

Yes

If
column z1 is

unique?
Yes

End

No

No

No

End Process
with failure

No

Yes

Begin

Consider the first
value in R and let

this be r1.

No

Yes

No

Create the set Z of column
indices in descending order of

cj/Aj except for the column
which has aij =1 in the row r1.

Initalize
R=

Yes

Consider first value in R
and let this value be r1.

If R=

No

Yes
{ }

 2i

R R i
s
= ∪

∀ <

1id rπ π≥

if
R φ=1{ }R R r= −

{ }iD D d= −

if
D φ=

If Z=

Yes

Consider the first
value in Z and let
this value be z1.

No

1{ }Z Z z= − 1 1 1 1

1

1, = +1,

0, 1
i i i

r z r r

d z d d

a s s

a s s

=

= = −

1 1

1

 πA

i

z z

r d

if c

π π

−

≥ −

1 1 1 1

1

0, = -1,

1, 1
i i i

r z r r

d z d d

a s s

a s s

=

= = +

Let the first value
in Z be 1z

Consider a first value in D
and let this be id

Consider the first value in
D and let this be id

Figure 12: Schematic diagram of row sum adjustment

67

Create a new column z1
such that selected rows to

be assigned 1 includes row
r1 and dual constraints for
column z1 is also satisfied.

-

No

End

Yes

No

End Process
with failure

Begin

Consider the first
value in R and let

this be r1.

Initialize
R=

Sort R as per decreasing
order of corresponding
dual variable and let the
first value be r1.

If R=

No

Yes
{ }

2i

R R i
s
= ∪

∀ <

If Z= Yes

Consider the first
value in Z and let
this value be z1.

No

Create a set Z which is the indices of J\J*

columns from the temporary list created in
the previous step such that if these columns
are assigned all zeros one column at a time
does not alter the number of deficient rows.

1{ }R R r= −
if

R φ=

Create a temporary list of indices of
J\J* columns such that < i > is
greater or equal to Aj-1 where < i >
is the maximum value for which

1
1

()
i

r j r
r

cπ π< >
=

≤ −∑

Figure 13: Schematic diagram of row sums adjustment procedure (second)

Discussion

 A number of observations are made during the development phase of this

procedure for generating SCP instances with known optimum solutions and correlated

68

coefficients. For instance, there cannot be any arbitrary number of structural constraints

in an SCP instance for a given optimal solution and constraint-matrix column sums. The

justification for the calculation of minm and maxm is explained with examples. Even after

the values jc , jA and jx have been finalized, prior to the generation of the binary matrix

A, a quick check of the infeasibility condition discussed below should be made. During

the process of generating the binary matrix A, a superfluous variable condition should be

checked for each column generated.

Superfluous Variable Conditions

 The superfluous variable condition (SVC) occurs when one or more variables

designated to have optimal value 1 have no effect on the primal feasibility of the

structural constraints, i.e., one or more variables with indices in *J can assume value 0 in

the optimal solution and yet primal feasibility is unchanged. This may occur when

columns *j J∈ are generated randomly such that they cover all the primal constraints and

any one of the columns *j J∈ is effectively a combination of some other columns *j J∈ .

The details of SVC and how to eliminate this condition during the SCP instance

generation are explained in Appendix B.

69

Infeasibility Conditions

 One type of infeasibility condition occurs when the constraint matrix for SCP

cannot be generated for the given column sums, number of variables with optimal value

1, and number of constraints. Upper and lower bounds on the number of constraints are

important parameters in designing a procedure for generating SCP instances with known

optimal solutions. The following relation must hold true regarding the number of

constraints:

*
j

j J
m A

∈

≤ ∑

In other words,
*

j
j J

A
∈
∑ is the upper limit for the number of constraints. If the chosen

number of constraints exceeds this maximum value then primal infeasibility occurs.

 A second type of infeasibility condition may occur when there are many candidate

decision variables and the configuration of 1s in the constraints matrix cannot attain

uniqueness. For example, a problem with m =6 cannot have jA =2 for more than 15

variables. If it so happens, there will be columns with the same configuration of 1s in the

constraint matrix. Similarly, if m =10 then, there can be at most
10

45
2

⎛ ⎞
=⎜ ⎟

⎝ ⎠
 columns with

jA =2. This means, the number of variables is restricted by the values of jA s and the

value of m .

 The calculation of the maximum number of columns for each discrete value of

column sum can be determined by the combination formula. If there are m constraints,

70

then, for every column with sum jA there are
j

m
A

⎛ ⎞
⎜ ⎟
⎝ ⎠

unique columns possible. For

columns with jA = 2, even m = 8 would allow 28 unique configurations of 1s. In the

m =8 case with jA = 3, there could be 56 ways to configure unique columns. It can be

concluded from this discussion that more constraints allow more decision variables to be

incorporated in the problem. Table 7 shows the maximum number of variables with

different values of jA and m .

Table 7 Maximum possible number of variables for given m and jA

jA m =10 m =15 m =20 m =22 m =25
1 10 15 20 22 25
2 45 105 190 231 300
3 120 455 1140 1540 2300
4 210 1365 4845 7315 12650
5 252 3003 15504 26334 53130
6 210 5005 38760 74613 177100
7 120 6435 77520 170544 480700
8 45 6435 125970 319770 1081575
9 10 5005 167960 497420 2042975

10 1 3003 184756 646646 3268760
11 1365 167960 705432 4457400
12 455 125970 646646 5200300
13 105 77520 497420 5200300
14 15 38760 319770 4457400
15 1 15504 170544 3268760
16 4845 74613 2042975
17 1140 26334 1081575
18 190 7315 480700
19 20 1540 177100
20 1 231 53130
21 22 12650
22 1 2300
23 300
24 25
25 1

71

 A question may arise as to whether m or n should be set first. It is suggested to

set n first and check whether unique columns with the given set of jA values may be

generated for the chosen number of constraints as is done in the procedure outlined

earlier in this chapter.

Calculation of the Number of Constraints

 The maximum and minimum numbers of constraints are functions of the number

of decision variables with optimal value 1 and their column sums. An important

assumption in the derivation of the range of the number of constraints is that the decision

variables with optimal value 1 should each cover at least one unique row of the constraint

matrix. Setting 0jx = for any *j J∈ would result in the violation of the primal feasibility

of SCP. Additionally, the configuration of 1s in columns *j J∈ should not encounter the

SVC.

 Let, maxk = { }*
max j

j J
A

∈
 as before and mink = { }*

min jj J
A

∈
.

The maximum number of constraints can be calculated as:

*
max j

j J

m A
∈

= ∑

The formula above suggests that each optimal variable can possibly cover as many

unique rows as the corresponding column sum. For example, consider the example given

72

below. Assuming a problem has 5 optimal variables with the column sums as 1, 2, 3, 4

and 5. In this case, maxk = 5 and mink = 1 which implies max 15m = . In the example matrix

given below, only columns in *J have been shown. Here, it is impossible to add even a

single row that would be covered by one of the variables with optimal value 1. This

means 15 (1+2+3+4+5) is the upper limit on the number of structural constraints for this

example. If we forcefully add any row in the matrix below and are still able to maintain

the uniqueness of columns in *J and also are able to avoid encountering SVC condition,

then we are actually formulating a problem instance with different column sums. In

essence, the number of constraints in the matrix below is 15 and any endeavor to increase

that number would change their column sums. This is important as this procedure of

generating SCP instances uses predetermined column sums as input.

1 0 0 0 0
0 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 1 0
0 0 0 1 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

73

 In the matrix shown above, any row or column can be interchanged to have many

unique configurations.

 Next various configurations of *J are considered for determining the minimum

numbers of constraints.

Consecutive and Unique Values Case

 Suppose that
max

* * * *
1 2 3 1kn n n n= = = = = .

Consider a problem with maxk =2. Then A (for only *j J∈) must be

1 0 0 1 1 0 1 0 1 0
0 1 or 1 0 or 0 1 or 1 0 or 0 1
0 1 1 0 1 0 0 1 0 1

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Basically, all the matrices shown above are obtained by interchanging rows or columns.

(The number of possible configurations increases drastically when there are more

variables or rows). Here, the minimum number of constraints is given by 1 + 2 = 3.

 Now, consider a problem with maxk = 3. Then, A (for only *j J∈) may be

1 0 0 1 0 0 1 0 0 0 1 0 0 1 0
0 1 0 0 1 1 0 1 1 0 1 1 0 1 0

 or or or or 0 1 1 0 1 0 0 0 1 0 0 1 1 0 0
0 0 1 0 0 1 0 1 0 0 1 0 0 0 1
0 0 1 0 0 1 0 1 0 1 0 0 1 1 0

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

There are other instances of A possible by swapping any two rows or columns in the

74

matrices shown above. However, it is evident that, in every case, *
3n has one row covered

by *
2n such that only two rows are added with the addition of new variable with

corresponding *
3n =1. Here the minimum number of constraints is 5 (1+2+2) where the 1

represents the row corresponding to an optimal variable with jA =1, the first 2 represents

the rows corresponding to an optimal variable with jA =2 and the final 2 corresponds to

the additional rows that must be added to include a column with jA =3.

 Any variable with optimal value 1 and column sum = jA can have a maximum

of 1jA − rows with 1s such that the same rows have 1s in the columns for another optimal

variable or combination of other optimal variables. With this notion, a table has been

built below which shows how 1s could be configured in the *J columns in an instance

with the minimum number of constraints possible.

 In Table 8, it is shown how 1s could be distributed for any maxk to have the

minimum number of constraints when the values *
kn s are consecutive and unique. For

maxk = 2, the first shaded cell represents a row contributed by a variable with 1jA = and

the second shaded cell represents two rows contributed by another variable with 2jA = .

Therefore, for maxk = 2, all rows are uniquely covered by two variables. For maxk = 3, with

the addition of a variable with 3jA = , there cannot be a 1 in the row where there is a 1

contributed by the variable with 1jA = . However, there can be at most one 1 in the same

rows where there are 1s contributed by the variable with 2jA = . Therefore, the variable

75

with 3jA = can have 2 rows uniquely covered. The minimum number of constraints

possible in this case is 5. Similarly, the table also shows the minimum number of

constraints for any maxk value, which is the sum of the values in the shaded squares up to

that particular column. By induction, min max2 1m k= − .

Table 8 Configuration of 1s for minm

Consecutive and unique k
maxk 2 3 4 5 6 7 8 9 10 11 12 13 14 15 minm

2 1 + 2 3
3 1 2 5
4 1 1 2 7
5 1 1 1 2 9
6 1 1 1 1 2 11
7 1 1 1 1 1 2 13
8 1 1 1 1 1 1 2 15
9 1 1 1 1 1 1 1 2 17

10 1 1 1 1 1 1 1 1 2 19
11 1 1 1 1 1 1 1 1 1 2 21
12 1 1 1 1 1 1 1 1 1 1 2 23
13 1 1 1 1 1 1 1 1 1 1 1 2 25
14 1 1 1 1 1 1 1 1 1 1 1 1 2 27
15

1 1 1 1 1 1 1 1 1 1 1 1 1 2 29

Consecutive Value Case

 If * 1kn ≥ for max1 k k≤ ≤ , then for each * 1kn ≥ , there must be at least one row added

in the constraint matrix. Consider the examples shown above for the consecutive and

76

unique case of *
kn s and calculate the minimum number of constraints in each of the cases

when one or more * 1kn ≥ . Recall the case of maxk =2 and * *
1 2 1n n= = :

1 0
0 1
0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Now, consider the case for maxk =2 and *
2 2n = , i.e., there are two variables with optimal

value 1 for which 2jA = . The portion of the constraint matrix for the variables with

optimal value 1 would look like

1 0 0 1 0 0
0 1 1 0 1 0

 or
0 1 0 0 1 1
0 0 1 0 0 1

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

.

The second matrix here is just the first matrix with the second and third rows swapped.

The additional variable with 2jA = has added one more row in the constraint matrix.

 What happens if there is a different repetition pattern? Suppose that *
1n =2 and

*
2 3n = . Then the two possible configurations of the five columns corresponding to

variables with optimal value 1 are:

1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0 0
0 0 1 1 1 0 0 1 0 0

 or
0 0 1 0 0 0 0 1 1 1
0 0 0 1 0 0 0 0 0 1
0 0 0 0 1 0 0 0 1 0

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

.

77

There are many more instances of the matrices shown above that could be realized by

swapping two rows or two columns. The minimum number of constraints is greater by

the total number of repetitions than it is in the case where there are no repetitions among

*
kn values at all. In the consecutive and unique values of *

kn s case, for maxk =2,

min max2 1m k= − only. Since in this consecutive case, there might be some repetitions of

*
kn s, and each repetition should be accounted for by the formula. A similar empirical

formula to that derived above could be used with the additional terms to account for the

repeated *
kn s. The modified expression for calculating the minimum number of

constraints becomes:

() ()
*

*
min max

: 1

2 1 1
k

k
k n

m k n
>

= − + −∑

Some calculations of the minimum numbers of constraints in the examples above using

this new formula are shown below.

 maxk =2 and *
2 2n =

() ()
*

*
min max

: 1

2 1 1

2*2 1 (1 1) (2 1)
4

k

k
k n

m k n
>

= − + −

= − + − + −
=

∑

The second example with *
1n =2, *

2n =3.

() ()
*

*
min max

: 1

2 1 1

2*2 1 (2 1) (3 1)
6

k

k
k n

m k n
>

= − + −

= − + − + −
=

∑

78

This formula also applies to the cases of consecutive and unique *
kn values.

General Case

 This is the most general case where * 1kn ≥ for max1 k k≤ ≤ . As explained earlier, if

every variable with a value 1 covers at least one unique row of the constraint matrix, then

SVC is avoided. In the minimum constraint condition for continuous cases, exactly one

row is covered by a variable with optimal value 1 except when there is a variable with

optimal value 1 and the corresponding
max

* 1kn = . In general, there would be a reduction of

as many rows as the number of *
kn =0 such that max1 k k≤ ≤ . So, the final formula for all

cases could be written as,

() ()
* *

*
min max

: 0 : 0

2 1 1 [1]
k k

k
k n k n

m k n
> =

= − + − −∑ ∑

The final term in the formula applies to any *
kn s (max1 k k≤ ≤) that have value zero. For

every instance of *
kn s max(1) 0k k≤ ≤ = , this term adds 1 and ultimately the total number

of cases of zero-valued *
kn s is deducted from the calculation for the consecutive values

case. For example, let us consider maxk =4, where *
kn s for k = 1, 3 and 4 have one

repetitive instances. The minimum number of constraints in this case is 10. Similarly,

applying the formula for the situation, where maxk =4, and * *
1 22, 0,n n= = *

3 2,n = and

*
4 2n = , the minimum number of constraints is

79

() ()
() () () []

* *

*
min max

: 0 : 0

2 1 1 [1]

(2*4 1) 2 1 1 1 2 1 1
8

k k

k
k n k n

m k n
> =

= − + − −

= − + − + − + − −

=

∑ ∑

Rationale behind Recommended Guidelines

 There are several guidelines and recommendations made during the different

phases of the problem generation procedure explained in this chapter. This section

explains the rationale behind two of the recommended guidelines adopted for the SCP

instance generation procedure.

Value for Adjusted Dual Variable

 During the dual variable adjustments, ∂ (a small non-negative value) is assigned

to the adjusted dual variable so that 1s can be assigned in the column *\j J J∈ such that

the dual constraint corresponding to the column being generated is satisfied. There are, in

fact, a range of values for ∂ that can be used in the generation procedure. The range of

values for ∂ depends on the marginal distributions of objective function coefficients and

the column sums and the target population correlation between these coefficients.

However, the safest value can be determined by considering the worst case scenario.

 The safest value for ∂ is the value which, when assigned to any non-negative

80

dual variable during the adjustment procedure, ensures that the row corresponding to the

adjusted dual variable can be assigned 1s in a column pertaining to columns *\j J J∈ .

For any column *\j J J∈ , the worst case will be the case when the corresponding jc is

the smallest value and the jA is the highest among all jA s. Generally, this case is more

likely while generating coefficients from the minimum correlation joint distribution;

however, this condition is also possible whenever coefficients are generated under

independence based on a composite joint distribution.

 Assigning higher values of ∂ may not ensure the adjustment of dual variables will

be effective. For example, there might be a case where one or more columns *\j J J∈

have jc s lower than ∂ . If these columns require adjustments of the dual variables and the

dual variables are adjusted with the larger ∂ , this adjustment would be ineffective for

those columns with jc < ∂ . Therefore, the safest maximum value of
Min
Max

j

j

c
A

∂ = and the

smallest possible value for ∂ is 0.

Column Generation for Variable with Optimal value 0

 It is recommended that for columns *\j J J∈ one should begin in the ascending

order of jc if there are several columns with the same jA s. For example, if there are five

columns such that *\j J J∈ with jA =k, then the column generation should begin from

81

the smallest jc to the largest jc . This rule is not mandatory; however, it eliminates the

possibility of running out of the possible configurations of 1s for some column *\j J J∈

despite dual variables assignments that ensure there exist enough configurations of 1s for

the column sums generated.

 For example, suppose 1x and 2x have optimal value 0 with jA = 3 and their jc s

are 7 and 42, respectively. The dual variables corresponding to 6 primal constraints are 0,

0, 6, 10, 12 and 13. After the assignment of dual variables it was determined that 1x can

have one possible configuration of 1s while 2x can have 20 different configurations of 1s.

In this case, if the suggestion to generate the column with the smallest jc is not adopted

and 2x is generated first, then there is a 1/20 chance that 2x will have its 1s assigned in

the rows with corresponding dual variables as 0, 0 and 6. This is the only configuration

that 1x can assume, and this assignment will make the column, pertaining to 1x impossible

to be generated.

 This kind of situation where a unique column satisfying its dual constraint is

impossible to generate may arise even when there are several columns with the same jA .

Upon randomly generating columns with larger jc s, it may so happen that the valid

configurations of 1s for one or several columns with smaller jc are taken by columns

with larger jc s thereby making columns with smaller jc s impossible to generate with

valid configurations of 1s.

 In the next chapter, a computational demonstration of this procedure for

82

generating SCP instances with known optimal solution and correlated coefficients is

summarized and analyzed.

83

CHAPTER FOUR: COMPUTATIONAL STUDIES AND FINDINGS

 A computer software program was developed for the SCP generation procedure

using the MATLAB® language. A total of 525 SCP instances were generated and solved

using three simple greedy heuristics. This chapter summarizes the observations made

during the generation process of SCP instances. This chapter also explains the

experimental setup, observations made about the SCP instances generated, and

computational results for the quality of the solutions found by the three SCP heuristics.

Experimental Setup and Preparation

 The SCP instances were created with 100 variables each. The probability that a

decision variable assumes value 1 in the optimal solution was set to 0.15 for each

variable. Two factors were controlled for the purpose of generating SCP instances: the

number of constraint and the population correlation between the objective function

coefficients and the column sums of the constraints matrix. A total of seven target

population correlation levels and three levels for the number of constraints were

considered. For each combination of factor levels, a total of 25 SCP instances were

generated. The number of decision variables with optimal value 1 is kept constant for the

84

corresponding instances across all factor level combinations. For example, the number of

variables with optimal value 1 in the first instance for each of the 21 factor level

combinations is the same. This is also the case for the second instances for each of the 21

factor level combinations, and so on. Table 9 shows the two factors and their levels with

the notations that will be used in summarizing the findings.

Table 9 Experimental factor and their levels

Correlation levels Constraints

Groups G1 G2 G3 G4 G5 G6 G7

Actual number Level ρ − -⅔ ρ − -⅓ ρ − 0 ⅓ ρ + ⅔ ρ + ρ +

 min max0.8 0.2m m+⎡ ⎤⎢ ⎥ R1
 min max0.5 0.5m m+⎡ ⎤⎢ ⎥ R2
 min max0.2 0.8m m+⎡ ⎤⎢ ⎥ R3

SCP Coefficient Generation

 For computational demonstration purposes, the following distributions were

chosen for the coefficients’ values. The objective function coefficients are distributed as

~ {24,25,...,176}jC U , and the column sums of the constraint matrix are distributed as

~ {2,3,...,10}jA U . Therefore, E() 100jC = and E() 6jA = . Since there are 153 values for

ρ − ρ + ρ +

85

the objective function coefficients and nine possible values for the column sums of the

constraint matrix, the maximum possible population correlation with these distributions is

2

2

153 9 1. 0.993829
9 153 1

ρ + −
= =

−
.

It follows that the minimum possible population correlation is 0.993829ρ − = − .

 As shown in Table 9, for each correlation level, a total of 75 SCP instances (25

instances for each of 3 levels for the number of constraints) are needed. Since each

instance has 100 variables, a total of 7500 pairs of coefficients are needed for each

correlation level. For each decision variable a set of three random numbers are used to

generate correlated coefficients by the ECI method as explained in Chapter 2. This was

achieved by generating 21 streams of random numbers of length 7500 using MATLAB®.

The composite distribution

0 1 2() () (,) (,)A Cf a f c g a c g a cλ λ λ− ++ +

is used to induce correlation among the SCP coefficients. For any correlation ρ such that

ρ ρ ρ− +< < , there are an infinite number of such composite distributions. To identify the

composite distributions used for this demonstration, a scheme suggested by Reilly

(2006b) is used. Specifically, the weights for the composite distributions are:

()
()

0

1

2

(1 | | /)

1 (| | / 1) / / 2

1 (| | / 1) / / 2

λ ψ ρ ρ

λ ψ ρ ρ ρ ρ

λ ψ ρ ρ ρ ρ

+

+ +

+ +

= −

= + − −

= + − +

86

where 0 1ψ≤ ≤ . In this demonstration, 0.5ψ = was used consistently so that a median

level of independent sampling is expected in the SCP instances simulated for each

correlation level. Table 10 shows the different composition weights 0 1 2(, ,)λ λ λ used for

each of the target correlation levels (ρ).

Table 10 ECI parameters used for SCP generation

Correlation G1 G2 G3 G4 G5 G6 G7
ρ -0.99383 -0.6626 -0.3313 0 0.33128 0.66255 0.99383

0λ 0 0.16667 0.33333 0.5 0.33333 0.16667 0

1λ 1 0.75 0.5 0.25 0.16667 0.08333 0

2λ 0 0.08333 0.16667 0.25 0.5 0.75 1

 Table 11 shows some descriptive statistics for the sample correlations induced

among the SCP coefficients for each target population correlation level.

Table 11 Summary of sample coefficient correlations in the SCP instances generated

 G1 G2 G3 G4 G5 G6 G7
Target correlation -0.9938 -0.6626 -0.3313 0 0.33128 0.66255 0.99383
Mean -0.99383 -0.66854 -0.33505 0.01863 0.30993 0.64663 0.99392
Std. deviation 0.00088 0.08347 0.12573 0.10140 0.13802 0.09693 0.00078
Max -0.99053 -0.49768 0.06024 0.32531 0.58332 0.84689 0.99547
Min -0.99536 -0.82875 -0.53159 -0.18532 -0.04048 0.30230 0.99169
Range 0.00483 0.33107 0.59183 0.51063 0.62380 0.54459 0.00378

Note that the means of the sample correlations are normally close to the target

87

correlations. The variability in the sample correlations increases generally as the absolute

value of the target correlation decreases. This is attributed to the proportion of coefficient

pairs generated under independent sampling.

J* and m in the Generated SCP Instances

 The number of variables with optimal value 1 is kept constant for the same SCP

instance (first, second, etc.) across all factor level combinations. Table 12 shows the

number of variables with optimal value 1 for the SCP instances generated for every one

of the 21 factor combinations.

Table 12 Number of variables with optimal value 1

Problem Instances *| |J
1 to 5 12 18 16 15 15
6 to 10 14 14 14 16 17
11 to 15 18 15 12 17 18
16 to 20 14 17 14 18 16
21 to 25 14 14 17 13 13

 The number of constraints for each SCP instance depends on the values of the

coefficients generated and the level of the number of constraints, R1, R2 or R3. Table 13

shows the summary statistics for the number of constraints generated for each factor level

combination.

88

Table 13 Summary Statistics for number of constraints for SCP instances

Constraints Level R1 Constraints Level R2 Constraints Level R3 Correlation
level Mean Max Min Range Mean Max Min Range Mean Max Min Range

G1 38.5 47 31 16 58.7 73 45 28 81.7 106 62 44
G2 37.9 46 29 17 59.2 74 39 35 81.2 105 62 43
G3 37.5 45 29 16 56.2 70 43 27 79.2 109 59 50
G4 37.5 45 30 15 59.8 77 47 30 80.3 102 59 43
G5 37.1 46 26 20 58.0 78 39 39 78.6 101 64 37
G6 36.7 44 30 14 55.7 68 40 28 78.7 104 58 46
G7 37.3 46 29 17 55.7 68 40 28 79.7 98 56 42

Other Observations Made during SCP Instances Generation

 It was observed that only 30 instances out of 525 required two attempts or more to

generate one or more *J columns. The average of the maximum numbers of attempts for

a single column for these 30 instances was 6.56. Similarly, 22 out of 525 required more

than 1 attempt to generate one or more *\J J columns. The maximum number of attempts

to generate a *\J J column for these 22 instances was 2.

 Out of 525 instances of SCP generated, 56 instances required the execution of the

row sum adjustment procedure. Out of these 56 instances, 39 instances were successfully

adjusted by row sum adjustment Procedure 1 while the remaining 16 instances were

adjusted by the row sum adjustment Procedure 2. Only in one case did both the

procedures fail to adjust the row sums, and hence, that instance was regenerated.

89

Computational Experiments and Findings

 The SCP instances generated were solved using three greedy heuristics: the Drop

Heuristic (DH), the Add Heuristic (AH), and the Add/Drop Heuristic (ADH). The

following sections briefly explain the procedure for these heuristics.

Drop Heuristic (DH) or Primal Heuristic

 This heuristic assumes all variables have value 1 initially. In every iteration, the

variable with the highest cost and which would not violate primal feasibility if it were set

to 0 is deselected, or “dropped”. The procedure terminates when no more variables may

be dropped without violating primal feasibility. Since this procedure begins with a

feasible solution, DH may be considered a primal-based procedure.

Add Heuristic (AH) or Dual Heuristic

 This heuristic adds a variable with value one to a partial solution. The variable

selected is the one for which the cost per new row covered is the minimum. This process

is repeated until primal feasibility is achieved, i.e, until all rows are covered. Since the

procedure begins without having an established feasible solution, AH may be considered

a dual-based procedure.

90

Add/Drop Heuristic (ADH) or Dual/Primal Tandem Heuristic

 ADH is the tandem combination of the two heuristics AH and DH mentioned

above. The final solution obtained from AH is checked by DH for any possible variables

that can be dropped. ADH terminates when none of the variables in the current solution

can be dropped without causing infeasibility. This heuristic is generally better than the

two heuristics mentioned above. Clearly, it can never be worse than AH.

 Two primary statistics were collected for each heuristic solution found: the

solution value and the corresponding solution vector. Three secondary statistics were then

derived from the primary data to measure the quality of the solutions found by the three

greedy heuristics:

1. Relative error: This is the ratio of the heuristic solution value divided by the

optimal value, minus 1. Mathematically, relative error = * 1heurZ
Z

− , where heurZ is

the solution value associated with the heuristic solution and *Z is the optimal

solution value.

2. Optimality: This is the Boolean value (0 (no) or 1 (yes)) indicating whether the

heuristic solution is also an optimal solution.

3. Number of discrepancies: These are the counts of differences in the values of the

decision variables in the solution vector given by a heuristic compared to the

values of the same decision variable in the known optimal solution vector.

91

Relative Error

 Table 14 shows the average relative errors for all three greedy heuristics across all

target population correlation levels. It shows that the relative error tends to increase with

the increase in population correlation among the coefficients and clearly it is the highest

for the maximum correlation condition. Additionally, Table 14 suggests that, among the

three greedy heuristics, ADH is better than AH and AH is better than DH. This

observation is also evident from the graphical presentation in Figure 14.

 With the summary statistics shown in Table 14 and Figure 14, it is quite evident

that the population correlation does matter as far as the quality of the solution given by

the heuristics are concerned. These results do not consider the effect of the number of

constraints on the quality of the heuristic solution found for the SCP instances generated.

How the number of constraints affects the quality of the solution for individual heuristics

is explained in the following sections.

Table 14 Average relative error for each correlation level for individual heuristics

Correlation DH AH ADH
G1 10.16% 6.22% 1.67%
G2 13.28% 7.35% 2.50%
G3 14.54% 6.12% 1.87%
G4 16.48% 8.37% 3.05%
G5 17.91% 9.48% 3.97%
G6 19.28% 10.90% 5.12%
G7 22.11% 20.39% 11.01%

92

0.00%

5.00%

10.00%

15.00%

20.00%

G1 G2 G3 G4 G5 G6 G7

Correlation Levels

DH AH ADH

R
el

at
iv

e
Er

ro
r

Figure 14: Average relative error for different correlation levels

Drop Heuristic

 Summaries of the average relative errors for DH are shown in Table 15 and

Figure 15.

Table 15 Average relative errors for Drop Heuristic

Constraints Level Correlation
R1 R2 R3

Grand
Average

G1 0.00% 8.88% 21.60% 10.16%
G2 2.99% 11.64% 25.22% 13.28%
G3 5.29% 11.92% 26.43% 14.54%
G4 7.13% 12.55% 29.76% 16.48%
G5 7.65% 14.45% 31.61% 17.91%
G6 9.05% 17.32% 31.46% 19.28%
G7 9.55% 21.16% 35.61% 22.11%

93

 It is observed that, for each level of the number of constraints, the relative error

gradually increases with the population correlation levels. It was also observed that the

average relative error for the SCP instances with a high number of constraints (level R3)

is always larger than that of the other two levels of the number of constraints. Constraints

level (R1) has the lowest relative error across all correlation levels. DH performs

consistently worse than the other two greedy heuristics, and it performs worst when the

correlation level and the number of constraints are at the maximum levels.

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

G1 G2 G3 G4 G5 G6 G7

Correlation Levels

R1 R2 R3

R
el

at
iv

e
Er

ro
r

(D
ro

p
H

eu
ris

tic
)

Figure 15: Average relative error for Drop Heuristic

94

Add Heuristic

 Summaries of the average relative errors for AH are shown in Table 16 and

Figure 16. The average relative errors increase with the increase in the number of

constraints across all correlation levels; however, the differences in average relative

errors for constraints level R3 and constraints level R2 with the same correlation level are

not as great as in the case of DH, except for the correlation level G7. The average relative

errors for constraints level R3 are not consistently greater than the average relative errors

for constraints level R2 as seen in the case of DH. Instead, most of the differences in the

average relative errors are less than 1% for constraints levels R2 and R3. The slight

apparent improvement in performance for correlation level G3 is likely due to natural

variation (and to, a lesser extent, the way the number of variables with optimal value 1

was held constant for the first, second, etc instances across all factor level combinations).

Table 16 Average relative errors for Add Heuristic

Constraints Level Correlation
R1 R2 R3

Grand
Average

G1 4.66% 7.07% 6.92% 6.22%
G2 5.12% 8.36% 8.56% 7.35%
G3 4.87% 7.50% 5.98% 6.12%
G4 5.64% 9.68% 9.80% 8.37%
G5 6.61% 11.77% 10.06% 9.48%
G6 7.21% 13.19% 12.30% 10.90%
G7 14.56% 20.39% 26.23% 20.39%

95

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

G1 G2 G3 G4 G5 G6 G7

Correlation Levels

R1 R2 R3

R
el

at
iv

e
Er

ro
r

(A
dd

 H
eu

ris
tic

)

Figure 16: Average relative error for Add Heuristic

Add/Drop Heuristic

 Summaries of the average relative errors for ADH are shown in Table 17 and

Figure 17.

Table 17 Average relative errors for Add/Drop Heuristic

Constraints Level Correlation
R1 R2 R3

Grand
Average

G1 0.29% 2.16% 2.57% 1.67%
G2 0.46% 3.72% 3.31% 2.50%
G3 0.17% 3.79% 1.66% 1.87%
G4 0.68% 3.43% 5.05% 3.05%
G5 1.02% 5.84% 5.05% 3.97%
G6 1.16% 7.46% 6.75% 5.12%
G7 2.46% 9.69% 20.87% 11.01%

96

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

G1 G2 G3 G4 G5 G6 G7

Correlation Levels

R1 R2 R3

R
el

at
iv

e
Er

ro
r

(A
dd

/D
ro

p
H

eu
ris

tic
)

Figure 17: Average relative error for Add/Drop Heuristic

 The effect of the number of constraints is very evident for the correlation level

G7. The average relative error for constraints level R3 is slightly smaller than the average

relative error for constraints level R2 for correlation levels G2, G3, G5 and G6. However,

the average relative errors for the rest of the correlation levels are consistent with those of

the other two heuristics. This heuristic is the best of the three heuristics considered here

in terms of the average relative error. ADH has shown average relative errors less than

8% for all correlation levels except G7, much better than what was observed for the other

two heuristics.

97

Optimality

 For each correlation and number of constraints combination, counts of the number

of times optimality was achieved were recorded for each heuristic. Table 18 shows the

summary of the number of times each of the three heuristics achieved optimality.

 AH, which performed better in the case of the average relative error was found to

be the worst of all when it comes to the number of times it found the optimal solution

value. Out of 525 SCP instances, AH found the optimal value only twice.

 DH, which was the worst heuristic as far as relative error is concerned, performed

slightly better as it found optimal solutions for all 25 SCP instances for the minimum

population correlation level and for one instance with correlation level G2 with the

constraints level R1.

 ADH found a solution with the optimal value 147 times. Most interestingly, it

found the optimal solution value more often for constraints levels R1 and R3 than for

constraints level R2 across all correlation levels. The cause of this phenomenon should be

determined through additional experimentations.

98

Table 18 Counts of optimality achieved for all heuristics

Constraints Level
Heuristic Correlation

Level R1 R2 R3
Grand
Total

G1 25 0 0 25
G2 1 0 0 1
G3 0 0 0 0
G4 0 0 0 0
G5 0 0 0 0
G6 0 0 0 0

DH

G7 0 0 0 0
DH Total 26 0 0 26

G1 1 0 0 1
G2 0 0 0 0
G3 1 0 0 1
G4 0 0 0 0
G5 0 0 0 0
G6 0 0 0 0

AH

G7 0 0 0 0
AH Total 2 0 0 2

G1 13 1 18 32
G2 10 1 16 27
G3 13 1 17 31
G4 5 1 14 20
G5 6 1 16 23
G6 4 0 9 13

ADH

G7 1 0 0 1
ADH
Total 52 5 90 147

99

Number of discrepancies

 Table 19 summarizes the average number of discrepancies for all the heuristics

for all correlation levels. Figure 18 shows the same results in graphical form. The average

numbers of discrepancies between the heuristic solution vector and the optimal solution

vector was highest for DH and they increase as the correlation level increases. The same

trend was evident for AH and ADH, except for the correlation level G3, where a slight

dip in the average number of discrepancies is observed.

 Table 19 Average number of discrepancies for the heuristics

Correlation DH AH ADH
G1 14.51 5.92 3.72
G2 18.68 7.37 5.00
G3 20.43 6.64 4.49
G4 21.39 7.95 5.29
G5 22.11 8.67 6.09
G6 22.69 9.49 7.07
G7 23.29 17.72 12.83

 Figure 19 shows the total number of discrepancies for all three heuristics across

all combinations of correlation levels and number of constraints levels. It is evident from

Figure 19 that the average number of discrepancies almost always increases with the

correlation levels and peaks at G7 correlation level for each level of number of

constraints for all the heuristics.

100

0

5

10

15

20

25

G1 G2 G3 G4 G5 G6 G7

Correlation levels

DH AH ADH

Av
er

ag
e

nu
m

be
 r

of
 d

is
cr

ep
an

ci
es

Figure 18: Average number of discrepancies in solution vectors

0

100

200

300

400

500

600

700

800

C
or

re
la

tio
n

G
1

G
2

G
3

G
4

G
5

G
6

G
7

G
1

G
2

G
3

G
4

G
5

G
6

G
7

G
1

G
2

G
3

G
4

G
5

G
6

G
7

Constraints
level

R1 R2 R3

Levels of correlation and number of constraints

DH AH ADH

C
ou

nt
 o

f d
isc

re
pa

nc
ie

s

Figure 19: Count of discrepancies in solution vectors

101

 The results and findings presented in this chapter illustrate that the population

correlation level between the objective function coefficients and the column sums of the

constraints matrix and the level of the number of constraints affect the relative error of

the heuristic solutions, the number of times an optimal solution is found by the heuristics

and the discrepancies between the heuristic and the optimal solution vectors. ADH is the

best performing heuristic overall. Relative errors for AH are smaller than those for DH;

however, DH finds more optimal solutions than AH, especially for correlation level G1.

 The results for the three heuristics show that fewer optimal solutions and lower-

quality heuristic solutions are found as the correlation between SCP coefficients

increases. Additionally, it appears more likely that an optimal solution will be found if

there are relatively few or relatively many constraints, especially for ADH.

 Table 20 summarizes the number of alternate optimal solutions found by the

heuristics. Out of 1575 heuristic solutions (525 solutions x 3 heuristics), 35 solutions

found by the heuristics are alternate optimal solutions. DH and AH never found alternate

optimal solutions except for correlation level G1 and constraint level R1. DH found 12

alternate optimal solutions and AH found only one alternate optimal solution; in all cases,

the alternate optimal solutions were found for G1 and R1 combinations. ADH found

alternate optimal solutions up to correlation level G6 for constraint level R1.One instance

of alternate optimal solutions was found for each of the G3-R3 and G5-R2 combinations.

Table 20 also shows the clear trend that the number of alternate optimal solutions

102

decreases as the coefficients correlation increases or the number of constraints increases.

Table 20 Summary of alternate optimal solutions found by SCP heuristics

Constraint Levels Heuristic Correlation
Level R1 R2 R3

Grand
Total

G1 12 0 0 12
G2 0 0 0 0
G3 0 0 0 0
G4 0 0 0 0
G5 0 0 0 0
G6 0 0 0 0

DH

G7 0 0 0 0
AH Total 12 0 0 12

G1 1 0 0 1
G2 0 0 0 0
G3 0 0 0 0
G4 0 0 0 0
G5 0 0 0 0
G6 0 0 0 0

AH

G7 0 0 0 0
DH Total 1 0 0 1

G1 6 0 0 6
G2 4 0 0 4
G3 4 0 1 5
G4 2 0 0 2
G5 2 1 0 3
G6 2 0 0 2

ADH

G7 0 0 0 0
ADH Total 20 1 1 22

 In the next chapter, conclusions drawn from the research, as well as possible

extensions for future research in this area, are reported and discussed.

103

CHAPTER FIVE: CONCLUSIONS

 This chapter summarizes the objective and findings of this research. It also

outlines some recommendations regarding future research that might extend this work.

 This study clearly shows that SCP instances with known optimal solution and

with induced target population correlation between objective function coefficients and the

column sums of constraint coefficients can be simulated. In order to simulate SCP

instances with known optima and specified coefficient correlation, the usual problem

generation process must be modified significantly.

 This research clearly shows that correlation does matter as far as the quality of the

solutions found by heuristics for SCP is concerned. In this study, three greedy heuristics,

AH, DH, and ADH, were used to solve the simulated SCP instances for seven different

levels of population correlation ranging from the minimum to the maximum correlation

possible. The computational results presented in Chapter 4 show that the relative errors of

the solutions provided by the heuristics increase with increases in the population

correlation between objective function coefficients and the column sums of the

constraints matrix.

 This study also shows that the likelihood of finding a non-optimal solution

increases with the level of coefficient correlation. Out of the three heuristics used in the

104

study, even the best among the three, ADH, struggles to find the optimal solution when

the target population correlation increases to the maximum.

 Another important finding of this study is that the number of constraints also

affects the quality of the solutions found by the heuristics. For each of the heuristics, the

relative error typically increases as the numbers of constraints increases for the same

correlation level. So it is fairly safe to conclude that the SCP instances with higher

population correlation between the coefficients and a higher number of constraints

present greater challenges for SCP heuristics.

 Another unexpected finding of this research is that the range for the number of

constraints for simulated SCP instances with known optimal solutions depends on the

value of the constraint column sums and the known optimal solution. Whenever, a certain

number of variables have been selected as variables with optimal value 1, the range for

the feasible number of constraints in an SCP instance that can be generated with the

coefficients in hand is restricted. The feasible range for the number of structural

constraints m , min maxm m m≤ ≤ can be calculated using the following formulas:

 () () []
* *

*
min max

: 0 : 0

2 1 1 1
k k

k
k n k n

m k n
> =

= − + − −∑ ∑

*

max j
j J

m A
∈

= ∑

where maxk = { }*
max j

j J
A

∈
 and mink = { }*

min jj J
A

∈
. The justification for these formulas is

given in the Discussion section in Chapter 3.

105

Future Work

 This endeavor has added knowledge to the existing body of knowledge in the

field of optimization, particularly in the area of generating random problems with known

optimal solutions. It is also hoped that this will help researchers to develop new

methodologies to generate random problems with known optimal solutions for other

classes of optimization problems. This research has opened new research opportunities.

Outlined below are some of the areas which could be extensions of this research.

1. It is suggested to investigate the performance of SCP heuristics on SCP instances

generated with different marginal distributions for the coefficients. Distributions

could be of the same family with different parameters, or they could be of

different family of distributions or combinations of both.

2. The effect of ψ , a measure of the relative proportion of independent sampling,

on the quality of the solutions found by SCP heuristics could be investigated. In

this research, ψ =0.5 is used to generate objective function coefficients and

column sums of the constraints matrix. It is suggested to investigate the

performance of SCP heuristics for different values of ψ as it can assume any real

value between 0 and 1.

3. In this research, three greedy heuristics for SCP are used to demonstrate the

efficacy of the procedure to generate SCP instances with known optimal solution

and explicitly induced correlation between objective function coefficients and

106

column sums of the constraints matrix. It is suggested to investigate the

performance of other SCP heuristics on the quality of the solution. Additionally,

the relationship between the number of constraints and the number of optimal

solutions found with ADH merits further investigation.

4. This research has shown that SCP instances with known optimal solutions and

specified coefficients correlation can be simulated. It is suggested that the lessons

learned from this could be extended to other class of optimization problems to

randomly generate test problems with known optimal solution and correlated

coefficients. Because of the long standing interest in KP01, it is recommended

that a procedure for simulating correlated KP01 instances with known optimal

solution be developed.

107

APPENDIX A:
AN EXAMPLE OF SCP GENERATION

108

 An example is shown to demonstrate how a 25-variable SCP instance with a

predetermined solution and correlated coefficients is generated. The distributions selected

for the cost coefficients (C) and column sums (A) are:

()Cf c = Uniform {1, 2, ..., 200} is the marginal distribution of cost coefficients, and

()Af a = U+V is the marginal distribution of column sums of the constraints matrix,

where U ~ Uniform {1, 2, 3} and V~ Uniform {1, 2, 3}.

 The target population correlation chosen was 0.5. The composite distribution

0 1 2() () (,) (,)A Cf a f c g a c g a cλ λ λ− ++ + was used to generate coefficients under ECI where

() ()A Cf a f c is the joint distribution under independence, (,)g a c− is the minimum

correlation distribution for (A, C), and (,)g a c+ is the maximum correlation distribution

for (A, C).

 Given the marginal distributions of the coefficient values and the target

population correlation, 0λ = 0.084608, 1λ = 0.207696, and 2λ = 0.707696 were selected

to characterize the composite distribution of (A, C). 25 values of (A, C) were generated

and a solution vector was selected. The number of constraints was chosen to be 20.

 The following 6 tables progressively show the generation of an SCP instance

through different phases of the generation process, including:

• the generation of "unique" ones in the constraint matrix (Table A.1),

• the generation of the rest of the entries in the columns of the variable with optimal

value 1 (Table A.2),

• the initial arrangement of dual variables (Table A.3),

109

• the adjustment of dual variable values (Table A.4),

• the generation of coefficients in the remaining columns (Table A.5), and

• the adjustment of row sums (Table A.6).

The sample correlation for the coefficients generated is 0.422.

110

Table A. 1 Generation if Iu

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
cj 62 163 13 187 16 23 18 53 61 101 86 182 199 46 90 179 81 148 163 143 95 193 110 11 66
Aj 3 3 4 6 6 2 6 3 3 4 4 6 6 3 4 6 4 5 5 5 4 6 4 6 3
xj 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

i si
1 1
2 1 1
3 0
4 0
5 1 1
6 1 1
7 0
8 1 1
9 1 1
10 1 1
11 1
12 0
13 0
14 0
15 0
16 0
17 0
18 0
19 0
20 0

Table A.1 shows that the rows 2, 5, 6, 8, 9 and 10 are now covered uniquely by 4 9 25 6 11 2, , , , , and ,x x x x x x respectively.

111

Table A. 2 Generation of columns for *j J∈

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
cj 62 163 13 187 16 23 18 53 61 101 86 182 199 46 90 179 81 148 163 143 95 193 110 11 66
Aj 3 3 4 6 6 2 6 3 3 4 4 6 6 3 4 6 4 5 5 5 4 6 4 6 3
xj 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

i si
1 1 0 0 0 0 0 1
2 0 1 0 0 0 0 1
3 0 1 0 0 0 0 1
4 0 0 0 0 0 1 1
5 0 0 0 1 0 0 1
6 0 0 0 0 0 1 1
7 0 0 0 1 0 0 1
8 0 0 1 0 0 0 1
9 0 0 0 0 1 0 1

10 1 0 0 0 0 0 1
11 1 0 0 0 0 0 1
12 0 1 1 0 0 0 2
13 0 0 0 0 1 0 1
14 0 1 0 0 0 0 1
15 0 1 0 0 0 0 1
16 0 1 0 0 0 0 1
17 0 0 0 0 0 1 1
18 0 0 0 1 0 0 1
19 0 0 0 0 1 0 1
20 0 0 0 0 1 0 1

112

Table A. 3 Initial dual variable assignments

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
cj 62 163 13 187 16 23 18 53 61 101 86 182 199 46 90 179 81 148 163 143 95 193 110 11 66
Aj 3 3 4 6 6 2 6 3 3 4 4 6 6 3 4 6 4 5 5 5 4 6 4 6 3
xj 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
i si

πi

1

i

r
r

π< >
=
∑ <i>

1 1 0 0 0 0 0 1 54.33 0 1
2 0 1 0 0 0 0 1 37.4 20.33 2
3 0 1 0 0 0 0 1 37.4 40.66 3
4 0 0 0 0 0 1 1 22 61 4
5 0 0 0 1 0 0 1 20.33 82.5 5
6 0 0 0 0 0 1 1 22 104 6
7 0 0 0 1 0 0 1 20.33 125.5 7
8 0 0 1 0 0 0 1 23 147 8
9 0 0 0 0 1 0 1 21.5 169 9

10 1 0 0 0 0 0 1 54.33 191 10
11 1 0 0 0 0 0 1 54.33 213 11
12 0 1 1 0 0 0 2 0 236 12
13 0 0 0 0 1 0 1 21.5 273.4 13
14 0 1 0 0 0 0 1 37.4 310.8 14
15 0 1 0 0 0 0 1 37.4 348.2 15
16 0 1 0 0 0 0 1 37.4 385.6 16
17 0 0 0 0 0 1 1 22 423 17
18 0 0 0 1 0 0 1 20.33 477.33 18
19 0 0 0 0 1 0 1 21.5 531.66 19
20 0 0 0 0 1 0 1 21.5 586 20

113

Table A. 4 Dual variable adjustments

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
cj 62 163 13 187 16 23 18 53 61 101 86 182 199 46 90 179 81 148 163 143 95 193 110 11 66
Aj 3 3 4 6 6 2 6 3 3 4 4 6 6 3 4 6 4 5 5 5 4 6 4 6 3
xj 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

πi

1

i

r
r

π< >
=
∑

< i >

i si
1 1 0 0 0 0 0 1 54.33 0 1
2 0 1 0 0 0 0 1 93.35 0.1 2
3 0 1 0 0 0 0 1 0.1 0.2 3
4 0 0 0 0 0 1 1 32.95 0.3 4
5 0 0 0 1 0 0 1 30.45 0.4 5
6 0 0 0 0 0 1 1 0.1 0.5 6
7 0 0 0 1 0 0 1 0.1 0.6 7
8 0 0 1 0 0 0 1 23 0.7 8
9 0 0 0 0 1 0 1 42.9 23.7 9

10 1 0 0 0 0 0 1 54.33 54.15 10
11 1 0 0 0 0 0 1 54.33 84.6 11
12 0 1 1 0 0 0 2 0 117.55 12
13 0 0 0 0 1 0 1 0.1 150.5 13
14 0 1 0 0 0 0 1 0.1 193.4 14
15 0 1 0 0 0 0 1 93.35 236.3 15
16 0 1 0 0 0 0 1 0.1 290.63 16
17 0 0 0 0 0 1 1 32.95 344.96 17
18 0 0 0 1 0 0 1 30.45 399.3 18
19 0 0 0 0 1 0 1 42.9 492.65 19
20 0 0 0 0 1 0 1 0.1 586 20

114

Table A. 5 Generation of columns for *\j J J∈

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
cj 62 163 13 187 16 23 18 53 61 101 86 182 199 46 90 179 81 148 163 143 95 193 110 11 66
Aj 3 3 4 6 6 2 6 3 3 4 4 6 6 3 4 6 4 5 5 5 4 6 4 6 3
xj 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

i si πi
1 0 1 0 1 54.33
2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 3 93.35
3 0 0 1 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 0 9 0.1
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 3 32.95
5 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 30.45
6 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 1 8 0.1
7 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 0 9 0.1
8 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 4 23
9 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 4 42.9

10 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 5 54.33
11 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 3 54.33
12 0 0 0 1 0 1 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 8 0
13 1 0 0 0 1 0 1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 8 0.1
14 0 0 1 1 1 0 1 0 0 1 0 1 0 1 0 1 1 0 0 1 0 0 0 1 0 11 0.1
15 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 3 93.35
16 1 0 0 1 1 0 1 0 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0 1 0 11 0.1
17 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 2 32.95
18 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 5 30.45
19 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 6 42.9
20 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 6 0.1

πAj 43 163 0.4 187 0.6 23 0.5 43 61 97 86 64 152 23 77 157 31 140 127 108 94 117 94 1 66 6 0.1

115

Table A. 6 Adjustment of row sums

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
cj 62 163 13 187 16 23 18 53 61 101 86 182 199 46 90 179 81 148 163 143 95 193 110 11 66
Aj 3 3 4 6 6 2 6 3 3 4 4 6 6 3 4 6 4 5 5 5 4 6 4 6 3
xj 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

I si πi
1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 54.33
2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 3 93.35
3 0 0 1 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 0 9 0.1
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 3 32.95
5 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 30.45
6 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 1 8 0.1
7 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 0 9 0.1
8 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 4 23
9 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 3 42.9

10 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 5 54.33
11 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 3 54.33
12 0 0 0 1 0 1 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 8 0
13 1 0 0 0 1 0 1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 8 0.1
14 0 0 1 1 1 0 1 0 0 1 0 1 0 1 0 1 1 0 0 1 0 0 0 1 0 11 0.1
15 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 3 93.35
16 1 0 0 1 1 0 1 0 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0 1 0 11 0.1
17 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 2 32.95
18 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 5 30.45
19 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 6 42.9
20 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 6 0.1

πAj 43 163 0.4 187 0.6 23 0.5 43 61 97 86 64 152 23 77 157 31 140 127 108 94 117 94 1 66 6 0.1

116

APPENDIX B:
Avoiding Superfluous Variable Condition

117

 The superfluous variable condition (SVC) occurs when two or more variables a

SCP instance would have the same contributions to feasibility in the structural constraints

if selected for the optimal solution. For example, if variables 1x and 2x cover exactly the

same rows, then one of them is superfluous. It is impractical to consider both variables

regardless of whether their costs in the objective function are the same or different.

1 0 0 1 1
0 1 1 0 1
0 1 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 For illustration purposes, a binary matrix A with five variables and 6 structural

constraints is shown above. Variables 2x and 3x have the same contribution to feasibility

in the structural constraints. The optimal solution for this problem includes either 2x , 4x

and 5x or 3x , 4x and 5x . One of the variables, either 2x or 3x , need not be considered at

all. It is practical to remove the one with the higher cost in this situation. When

simulating SCP instances, it is possible to avoid such a situation.

 One might argue about the status of 1x here. The only constraint covered by 1x is

the first constraint, which is also covered by both variables 4x and 5x which each have

value one in the optimal solution. Since this is a small problem, visual inspection might

indicate that 1x is superfluous, but as the problem size increases, there might be a

possibility that the first row is covered by 1x and the remaining rows now covered by 4x

118

and 5x will be covered by some other variables such that the combined cost in the

objective function is less than that what it would have been if 4x and 5x had been

selected.

 In the example above, 1x has column sum equal to 1, however in the generation

procedure it is assumed that every variable has corresponding column sums greater than

or equal to 2. The example above is for illustration purposes only and the key point here

is, as long as each variable covers constraints differently, it can be considered a valid

candidate as a decision variable.

SVC for variable with optimal value 1

 Since the SCP generation procedure assumes the optimal solution beforehand, it is

not sufficient for columns in *J to have configurations of 1s uniquely different from

those of the rest of the columns. As the columns in *J correspond to decision variables

with value 1 in the optimal solution, any *
jx j J∋ ∈ whose value is changed to 0 should

result in violation of the basic structural constraints of the SCP. Sometimes, while

generating columns for *
jx j J∋ ∈ the configuration of 1s in those columns forms a

structure such that one or more variables representing columns in *J becomes

superfluous and do not appear in the actual optimal solution. This is illustrated with the

example given below.

119

 Let us consider that we have five decision variables already selected to have value

1 in the optimal solution. The matrix given below is the portion of the constraint matrix

for the columns in *J only. Close observation of the matrix shows that 2x is superfluous

as the rows 2 and 6 covered by this variable are also covered by 3x (which covers row 4,

6 and 7) and 5x (which covers row 1, 2 and 7). We can not remove either 3x or 5x as

they cover at least one unique row, namely rows 4 and 1. Therefore, 2x must not be in the

solution for this configuration of columns in *J and, if it is removed, there will not be a

violation of the primal constraints. If it is desired to have 2x as the variable with optimal

value 1, then the configurations of 1s should be changed in such a way that 2x covers as

least one constraint row uniquely.

0 0 0 0 1
0 1 0 0 1
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 1 1 0 0
0 0 1 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 Checking for a valid configuration of 1s for the columns in *J could become

unmanageable as the constraint-matrix size increases. A small checking procedure should

be applied to see whether the newly formed configuration is valid. Let ⊕ denote an

operation among equal size binary vectors such that each element in the resultant vector

is the largest value among the corresponding elements of the participating vectors. For

120

example, consider,

1 0 1
0 0 0
0 1 1
1 1 1

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⊕ =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

In the example above, the resulting vector has as its elements the larger of the

corresponding elements of the participating vectors. For every column in *J , a resultant

vector of all already filled columns in *J is calculated excluding the current column in

*J and if the resultant vector has 1s in every place that the current column in *J in

question has then the current column is superfluous. If not, the current column covers at

least one unique row.

Remedy for SVC for variable with optimal value 1

 The task of keeping track of whether or not a current column generation for a

variable with index in *J has made any of the already generated variables with indices in

*\J J superfluous is difficult. It is because even if a current column *j J∈ is unique from

those columns *j J∈ already generated, possibilities may still exist that the insertion of a

newly generated column may turn one or more variables corresponding to the

columns *j J∈ already generated redundant or superfluous. An example shown below

illustrates this fact.

 Consider 4 decision variables with value 1 in the optimal solution. Three columns

121

generated for 1x , 2x and 3x are the valid columns as none of them is superfluous. The

column corresponding to 4x is now generated as shown below.

* *4{1,3}

1 0 0 1 1
0 0 1

0 1 1 0 0
1 1 0

1 1 0 0 1
1 0 0

, , 0 0 1 0 0
0 1 0

0 0 0 1 0
0 0 1

0 0 0 1 0
0 0 1

1 0 0 0 1

j J j J
A x A

∈ = ∈

⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

To check whether 4x is superfluous or not, the resultant vector of 1x , 2x and 3x is created

and checked to see if, for every entry of 1 in the column corresponding to 4x , there is a 1

in the corresponding entry in the resultant vector. Since that is not the case here, 4x is not

superfluous. However, it is required to check if any of 1x , 2x and 3x has now become

superfluous. In this case, 1x has become superfluous since it does not cover any unique

row like the other variables do. The generation of columns *j J∈ thus becomes a

cumbersome process. In order to avoid complications arising from the SVC, a simple rule

can be established such that the possibility of encountering SVC can be eliminated.

 Columns with binary entries can be made linearly independent if there is at least

one row for every column *j J∈ that is uniquely covered. Therefore, for every

column *j J∈ , if one random row is made to be uniquely covered by that column and no

1s are assigned in that row for the remaining columns in *J then this column is linearly

independent from the rest of the columns *j j J∋ ∈ . This makes at least | *J | rows

122

uniquely covered by columns in *J . The remaining rows, which are not uniquely covered

by columns in *J , can have all the remaining 1s in the columns *j J∈ . These remaining

rows, which were not uniquely covered, may now become either uniquely covered or

may be covered by the combinations of columns in *j J∈ . This rule certainly avoids

encountering SVC and the tedious process of determining the resultant vector to

determine whether the SVC has occurred or not with the newly generated column *j J∈ .

The SCP generation procedure generates instances such that each variable with value 1

covers a unique row. Therefore, there are no superfluous variables in the SCP instances

generated by this procedure.

123

LIST OF REFERENCES

Arthur, J. L., & Frendewey, J. O. (1988). Generating Traveling-Salesman Problems with
Known Optimal Tours. The Journal of the Operations Research Society, 39(2), 153-
159.

Bard, J. F., & Purnomo, H. W. (2005). Preference scheduling for nurses using column

generation. European Journal of Operations Research, 164, 510-534.

Beasley, J. E. (1990). A lagrangian heuristic for set-covering problems. Naval Research

Logistics, 37, 151-164.

Balas, E., & Carrera, M. (1996). A dynamic subgradient-based branch-and-bound for set

covering. Operations Research, 44(6), 875-890.

Balas, E., & Ho, A. (1980). Set covering algorithms using cutting planes, heuristics and

subgradient optimization: A computational study. Mathematical Programming, 12, 37-
60.

Balas, E., & Padberg, M. W. (1976). Set Partitioning: A Survey. MSIAM Review, 18(4),

710-760.

Balas, E., & Zemel, E. (1980). An algorithm for large zero-one knapsack problems.

Operations Research, 28(5), 1130-1154.

Bard, F. D., & Purnomo, H. W. (2005). Preference scheduling for nurses using column

generation. European Journal of Operations Research, 164, 510-534.

Brown, G. G., Graves, G. W., & Ronen, D. (1987). Scheduling ocean transportation of

crude oil. Management Science, 33, 335-346.

Caprara, A., Fischetti, M., & Toth, P. (1999). A heuristic method for the set covering

problem. Operations Research, 47(5), 730-743.

Caprara, A., Fischetti, M., & Toth, P. (2000). Algorithms for the Set Covering Problems.

Annals of Operations Research, 98, 353-371.

124

Cardei, M., & Du, D. (2005) Improving Wireless Sensor Network Lifetime through
Power Aware Organization. Wireless Networks, 11(3), 333 – 340.

Cario, M., Clifford, J., Hill, R., Yang, J., Yang, K., & Reilly, C. H. (2002). An

investigation of the relationship between problem characteristics and algorithm
performance: a case study of the GAP. IIE Transactions, 34, 297-312.

Ceria, S., Nobili, P., and Sassano, A. (1998). Set covering problem. In M. Dell' Amico,

F. Maffioli, & S. Martello (Eds.). Annotated Bibliographies in Combinatorial
Optimization.

 John Wiley & Sons: UK.

Fisher, M. L., and Rosenwein, M. B. (1989). An interactive optimization system for bulk-

cargo ship scheduling. Naval Research Logistics, 36, 27-42.

Hill, R. R. (1998). An analytical comparison of optimization problem generation

methodologies. In D. J. Medeiros, E. F. Watson, J. S. Carson, & M. S. Manivannan
(Eds.), Proceedings of the 1998 Winter Simulation Conference, 609-615.

Hill, R., & Reilly, C. H. (1994). Composition of multivariate random variables. . In J. T.

Tew, S. Manivannan, R. P. Sadowski, & A. F. Seila (Eds.), Proceedings of the 1994
Winter Simulation Conference, 332-342.

Hill, R., & Reilly, C. H. (2000a). Multivariate composite distributions for coefficients in

synthetic optimization problems. European Journal of Operations Research, 121, 64-
71.

Hill, R., & Reilly, C. H. (2000b). The effects of coefficient correlation in two-

dimensional knapsack problems on solution procedure performance. Management
Science, 46(2), 302-317.

Hooker, J. (1994). Needed: an empirical science of algorithms. Operations Research,

42(2), 201-212.

Jacobs, L. W., & Brusco, M. J. (1995). Note: A local-search heuristic for large set-

covering problems. Naval Research Logistics, 42, 1129-1140.

John, T. (1989). Tradeoff solutions in single machine production scheduling for

minimizing flow time and maximum penalty. Computers and Operations Research,
16(5), 471-479.

Karp, M. P. (1972). Reducibility among combinatorial problems. In R. E. Miller, & J. W.

Thatcher (Eds.), Complexity of Computer Computations. New York: Plenum Press.

125

Martello, S., Pisinger, D., & Toth, P. (1999). Dynamic programming and strong bounds
for 0-1 knapsack problems. Management Science, 45(3), 414-424.

Martello, S., Pisinger, D., & Toth, P. (2000). New trends in exact algorithms for the 0-1

knapsack problems. European Journal of Operations Research, 123, 325-332.

Martello, S., & Toth, P. (1979). The 0-1 knapsack problem. In A. Mingozzi & C. Sandi

(Eds.), Combinatorial Optimization. New York: John Wiley and Sons.

Martello, S., & Toth, P. (1997). Upper bounds and algorithms for 0-1 knapsack problems.

Operations Research, 45(5), 64-71.

Moore, B. A., Peterson, J. A., & Reilly, C. H. (1990). Characterizing distributions of

discrete bivariate random variables for simulation and evaluation of solution methods.
In O. Balci, R. P. Sadowski, & R. E. Nance (Eds.), Proceedings of the 1990 Winter
Simulation Conference, 294-302.

Nelson, R. B. (1987). Discrete bivariate distributions with given marginals and

correlation. Communications in Statistic: Simulation and Computations, 16(1), 199-
208.

O'Neill, R. P. (1982). A Comparison of Real-World Liner Programs and their Randomly

Generated Analogs. In J. M. Mulvey (Ed.), Evaluating Mathematical Programming
Techniques, Lecture Notes in Economics and Mathematical Systems No 199. Berlin:
Springer-Verlag.

Pilcher, M. G. & Rardin, R. L. (1992). Partial polyhydral description and generation of

discrete optimization problems with known optima. Naval Research Logistics, 39,
839-858.

Pisinger, D. (1997). A minimal algorithm for the 0-1 new trends in exact algorithms for

the 0-1 knapsack problem. Operations Research, 45(5), 758-767.

Potts, C. & Wassenhove, L. V. (1988). Algorithms for scheduling a single machine to

minimize the weighted number of late jobs. Management Science, 34(7), 843-858.

Rardin, R. L. & Lin, B. W. (1982). Test problems for computational experiments- issues

and techniques. In J. M. Mulvey (Ed.), Evaluating Mathematical Programming
Techniques. Berlin: Springer-Verlag.

Reilly, C. H. (1991). Optimization test problems with uniformly distributed coefficients.

In B. L. Nelson, W. D. Kelton, & G. M. Clark (Eds.), Proceedings of the 1991 Winter
Simulation Conference, 866-874.

126

Reilly, C. H. (1997). Generating coefficients for optimization problems with implicit

correlation induction. Proceedings of the 1997 IEEE International Conference on
Systems, Man, and Cybernetics, 3, 2438-2443.

Reilly, C. H. (1999). Input models for synthetic optimization problems. In P. A.

Farrington, H. B. Nembhard, D. T. Sturrock, & G. W. Evans (Eds.), Proceedings of
the 1999 Winter Simulation Conference, 116-121.

Reilly, C. H. (2006a). Synthetic optimization-problem generation: Show us correlations!

Unpublished manuscript, University of Central Florida, Orlando, FL.

Reilly, C. H. (2006b). Coefficients Ratios in Simulated 0-1 Knapsack Problems. In N.

Callaos, D. Zinn, M. J. Savoie, X. Hu, R. Hill, & H. Haga (Eds.), Proceedings of The
10th World Multi-Conference on Systemics, Cybernetics and Informatics, 6, 51-56.

Rushmeier, R. & Nemhauser, G. (1993). Experiments with parallel branch-and-bound

algorithms for the set covering problem. Operations Research Letters, 13(5), 277-285.

Smith B. M., & Wren A.(1988). A Bus Crew Scheduling System Using a Set Covering

Formulation. , Transportation Research, 22(A), 97-108.

Vasko, F.J., Wolf, F.E., and Stott, K.L. (1987). Optimal selection of ingot sizes via set

covering, Operations Research, 35, 346-353.

	Simulation Of Random Set Covering Problems With Known Optimal Solutions And Explicitly Induced Correlations Amoong Coefficients
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	CHAPTER ONE: INTRODUCTION
	Definition of SCP
	Applications of SCPs
	Relevance and Potential Contribution of the Research

	CHAPTER TWO: LITERATURE REVIEW
	Background
	Implicit Correlation Induction (ICI) Methods
	Explicit Correlation Induction (ECI) Methods
	ECI Procedure for SCP Instances

	Comparison of ICI and ECI Methods
	Algorithms and Heuristics for SCPs
	Simulating Test Problems with Known Optimal Solutions

	CHAPTER THREE: METHODOLOGY
	Karush-Kuhn-Tucker Conditions for SCP
	SCP Generation Procedure Overview
	Terminology and Notation
	Four-Phase SCP Generation Procedure
	Phase 1 -Initialization
	Phase 2 - Column generation for variables with optimal value
	Phase 3 - Dual variables assignment and adjustment
	Phase 4 - Column generation for variables with optimal value

	Discussion
	Superfluous Variable Conditions
	Infeasibility Conditions
	Calculation of the Number of Constraints
	Consecutive and Unique Values Case
	Consecutive Value Case
	General Case

	Rationale behind Recommended Guidelines
	Value for Adjusted Dual Variable
	Column Generation for Variable with Optimal value 0

	CHAPTER FOUR: COMPUTATIONAL STUDIES AND FINDINGS
	Experimental Setup and Preparation
	SCP Coefficient Generation
	J* and m in the Generated SCP Instances
	Other Observations Made during SCP Instances Generation

	Computational Experiments and Findings
	Drop Heuristic (DH) or Primal Heuristic
	Add Heuristic (AH) or Dual Heuristic
	Add/Drop Heuristic (ADH) or Dual/Primal Tandem Heuristic
	Relative Error
	Drop Heuristic
	Add Heuristic
	Add/Drop Heuristic

	Optimality
	Number of discrepancies

	CHAPTER FIVE: CONCLUSIONS
	Future Work

	APPENDIX A:�AN EXAMPLE OF SCP GENERATION
	APPENDIX B: �Avoiding Superfluous Variable Condition
	LIST OF REFERENCES

