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ABSTRACT 

 The objective of this research is to devise a procedure to generate random Set 

Covering Problem (SCP) instances with known optimal solutions and correlated 

coefficients. The procedure presented in this work can generate a virtually unlimited 

number of SCP instances with known optimal solutions and realistic characteristics, 

thereby facilitating testing of the performance of SCP heuristics and algorithms.  

 A four-phase procedure based on the Karush-Kuhn-Tucker (KKT) conditions is 

proposed to generate SCP instances with known optimal solutions and correlated 

coefficients. Given randomly generated values for the objective function coefficients and 

the sum of the binary constraint coefficients for each variable and a randomly selected 

optimal solution, the procedure: (1) calculates the range for the number of possible 

constraints, (2) generates constraint coefficients for the variables with value one in the 

optimal solution, (3) assigns values to the dual variables, and (4) generates constraint 

coefficients for variables with value 0 in the optimal solution so that the KKT conditions 

are satisfied.   

 A computational demonstration of the procedure is provided. A total of 525 SCP 

instances are simulated under seven correlation levels and three levels for the number of 

constraints. Each of these instances is solved using three simple heuristic procedures. The 
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performance of the heuristics on the SCP instances generated is summarized and 

analyzed. The performance of the heuristics generally worsens as the expected correlation 

between the coefficients increases and as the number of constraints increases. The results 

provide strong evidence of the benefits of the procedure for generating SCP instances 

with correlated coefficients, and in particular SCP instances with known optimal 

solutions.   
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CHAPTER ONE: INTRODUCTION 

 The primary objective of this research is to devise a procedure for simulating 

random Set Covering Problem (SCP) instances with known optimal solutions and with 

specified population correlation among the coefficients. An additional objective is to 

develop a software program that will generate random, valid SCP instances given a 

specified optimal solution and correlated coefficients simulated based on a desired 

population correlation level.  

 This chapter begins with an overview of the SCP structure and its common 

applications. The chapter also explains the relevance of this research and its potential 

contributions to the field of optimization.  

Definition of SCP 

 Let A = ( ija ) be a binary m n×  matrix and c ( )jc=  be a positive integer-valued n-

vectorn − . Let the indices of the rows and columns of this matrix be represented by 

{1,2,3,..., }I m=  and {1,2,3,..., }J n= , respectively. The binary coefficients in each 

column of A represent a subset of I . Any column j J∈  covers row i I∈ if ija =1. The 
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cost of including the jth subset in the solution (or cover) is jc . The objective of the SCP is 

to choose a minimum-cost collection of subsets whose union covers I. 

 SCP may be formulated as follows. Define  

1 if subset  is included in the cover
0 otherwise                                    j

j
x

⎧
= ⎨

⎩
 

for all j J∈ . Then a complete mathematical representation of SCP is:  

Minimize j j
j J

c x
∈
∑  

Subject to the constraints  1ij j
j J

a x
∈

≥∑  for all i I∈ , 

     { }0,1jx ∈ , for all j J∈ , 

where { }0,1ija ∈  ,i I j J∀ ∈ ∈ . 

 The first constraint set includes m  structural constraints that ensure that every 

row i I∈  is covered by at least one subset j J∈ . The second constraint set requires that 

each subset is either included in the cover or not. The objective is to find a collection of 

columns (subsets) that covers all of the structural constraints at minimum total cost. 

Applications of SCPs 

 There have been and are many practical applications of SCPs in various 

optimization scenarios. Balas and Padberg (1976) provide a bibliography on applications 
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of SCP. According to their paper, some of the diverse SCP application areas are crew 

scheduling (e.g., airlines and railroads), airline fleet scheduling, truck delivery, cutting 

stock, line and capacity balancing, facility location, capital investment, switching current 

design and symbolic logic, information retrieval, marketing and political districting. 

Other applications include bus crew scheduling (Smith, 1988), naval vessel scheduling 

(Brown, Graves, and Ronen, 1987; Fisher and Rosenwein, 1989), steel mill operations 

(Vasco, Wolf, and Stott, 1987), improving wireless sensor network lifetime (Cardei and 

Du, 2005), and preference scheduling for nurses (Bard and Purnomo, 2005). Certainly 

there have been many applications of SCPs in diverse settings over many years. 

Furthermore, there is every reason to think that SCP will continue to be an important 

optimization problem.  

Relevance and Potential Contribution of the Research 

 New algorithms and heuristics to solve optimization problems, including SCP, are 

developed on an ongoing basis. Any new solution method should be tested for its efficacy 

and, if possible, comparative evaluations with other solution methods for the same class 

of optimization problems should be made. This practice would not only determine 

whether the newly coined solution procedure is trustworthy, but also would show how its 

performance compares to that of existing solution methods. In general, testing of solution 

procedures is necessary to determine their practical capabilities and limitations (Reilly, 
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1999).  

 Selection of test problem families and their pros and cons have been addressed by 

Reilly (1999). He explains that the inferences drawn from computational studies might be 

influenced by the family of problems chosen. An adequate number of test problems is 

needed to make any inference from a computational study. The limited number of real-

world problems might be overcome by the use of synthetic optimization problems. To 

some extent, these problems could be made to resemble real-world problems with an 

appropriate selection of an input model for simulating problem instances (Reilly, 1999). 

 Research over the last 25 years or so has shown that one of the factors that 

influences the efficiency of solution methods is correlation among the objective function 

and constraint coefficients. Presumably, the coefficients in practical instances of SCP and 

other optimization problems are correlated. Several techniques can be used to induce 

correlation among the coefficients. Explicit correlation induction (ECI) is one of the 

methods for inducing correlation among the coefficients. ECI and other widely used 

methods are discussed in Chapter 2.   

 Some of the reasons why this research would be an important contribution in the 

field of synthetic optimization problems, and consequently for the optimization field as a 

whole, include: 

• Synthetic optimization problems with known optima would certainly prove useful 

in evaluating the quality of solutions found by heuristics.  

• Synthetic SCP problems with known optima and correlated coefficients would 

facilitate testing algorithms and heuristics on problems with realistic 
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characteristics. 

• Virtually, an unlimited number of SCP test problems with known optima and 

correlated coefficients could be simulated.  

The organization of this dissertation can be summarized as follows. 

 Chapter 2 briefly explains some relevant past research on correlation induction 

strategies and their pros and cons. The general overview of algorithms and heuristics for 

SCP and a few notable past works in simulating random optimization problems with 

known/unknown optimal solutions are also reviewed in this chapter. Chapter 3 is 

dedicated to explaining the detailed procedure of generating random SCP instances with 

known optimal solutions and correlated coefficients. Chapter 4 summarizes the design 

and the results of the computational demonstration performed during the research. 

Specifically, the performances of three greedy heuristics on simulated SCP instances with 

known optimal solutions and correlated coefficients are reported and analyzed. In 

Chapter 5, conclusions drawn from the research, as well as possible extensions for future 

work in this area, are reported and discussed.   
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CHAPTER TWO:  LITERATURE REVIEW 

This chapter discusses research on the generation of synthetic optimization 

problems with correlated coefficients. Research on SCP solution methods and generation 

of optimization problems with known optimal solution are also reviewed.  

Experimenting with simulated test problems is not new, and test problems with 

correlated coefficients are becoming increasingly common. For example, researchers 

have generated test problems with correlated coefficients under implicit correlation 

induction for classical optimization problems such as the 0-1 Knapsack Problem (KP01), 

Generalized Assignment Problem (GAP), Capital Budgeting (or Multidimensional 

Knapsack) Problem and SCP. Reilly (2006a) stresses that induced correlation levels are 

rarely quantified. Instead, inadequate descriptors like “strong”, “weak”, “almost strongly 

correlated” and “inversely strongly correlated” are used to characterize the induced 

correlation levels. 

Reilly (2006a) suggests that generating optimization test problems with correlated 

coefficients and conducting experiments with such problems would ultimately contribute 

to the science of algorithms that Hooker (1994) proposes. For generating correlated 

coefficients, two kinds of methods have been proposed in the literature. In the implicit 

correlation induction (ICI) methods, the desired correlation level is not specified; 
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however, some population correlation is implied by specifying parameters of the ICI 

problem generation method (Reilly, 1997). In the explicit correlation induction (ECI) 

methods, at least a desired population correlation or a joint distribution of coefficient 

values is specified. Procedures to induce correlation by these two techniques are 

discussed briefly and their pros and cons are considered.  

Background 

 Let X and Y be random variables representing the values of two types of 

coefficients in simulated optimization problems. The correlation measure of interest 

between these random variables is the Pearson product-moment correlation given by: 

E( ) E( )E( ) Cov( , )Corr( , )
Var( )Var( ) Var( )Var( )
XY X Y X YX Y

X Y X Y
−

= =  

If the marginal distributions of X and Y are fixed, E( )X , E( )Y , Var( )X  and 

Var( )Y are also fixed. The only way to change Corr( , )X Y  is to change E( )XY , or the 

joint distribution of X and Y. ECI assumes the marginal distributions of X and Y are fixed. 

If, on the other hand, the marginal distributions of either or both random variables are 

altered as happens in ICI methods, then the resulting correlation level may also be 

altered.  

Hill and Reilly (2000a) report on a technique for generating correlated 

coefficients and quantifying the correlation structure based on a multivariate composite 
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distribution. In this research, however, emphasis will be on bivariate distributions of 

coefficient values only, one for cost coefficients and another for the column sums of the 

constraint-coefficient matrix, A.  

Implicit Correlation Induction (ICI) Methods 

 Reilly (1997) defines an ICI method as a problem simulation scheme that induces 

correlation among coefficient types through a user’s specification of parameters for the 

problem generation procedure. He has quantified correlation levels which otherwise have 

only been qualified for various ICI generation methods used to simulate classical 

optimization problems. Reilly (2006a) also provides formulas to determine ICI 

parameters that would approximate target population correlation levels, thereby enabling 

some control over the target correlation in ICI problem generation methods. 

 Much attention has been paid to the performance of solution methods on KP01 

instances with correlated coefficients. KP01 has the following form: 

1

1

Maximize  

Subject to  ,

n

j j
j

n

j j
j

p x

w x b

=

=

≤

∑

∑
 

 {0,1},   1, 2,...,jx j n∈ =  

where all 0jp > , all 0 jw b< <  and 
1

n

j j
j

w x b
=

>∑ . 
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 Martello and Toth (1979, 1997), Martello, Pisinger and Toth (1999, 2000) and 

Pisinger (1997) report computational results for simulated KP01 problems on the basis of 

qualified correlation levels like “uncorrelated”, “weakly correlated”, “value 

independent”, “almost strongly correlated”, “inversely strongly correlated” and “strongly 

correlated”. They implement an ICI method, which can be described as follows. 

 Let α  be a positive integer and δ and γ  be nonnegative integers. Let jW  be the 

random variable representing constraint coefficient values and jP  be the random variable 

representing objective coefficient values for KP01 instances. Then, the KP01 simulator 

looks like: 

~ {1,2,..., }

~ { , 1,..... }

~

j j

j j

j j j j

w W U

t T U

p P w t

α

δ δ δ

γ

←

← − − +

← + +

 

Reilly (1997) provides a formula for the implied population correlation level for the 

coefficient generation technique shown above: 

2

2

1Corr( , )
4 ( 1) 1j jW P α

α δ δ
−

=
+ + −

. 

 Martello and Toth (1979) use several combinations of δ and γ  to yield different 

(qualified) correlation levels in KP01 instances. Reilly (1997) shows that the coefficient 

correlation is very strong (at least 0.97) for the KP01 instances that Martello and Toth 

(1979) and others classify as “weakly correlated”. He also points out that the correlation 

is perfect for the instances Martello and Toth (1979) claim to be “strongly correlated”.  

Further, it is practically impossible to have a population correlation level of zero with this 



  

10 

 

 

method as it requires the parameter δ to be + ∞  (Cario, Clifford, Hill, J. Yang, K. Yang 

and Reilly, 2002). The effect of changing ICI parameters on the level of correlation has 

been demonstrated in Reilly (1997, 2006a). He also provides an expression for 

approximating δ if the desired population correlation is ρ : 

2 2 21 1 ( 1)(1 ) /
2

α ρ ρ
δ

− + + − −
≈ . 

 Rushmeier and Nemhauser (1993) generate SCP instances with an ICI method 

that can be described as follows:  

1

~ Bernoulli( )

,

~ { , 1,...... },

ij ij

m

j ij
i

j j j j j

a A d

s a

c C U S S Sω
=

←

=

← +

∑  

where d is the expected density of the binary constraint-coefficient matrix and ω is a 

positive integer. jS , which is the column sum of binary constraint coefficients, is the 

binomial random variable with m trials and success probability d. For this correlation 

induction strategy, Reilly (2006a) quantifies the population correlation level between the 

objective function coefficients and the column sums in the constraint matrix as: 

2 2

3(1 )Corr( , ) ( 1)
( 1) 4 ( 1)(4 4 2)j j

dS C
md d d

ω
ω ω ω ω

−
= +

− − + + − +
. 

Additionally, he also shows that, with all other ICI parameters kept constant, increasing 

any one parameter decreases the implied population correlation. He also provides an 

expression for approximating ω if the desired population correlation is ρ  for given 
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values of m and d : 

( )
( )

2 2 2

2

(2 4) 6 6(1 ) 2 12(1 ) (1 )( 1)
2 ( 4) 4 6(1 )

m d d d d m
m d d

ρ ρ ρ ρ
ω

ρ
+ − + − + + − − −

≈
− + − −

. 

 ICI techniques for GAP instances and Capital Budgeting Problem instances 

proposed by several other authors have been analyzed and the correlation levels induced 

in the resulting problems have been quantified by Reilly (1997, 2006a). 

 

Explicit Correlation Induction (ECI) Methods 

 With an ECI method, either a joint distribution of coefficient values is specified or 

a marginal distribution of values for each type of coefficient and a correlation structure 

are specified (Reilly, 1999). Nelson (1987) shows how to construct bivariate probability 

distributions for dependent random variables with arbitrary marginal distributions and a 

feasible correlation level. If ( , )g a c+ and ( , )g a c−  are the maximum-correlation and 

minimum-correlation joint distributions for ( , )A C , respectively, then two classes of 

composite distributions for ( , )A C  are: 

 ( , ) (1 ) ( , )g a c g a cλ λ− ++ −     (2.1) 

where 0 1λ≤ ≤ , and 

 (1 ) ( ) ( ) ( , ) ( , )A Cf a f c g a c g a cα β α β− +− − + +  (2.2) 
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where , 0α β ≥ , 1α β+ ≤ , and ( )Af a  and ( )Cf c  are the marginal distributions of A and 

C , respectively. These composite distributions are convex combinations of the extreme-

correlation distributions for ( , )A C , and in the case of (2.2), the joint distribution under 

independence. Distribution (2.1) is sometimes referred to as an extreme mixture, whereas 

distribution (2.2) is referred to as a conventional mixture when either α or β  is equal to 

zero (Hill and Reilly, 2000b). 

 If ρ −  and ρ + are the theoretical minimum and maximum correlations possible for 

( , )A C , respectively, then families of distribution with any correlation ρ  such that 

ρ ρ ρ− +≤ ≤  are possible from the composite distribution (2.2). The composite 

distribution (2.2) can be rewritten as: 

 0 1 2( ) ( ) ( , ) ( , )A Cf a f c g a c g a cλ λ λ− ++ + ,  (2.3)  

where 0 1 2 1λ λ λ+ + =  and 0iλ ≥ for 0,  1,  and 2i = . 

When 1 0λ =  in (2.3), the distribution represents a positively correlated bivariate random 

variable with correlation 2λ ρ + . Similarly, when 2 0λ = , the distribution represents a 

negatively correlated bivariate random variable with correlation 1λ ρ − (Nelson, 1987).  

 Peterson and Reilly (1993), Reilly (1993, 1994), Hill and Reilly (1994) and Cario 

et al. (2002) refer to (2.3) as a parametric mixture. This composite distribution (2.3) has 

been used as the basis to generate SCP coefficients in this research. For in-depth 

knowledge of ECI methods, interested readers are referred to the research cited above.  
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ECI Procedure for SCP Instances 

 Let A and C  be the random variables with distributions representing the column 

sums of the constraint matrix and the objective function coefficients, respectively. Let 

( )Af a and ( )Cf c denote the marginal distributions for the random variables A and C , and 

let ( , )g a c−  and ( , )g a c+  be the minimum-correlation and maximum-correlation joint 

distributions of A and C , respectively. A procedure for SCP generating coefficients from 

the composite distribution shown above is:  

a. Generate 1 2 3, , ~ (0,1)u u u U  

b. If 1 0u λ≤ then generate 1
1 2( )ja F u−← and 1

2 3( )jc F u−← independently. 

c. If 0 1 0 2uλ λ λ< ≤ + , then generate 1
1 2( )ja F u−← and 1

2 2( )jc F u−←  using common 

random numbers (CRN). 

d. Otherwise, generate 1
1 2( )ja F u−← and 1

2 2(1 )jc F u−← −  using antithetic random 

numbers. 

Comparison of ICI and ECI Methods 

 In general, ICI and ECI methods provide great opportunities to simulate test 

problems for testing optimization algorithms and heuristics. A thorough empirical 

evaluation should be based on a variety of test problems. Not enough real problems are 
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available for testing (Moore et al., 1990). Sampling under independence only would not 

be sufficient to determine the quality of a solution procedure. Reilly (1991) suggests that 

the coefficients in practical optimization problems may not be probabilistically 

independent. Therefore, the ICI and ECI methods certainly have opened new possibilities 

where a huge number of very large random problems with a wide range of correlation 

levels may be generated. 

 Following the work by Reilly (2006a) on various ICI methods suggested by many 

authors for different discrete optimization problems, users not only can determine the 

level of correlation but also can have fairly good control over the induced level of 

population correlation under ICI. However, ICI methods have some drawbacks and 

Reilly (1997) warns users to have sufficient familiarity with characteristics of practical 

problem instances and characteristics of problem instances generated under ICI. It is 

practically impossible to have zero correlation in an ICI method (Cario et al., 2002). 

Under ICI, population correlation levels can be altered only by altering the parameters of 

an ICI method which, in turn, also alters the marginal distributions of the coefficients 

values. Therefore, the confounded effects of problem generation parameters and 

correlation on algorithm performance should be considered while drawing inferences 

from computational experiments. Most ICI methods, as presented in the literature, 

generate either positively correlated or negatively correlated coefficients, but not both. 

Exceptions include Cario et al., (2002) and Reilly (2006b). Although there are some 

shortcomings in the ICI methods, they are very easy to implement and effective at 

inducing correlation. They are already widely used in research. 
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Some of the drawbacks encountered in ICI methods are remedied in ECI methods. 

One cannot only specify the required population correlation level, but also can 

systematically control it. The marginal distributions of the random variables need not be 

changed to alter the population correlation. An infinite number of composite distributions 

is possible for the same marginal distributions in an ECI method based on (2.3). There is 

no confounding effect of marginal distributions and correlation level, so it is easier to 

determine the effect of correlation alone on solution method performance. Additionally, it 

is possible and straightforward to simulate instances for a wide range ( ρ − to ρ + ) of 

correlation levels with ECI methods.  

Algorithms and Heuristics for SCPs 

 SCP is well-known to be an NP-hard optimization problem (Karp, 1972). Many 

researchers have suggested algorithms and heuristics for unicost SCP instances and non-

unicost SCP instances. Unicost SCPs are those SCPs where all of the cost coefficients in 

the objective functions are all one or any other common positive value. The SCP 

instances generated in this research are non-unicost instances only because correlation 

has no meaning in unicost instances of SCP.  

 There are many solution procedures, algorithms and heuristics, suggested and 

tested for SCP. A bibliography of heuristics and algorithms developed through the 1980s 

is mentioned in Ceria, Nobili, and Sassano (1997). They broadly categorize all the 
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heuristics as greedy heuristics, Lagrangian heuristics, or local heuristics. They also 

categorize exact algorithms in terms of their use of optimization approaches such as 

cutting-planes, branch and bound, branch and cut, and polynomially-solvable cases.  

 A survey of more recent algorithms and heuristics which have been 

computationally evaluated is given in Caprara, Toth, and Fischetti (2000). The authors 

classify solution procedures broadly under linear programming relaxation, heuristic 

procedures, and exact algorithms. Most of the heuristics and algorithms use some kind of 

relaxation with a slight variation in optimization techniques. For greedy heuristics alone, 

there are nine different criteria for selecting/ deselecting subsets or decision variables. An 

interesting heuristic for SCP is the one by Balas and Carrera (1996). The authors report 

extensive test results for the problems created by Beasley (1990), Balas and Ho (1982), 

and other real-life problem instances. They also report that their heuristic usually found 

the optimal solution; however, the Lagrangian heuristic by Beasley (1990) finds better 

solutions for 9 out of 35 test problems.  

 According to Caprara et al. (2000), popular commercially available integer linear 

programming solvers such as CPLEX and MINTO deploy preprocessing based on 

heuristics by Caprara, Toth, and Fischetti (1999) and apply LP relaxation. Integer 

solutions are determined by using branch-and-bound techniques with smart decision 

rules. These solvers are very competitive, in terms of computational time, with any of the 

exact algorithms presented in the literature (Caprara et al., 2000). It seems that the 

branch-and-bound technique has been the best contender to date, at least as far as exact 

solution procedures for SCP are concerned. 
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 In this research, a procedure for simulating SCP instances with known optimal 

solutions and specified population correlation levels between the objective function 

coefficients and the column sums of the constraint coefficients has been developed. This 

new procedure could be incorporated in any computational evaluation of the solution 

methods mentioned here.     

Simulating Test Problems with Known Optimal Solutions 

 The mathematical programming community started using computers to solve 

optimization problems but often felt the need for a large number of test problems so that 

the validity of the software codes as well as the efficacy of competing algorithms could 

be determined. O'Neill (1982) shows that test problems could be generated randomly by 

perturbing the problem data of real-world problems. He presents methods to obtain 

randomly generated analogs of the real-world problems by randomizing the Boolean 

image (0 or 1 element of the constraints matrix) or by perturbing the problem data 

(randomizing the elements that are greater than 1 in the constraint matrix) of real-world 

linear programming (LP) problems. O'Neill (1982) suggests that randomly generated 

analogs of the real-world problems could be used to test the efficacy of the software 

codes written for any LP algorithms. However, his technique of generating random 

problems is not able to generate problems with known optimal solutions and sometimes 

the generated problems are even infeasible. 
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 One of the most studied problems in combinatorial optimization is the Traveling 

Salesman Problem (TSP). Arthur and Frendewey (1988) generate symmetric and 

asymmetric TSPs with known optimal tours using Karush-Kuhn-Tucker (KKT) 

conditions for equivalent 'assignment problem relaxations'. This avoids subtours in the 

assignment problem solutions.   

 Pilcher and Rardin (1992) also design a problem generation approach based on 

the KKT conditions for the TSP. Their approach includes selection of the optimal 

solution, randomly generating non-negative dual variables, and finally computing cost 

coefficients such that all KKT conditions are satisfied. As the objective function 

coefficients are not fixed prior to the generation of a problem instance, there is great 

flexibility in choosing the values for the objective function coefficients to force the 

problem instance to have all KKT conditions satisfied. Neither Arthur and Frendewey 

(1988) nor Pilcher and Rardin (1992) attempt to induce correlation among the 

coefficients.  

  The present research focuses on generating SCPs with known optima and 

specified target (population) correlation between the objective function coefficients and 

the corresponding column sums of the constraint matrix. The procedure developed here 

offers great promise for evaluating SCP algorithms and heuristics on large instances with 

practical characteristics. 
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CHAPTER THREE: METHODOLOGY 

 The objective of this research is to devise a procedure for generating synthetic 

SCP instances with known optimal solutions and specified target population correlation 

between the objective function coefficients and the column sums of the matrix of binary 

structural constraint coefficients. This chapter explains the procedure that has been 

developed for this purpose. It defines some terms that have been used in the procedure, 

explains notations, and discusses observations made during the development of the 

methodology. It also highlights the various features and functioning of the software 

program coded for this procedure.  

 A typical SCP can be mathematically represented as follows. The decision 

variables are: 

1 if subset   is included in the cover
0 otherwise                                     j

j
x

⎧
= ⎨

⎩
 

for {1,2,3,..., }j J n∈ = . Then, the objective function and the constraints may be 

expressed as: 

Minimize j j
j J

c x
∈
∑  
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Subject to  1ij j
j J

a x
∈

≥∑  for i I∈ , 

      { }0,1jx ∈ , j J∈ , 

where { }0,1ija ∈   ,  i I j J∀ ∈ ∈ . 

 The procedure that is developed for simulating SCP instances is based on the 

Karush-Kuhn-Tucker conditions. It can be seen that generating SCP instances with 

specified population correlation among the coefficients complicates the simulation 

process. 

Karush-Kuhn-Tucker Conditions for SCP   

 SCP is a pure binary integer program. The linear programming relaxation of SCP, 

SCPR, is:     

Minimize j j
j J

c x
∈
∑  

Subject to  1ij j
j J

a x
∈

≥∑  for i I∈  (3.1) 

  1jx− ≥ − ,  j J∀ ∈  (3.2) 

  0jx ≥ ,  j J∀ ∈  (3.3) 

For the dual of SCPR, there would be m dual variables denoted by 1 2, , , mπ π π  for 

constraints (3.1) and n dual variables denoted by 1λ , 2λ ,….., nλ  for constraints (3.2). The 
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dual of SCPR is: 

Maximize i j
i I j J

π λ
∈ ∈

−∑ ∑  

Subject to    ,ij i j j
i I

a c j Jπ λ
∈

− ≤ ∀ ∈∑   (3.4) 

   0iπ ≥ ,i I∀ ∈      (3.5) 

  0jλ ≥  j J∀ ∈       (3.6) 

The Karush-Kuhn-Tucker (KKT) necessary and sufficient conditions for optimality for 

SCPR and its dual are: 

• Primal feasibility (Eqs. 3.1, 3.2, and 3.3) 

• Dual feasibility (Eqs. 3.4, 3.5, and 3.6) 

• Complementary slackness (Eqs. 3.7, 3.8, and 3.9 given below) 

The complementary slackness conditions (CSC) in this case may be expressed as follows: 

( )

1 0,    ,              (3.7)

1 0   ,                        (3.8)

0   ,      (3.9)

ij j i
j J

j j

j ij i j j
i I

a x i I

x j J

x a c j J

π

λ

π λ

∈

∈

⎛ ⎞
− = ∀ ∈⎜ ⎟

⎝ ⎠

− = ∀ ∈

⎛ ⎞
− − = ∀ ∈⎜ ⎟

⎝ ⎠

∑

∑

 

Condition (3.9) will sometimes be denoted in matrix form as ( jπA − λj- jc ) jx for 

convenience.  



  

22 

 

 

SCP Generation Procedure Overview 

 This section explains the procedure to generate SCP instances with correlated 

coefficients. For SCP, correlation between objective function coefficients and the 

corresponding column sums has been induced by Rushmeier and Nemhauser (1993) 

using an ICI method. Moore et al. (1990) simulate SCP instances with an ECI 

(conventional mixture) approach. In this research, the correlation induction strategy used 

is ECI and the optimal solutions are known as well. The problem generation procedure is 

based on the KKT conditions and the Strong Duality Theorem, which states that, if 

complementary solutions to the primal (that is SCPR) and the dual problems are feasible, 

the solutions to both the primal and dual problems are optimal solutions.  

Terminology and Notation 

 Some of the terminology and notations that have been used in this procedure are:  

jA =  i j
i I

a
∈
∑ , the sum of the jth column of the binary matrix of structural constraints 

coefficients.  

iπ =  Dual variable corresponding to the ith constraint of SCPR. 

jλ =  Dual variable corresponding to the upper bound constraint of jx . 

*J =  Set of positions (indexes) of 1s in an optimal solution vector x*. If the optimal 
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solution x*  is (1 0 1 0 1 0), then *J is {1, 3, 5}. 

*
kn  =  Number of constraint matrix columns such that j J ∗∈  and jA = k. For example, 

 *
2n = 3 means there are three columns j J ∗∈  with jA = 2. 

kn  =  Number of constraint matrix columns such that jA = k. For example, 5n = 3 means 

 there are three column sums equal to 5.  

minm  = Minimum number of structural constraints possible for a given optimal solution 

 and simulated coefficients. 

maxm  = Maximum number of structural constraints possible for a given optimal solution 

 and simulated coefficients. 

m  =  Actual number of structural constraints that satisfies min maxm m m≤ ≤ . 

Furthermore, m =| I |. Note that kn ≥ *
kn  k∀ . 

Four-Phase SCP Generation Procedure 

 This procedure generates random SCP instances with a known optimum and 

explicitly induced correlation among the objective function coefficients and column sums 

of constraint coefficients. In the first phase, the coefficients are generated, an optimal 

solution is selected, and the number of structural constraints is chosen. The constraint 

columns for variable with optimal value 1 are constructed in the second phase. The 

values of the dual variables are assigned in the third phase. In the final phase, the 
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columns for variables with optimal value 0 are constructed. The phases are designed so 

that no trivial preprocessing will effectively reduce the size of the instance. The 

schematic flow diagram of this procedure is shown in Figure 1. Each of the phases of this 

procedure is described in the following sections. 

 

Begin

Phase 1 
Initialization of number of 

variables, coefficients, number of 
constraints, and solution vector 

Phase 2
Column generation 
for variables with 

indices in J*

Phase 3
Dual variable 

assignment and 
adjustment

Phase 4
Column generation 
for variables with 

indices in J\J*

End
 

Figure 1: Schematic flow diagram of SCP generation procedure 
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Phase 1 -Initialization 

1. Generate n  random variates from a bivariate distribution with specified correlation 

and marginal distributions. One marginal distribution represents the values of the 

column sums ( )jA  of the structural constraints and the other distribution represents 

the coefficients in the objective function ( )jc .  

2. Generate a binary column vector x* with dimension n . Every element of this vector 

represents the optimal value of a decision variable. One way to generate x* is to 

simulate n  Bernoulli trials with probability of success p (i.e., p = Pr( 1jx = ) for all j). 

The expected proportion of decision variables with value 1 in the optimal solution is 

then p. (Another option would be to draw np elements from the set J  without 

replacement. In this case, the proportion of decision variables with value 1 in the 

optimal solution is exactly p). 

3. Select a feasible number of structural constraints m such that min maxm m m≤ ≤ . The 

minimum and maximum possible numbers of constraints can be calculated using the 

following formulas: 

 ( ) ( ) [ ]
* *

*
min max

: 0 : 0

2 1 1 1
k k

k
k n k n

m k n
> =

= − + − −∑ ∑  

 
*

max j
j J

m A
∈

= ∑   

 where  maxk = { }*
max j

j J
A

∈
 and mink = { }*

min jj J
A

∈
.The justification of these  formulas is 

 explained in the Discussion section in this chapter. 
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4. Initialize kn , 1,2,..., max{ }.jj
k A=  If k

m
n

k
⎛ ⎞

≥⎜ ⎟
⎝ ⎠

 for every value of kn , go to Step 5. 

Otherwise discard x* and go to Step 2. 

5. Initialize every element of the constraint matrix, 0    and ija i I j J= ∀ ∈ ∈ . With this 

Phase 1 terminates. 

 It is recommended to check whether or not, for the selected number of constraints 

and the column sums, it is possible to generate the columns uniquely. Step 4 of the 

initialization phase checks for every kn , whether there exists enough possible 

configurations of 1s. If there is an insufficient number of possible combinations of 1s for 

any kn , the procedure regenerates the solution vector x*.  

      The schematic diagram of the initialization phase is shown in Figure 2. 
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Begin
 Phase 1

Generate n coefficients for 
cj and Aj with specified 
population correlation 

Create a binary vector x* of size n
representing success (1) or failure (0) 

in n consecutive Bernoulli’s trials with 
p as the probability of success.

Select the probability p for 
variables to have value 1 
in the optimal solution

Let k=2

Yes

Yes

No

No

Select the number of 
constraints m such that

min maxm m m≤ ≤

End
 Phase 1 

Initialize  for
1, 2,...,max{ }

k

jj

n
k A=

k=k+1

Initialize all
0   ,ija i I j J= ∀ ∈ ∈

max jj
k A<

k

m
n

k
⎛ ⎞

≥⎜ ⎟
⎝ ⎠

 

Figure 2: Schematic diagram for initialization phase 

Phase 2 - Column generation for variables with optimal value 1 

Here are some additional definitions and notations used to explain this procedure. 

 

Notation: 

* *\J J J J= − is the set of indices of variables that have value 0 in the optimal solution 
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vector. 

*

*
j

j J

A A
∈

= ∑ = sum of jA s for all *j J∈ . 

'
jA = the remaining number of 1s still to be assigned in column j , *,j J∈  during the 

column generation process. (At the beginning of the process, '
jA = jA .) 

*

'
r j

j J

A A
∈

= ∑ . (At the beginning of the process, *
rA A= .) 

, if i I∈ , is the Boolean value (true/false) for row i , that indicates whether or not the 

corresponding row is a potential recipient of a 1 in column j , *j J∈ . (At the start of the 

column generation for *j J∈ , if  =  'true' for all i .)  

uI = the set of indices of rows that are uniquely covered by exactly one *j J∈ , so that 

| uI |= | *J |. (In order to avoid further consideration of these rows for other *j J∈ , their if  

values are set to 'false'.)  

is =  for all ij
j J

a i
∈
∑ . (At the beginning of this phase, is = 0 for all i .  After the generation 

of a column, is  is updated for all i accordingly and used to verify whether the generated 

column is a valid column. The generated column is valid if the remaining columns, 

j , *j J∈ , can be generated covering all the constraints with at least one constraint 

covered uniquely. After the generation of all columns j , *j J∈ , is  will equal the left 

hand side value of constraint i .) Also, is′ = is , i∀ . If it is determined that a newly 

generated column is valid, then the is′  are updated with the is .  



  

29 

 

 

 Define 0I = { | \  and 0}u ii i I I s∈ = , i.e., the row indices of the currently violated 

constraints, 1I ={ | \  and 1}u ii i I I s∈ = , i.e., the row indices of the currently binding 

constraints, and 2I ={ | \  and 1}u ii i I I s∈ > , i.e., the row indices of the constraints that are 

currently non-binding and satisfied.  

 For any variable *j J∈ , only 1jA −  1s are to be assigned in the rows whose 

indices are in \ uI I . Let G be the set which stores the possible row indices for 

*j J∈ during column generation where ija s can be assigned 1s in the rows \ ui I I∈ . 

Basically, G can be considered a sampling bin where 1jA −  numbers of row indices from 

\ uI I are stored and if they are found to be valid (i.e., 0| |rA I≥ ), then assignments ija = 1 

are performed for all i G∈ . Otherwise, G is discarded and another search for a valid G is 

carried out. The condition 0| |rA I≥  ensures that there are enough 1s associated with 

variables *j J∈ , that have not yet been considered, left to be assigned to the rows.  

 Let 0 1 2,   and I I I′ ′ ′  be the exact replicas of 0I , 1I , and 2I  respectively, created right 

before column generation for some *j J∈ . After the generation of any column, 0I , 1I , 

and 2I  are updated based on the is  if the column is valid; otherwise, 0I , 1I , and 2I  are 

restored to their original values that were stored prior to the column generation as 

0 1 2,   and I I I′ ′ ′ .  

 Let  be the number of rows that are to be considered for generation of a column 

pertaining to any *j J∈ . At the beginning of column generation = m . When any 
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column *j J∈ is to be generated, row 1 is considered and if 1 ' 'f true=  for that row, 1 ja is 

assigned value 1 with probability as '
jA / . If  1 ja  is assigned value 1, both '

jA  and  are 

decreased by 1. Otherwise, only  is decreased by 1. If 1 ' 'f false= , then only  is 

decreased by 1 and row 2 is considered for the assignment and the process continues until 

'
jA becomes zero. 

 Let b be the current number of constraints that are binding. Similarly, let cb be the 

current number of constraints that are satisfied but not binding. Define 

{ }*
max maxmin , | |cb m m m J= − − as the maximum number of non-binding rows that can be 

generated by the procedure.  

 Phase 2 assigns 1s in such a way that all the rows are covered by at least one 

*j J∈  and also every *j J∈ covers at least one unique row. At the end of the generation, 

the number of non-binding rows is adjusted to have the maximum possible number of 

non-binding rows. Since the dual variable corresponding to any non-binding row is 0, this 

condition guarantees that 1s can be assigned in that row for any *\j J J∈ without 

violating the dual constraints. Although this adjustment is optional, the generation 

procedure adopts this scheme so as to limit the number of unsuccessful trials to generate 

valid SCP instances.   

 The procedure for the column generation for the variables with optimal value 1 is 

outlined below. Refer to Figure 5 for a schematic diagram of this procedure. 

1. The following values and sets are created and initialized.  
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i. Initialize all if  = ‘ true ’, i∀ . 

ii. Initialize all si = 0. 

iii. Assign  rA = *A . 

iv. Initialize uI φ= . 

2. Consider the first value in *J and let this value be j . 

3. Assign i =1 and = m . 

4. If if true= , go to Step 5. Otherwise, assign i = i +1,  = -1 and go to Step 4.  

5. Generate ~ (0,1)u U . If u > /jA , assign i = i +1,  = -1 and go to Step 4. 

Otherwise,  

i. 1ija =  

ii. if = ‘ false ’ 

iii. 1i is s= +  

iv. uI = { }uI i∪  

v. 1r rA A= −  

6. If all indices in *J  have been considered, go to Step 7. Otherwise let j be the next 

value in *J  and go to Step 3. 

7.  Determine the set \ uI I . Create sets 0I , 1I , 2I based on is  and let i is s′ = ,  i∀ . 

8. Consider the first value in *J . Let this value be j . 

9. Create the sets 0 0 1 1 2 2,   =  and I I I I I I′ ′ ′= = . 
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10. Execute the function columnGenerate( ). Refer to Figure 3 for a schematic flow 

diagram for function columnGenerate( ).This function is a search technique which 

ensures random assignments of 1s for *j J∈ . The sub-steps of this function are: 

i. Consider the first value in \ uI I . Let this value be i . 

ii. Assign G = φ , L= | \ uI I | and ' 1j jA A= − . '
jA is decremented by 1 each time the 

procedure finds a valid row ( ' 'if true= ) for *j J∈ . 

iii. Check if ' 'if true= . 

a. If yes, generate ~ (0,1)u U . If u  ≤ ' /jA , then G = G ∪ { i }, = -1,  

'
jA = '

jA -1, is = is +1 and go to Step 10-iv. Otherwise, go to Step 10-iii-b.  

b. Else, = -1, consider the next value in \ uI I . Let this value be i and go to 

Step 10-iii.  

iv. Check if '
jA > 0. 

a. If yes, consider the next value in \ uI I . Let this value i and go to Step 10-iii. 

b. Else, this procedure terminates.  

11. Update 0I , 1I  and 2I  based on is , i I∈  .  

12. If 01 | |r jA A I− + ≥ , 1ija = ∀ i G∈ , i is s′ = , 1r r jA A A= − + and go to Step 13. 

Otherwise, restore 0I , 1I , 2I  and is  based on 0 1 2,  ,  I I I′ ′ ′  and '
is , respectively. Let 

G φ= and go to Step 10. 

13. Check if 0| |rA I=  
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i. If yes,  

a. Assign ' 'if false= ∀ 1 2i I I∈ ∪ . 

b. Check if there is any value in *J yet to be considered. 

• If yes, go to Step 13-ii. 

• Else, go to Step 14. 

ii. Otherwise, proceed as follows,  

a. Consider the next value in *J . Let this value be j . 

b. Update the sets 0 1 2,   and I I I′ ′ ′  based on 0I , 1I , and 2I , respectively, and go to 

Step 10. 

14. Check if cb = max
cb  

a. If yes, column generation for *j J∈ terminates.  

b. Else, go to Step 15.  

15. This step executes the function nbRowAdjustment( ). Refer to Figure 4 for the 

schematic flow diagram for this function. This function searches for the column 

covering the largest number of non-binding rows and assigns a 1 in one of the 

corresponding non-binding rows. A 1 is removed from the row with the largest row 

sum and it is reassigned in the same column it was removed from but in one of the 

non-binding rows. Details of the procedure for this function are outlined below. 

i. Determine a column index pertaining to a variable which covers the maximum 

number of non-binding rows. If there is a tie, the one with the smaller jc  is 
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chosen. Let this column index be 
maxj .  

ii. Determine the row with the largest row sum. Let this row be r. 

iii. Create a list of column indices such that max1 and rja j j= ≠ and randomly select 

any value from the list. Let this value be d . 

iv. Along column maxj randomly choose row k such that max 1
kj

a = and 1k I∈ . 

v. Assign 1,  0kd rda a= = , 1 and 1k k r rs s s s= + = − . 

vi. Update 0I , 1I  and 2I  based on the new is . 

vii. If cb = max
cb  the function terminates. Otherwise, go to Step 15.  
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' 0?jA =

'

Initialize ,
| \ |  and 

1
u

j j

G
l I I

A A

φ=
=

= −
If  ' 'if true=

'~ (0,1) ju U A≤
-1=

' '

{ }
1

1

1
j j

i i

G G i

A A

s s

= ∪
= −

= −

= +

 

Figure 3: Schematic diagram for the function columnGenerate( ) 

 

Begin

Determine a column index 
pertaining to a variable which covers 

the maximum number of non-
binding rows. If there is a tie, the 

one with the smaller cj is chosen. Let 
this column index be jmax.

Create a list of column indices  such 
that arj =1 and j ≠ jmax and randomly 

select any one value from this list. Let 
this value be d.

Update I1 and I2 based 
on changed si.

End

No

Yes

Determine the row with 
the  largest row  sum. 

Let this row be r.

max

1

Randomly select a 
row  in column  
such that 

k j
k I∈

1,  0
1 and 1

kd rd

k k r r

a a
s s s s

= =

= + = −max
c cb b=

 

Figure 4: Schematic diagram for function nbRowAdjustment( ) 
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Is there a next 
value in J*? Yes

Yes

No

Call columnGenerate()

No

Yes

No

Yes

Is there a next 
value in J*to 

consider?
Yes

No

End Yes
Call Non binding row 
adjustment procedure, 
nbRowAdjustment()

No

Consider the next value in 
J*. Let this value be j

01 | |r jA A I− + ≥

Consider the first  value in 
J*. Let this value be j

Yes

No

0| | ?rA I=
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0 0 1 1 2 2
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,   and I I I I I I= = =

1 2  :if false i i I I= ∀ ∈ ∪
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c cb b=

Initialize I0 =I\Iu, 
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1,  

1
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1

ij i

i i
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a f false
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= +

= ∪
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~ (0,1)
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if u U
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0 1

2
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I I
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1  ,  

1
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i i

r r j

a i G

s s
A A A

= ∀ ∈
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0 1 2, ,  and iI I I s
' ' '
0 1 2, ,  and iI I I s′

Begin
Take first value 

from J* and let this 
value be j
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value from J* and 

let this be j.
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*
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m

=
=

1
1

i i= +
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Figure 5: Schematic diagram for generation of columns *j J∈  
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Phase 3 - Dual variables assignment and adjustment 

 In this third phase, dual variable values are assigned. Then these dual variables 

are checked for the possibility of generating a valid SCP instance. If an adjustment is 

required, the values of these variables are adjusted. The adjustment of dual variables 

arises in two conditions: either it is impossible to assign 1s for at least one *\j J J∈  and 

maintain j jcλ− ≤jπA , or there are not enough configurations of 1s so as to have unique 

columns. A column is considered unique if it is somehow different from the rest of the 

columns with the same jA . The dual variable assignment and adjustment procedures are 

explained below. Refer to Figure 6 for a flowchart of the dual variable assignment 

procedure. 

 

Dual variable assignment procedure 

 

1. Assign 0    1i ii sπ = ∀ ∋ > . Since only columns pertaining to *j J∈ have been 

generated
*

i ij
j J

s a
∈

= ∑ for all i . Therefore, is  is the value of the left hand side of 

constraint i . 

2. Consider the first value in *J  and let this value be j . 

3. Define a set jM , which stores the row indices such that ija =1 and =1 is . (The set 

jM  stores the rows indices of the binding constraints covered by jx ). 
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4. Assign   
| |

j
i j

j

c
i M

M
π = ∀ ∈ . For example if *j J∈ , jc  = 65 and jM =3, then 

65  for all 
3i ji Mπ = ∈ .  

5. Check if there is another value in *J to consider. 

i. If yes, consider the next value in *J and let this value be j . Go to Step 3. 

ii. Otherwise go to Step 6. 

6. Create a separate list of ordered dual variables iπ< >  such that 1 2 ... mπ π π< > < > < >≤ ≤ ≤ . 

7. Create another list based on the list created in Step 6. Every value in this second list is 

given by 
1

i

r
r

π< >
=

∑ . (For example, in the list of 
1

i

r
r

π< >
=

∑ , entry '5' will have the number 

that is the sum of first five dual variables in the list of the iπ< > .) 

8. The assignment procedure terminates.  

 

 The assignment strategy explained above assumes jλ = 0 for columns *j J∈ . 

KKT condition (3.8), requires that jλ =0 for all *\j J J∈ to satisfy ( )1 0   j jx j Jλ− = ∀ ∈ .   

However, jλ  for column, *j J∈ can have any non-negative value if KKT condition (3.9), 

0   ,j ij i j j
i I

x a c j Jπ λ
∈

⎛ ⎞
− − = ∀ ∈⎜ ⎟

⎝ ⎠
∑  is satisfied. In doing so, the dual variables iπ s 

corresponding to the binding rows covered by *j J∈  column will be greater as,  

ij i j j
i I

a cπ λ
∈

= +∑ to satisfy (3.9). In the case where jλ = 0, ij i j
i I

a cπ
∈

=∑ , and iπ s 
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corresponding to the binding rows covered by *j J∈  column will be relatively smaller. 

During the generation of column *\j J J∈ , (3.9) is automatically satisfied whereas the 

dual constraint j jcλ− ≤jπA  should also be satisfied with the valid configuration of 1s. 

Any generated column *\j J J∈  is valid if and only if the column is not the replica of 

another column and the dual constraint is satisfied. In the case of larger values of iπ s , 

the number of possible combinations of 1s along the columns *\j J J∈ is reduced 

compared to the case with relatively smaller values of iπ s (i.e., case where 0jλ = ). This 

scenario may lead to the case where valid columns *\j J J∈  may not be generated and 

regeneration of columns *\j J J∈  should be performed, beginning with the new values 

for the dual variables.  

 The scheme of assigning jλ = 0 is for all j J∈ is not mandatory. As explained 

earlier, the objective here is to minimize the number of regeneration of dual variables by 

maintaining higher probability of generating valid columns *\j J J∈ . 
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Begin 

End

If si > 1? πi =0 i =i+1Yes

No

If i >m

i =1

No

Yes

Is there a next 
value in Mj?

Consider the first value 
in J* and let this be j

Consider first value in Mj
and let this value be i.

No

Consider next  
value in Mj and let 

this value be i.

Yes

Is there a next 
value in J*?No

Consider next  
value in J* and let 

this value be j.
Yes

Create a list of dual 
variables in ascending 

order (π<i>’s)

No

For this j, create the set Mj
of row indices such that 

1 and 1ij ia s= =

Assign

| |
j

i
j

c
M

π =

Create a list such 
that ith member of 
the list is given by 

the formula

1

i

r
r

π< >
=

∑
 

Figure 6: Dual variable assignment procedure 

 
 
 Consider a problem with 50 variables and 25 constraints. Suppose that for the 

selected solution vector, 11 and 29 are the theoretical minimum and maximum numbers 

of constraints possible. After the assignment of dual variables as mentioned above, iπ< > , 

1

i

r
r

π< >
=

∑ and  i< >  are as follows: 
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Table 1 Example of π<i> and their ranks 

i  iπ< >  
1

i

r
r

π< >
=

∑  i< >  

5 0 0 1 
6 0 0 2 
9 0 0 3 

11 0 0 4 
12 4 4 5 
13 4 8 6 
4 19 27 7 
7 19 46 8 
8 19 65 9 

10 19 84 10 
17 20 104 11 
20 22 126 12 
24 22 148 13 
25 23 171 14 
14 33 204 15 
15 33 237 16 
18 33 270 17 
19 33 303 18 
1 37 340 19 
2 37 377 20 
3 38 415 21 

16 43 458 22 
21 43 501 23 
22 43 544 24 
23 48 592 25 

 

The actual row in the constraint matrix that each dual variable corresponds to is the first 

column denoted by i  in Table 1 and the last column i< > is the ranking number for iπ< > . 

Some useful information can be drawn from Table 1: 

• There are four rows that have more than one 1 in columns *j J∈ . Though all these 

extra 1s can go in one dense row and still yield a valid problem instance, spreading 

these 1s over as many rows as possible makes many rows inactive, thereby forcing 
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the corresponding rows to have dual variables = 0. 

• The entries in the 
1

i

r
r

π< >
=

∑  column give the least possible jc  for *\j J J∈ with 

jA i=< > to satisfy the dual constraints. For example, 
5

1
r

r
π< >

=
∑ = 4 means, if any 

*\j J J∈ with 5jA =  has jc  < 4 in the SCP instance being generated, then it is 

impossible to satisfy the dual constraints pertaining to that jx . Furthermore, an SCP 

instance cannot be generated if *\j J J∈ and jA = 2, 3 or 4 and jc  < 0 (which is not 

encountered as all jc > 0). 

• For any *\j J J∈ , the number of different configurations of 1s possible can be 

deduced. For example, let us consider a partial list of decision variables and their 

coefficients shown in Table 2. 

Consider 14x , which has 4c = 124 and 4A  = 4. In Table 1, 104 is the largest value of 

1

i

r
r

π< >
=

∑ less than or equal to 124. This means that there are 11 rows that can have 1s 

allowing 
11
4

⎛ ⎞
⎜ ⎟
⎝ ⎠

 ways to configure those four 1s. Similarly, for 2x , there are 
13
5

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

configurations of 1s possible. Checking all columns *\j J J∈ for the possibility of 

acquiring a unique column has to be ensured prior to generation of columns *\j J J∈ . 
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Table 2 A partial list of cost coefficients and column sums 

j  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

jc  67 157 167 130 50 14 53 52 48 140 169 8 18 124 15 114 116 36 112 185

jA  4 5 5 4 3 3 3 3 3 5 5 5 2 4 2 2 4 5 4 5 

 

 Generally, the adjustment of dual variables is very likely needed when a problem 

instance is created for the maximum possible number of constraints because all the dual 

variables assume non-negative values since none of the constraints are non-binding. This 

kind of configuration of dual variables may make assignment of 1s for some columns 

*\j J J∈ impossible without violating the dual constraints.  

   The columns pertaining to *\j J J∈ have a typical characteristic when a problem 

instance is created with the maximum number of constraints. Every row is binding, 

ensuring non-negative values for the corresponding dual variables. As per the assignment 

procedure for dual variables explained earlier, in this case, every dual variable 

corresponding to some row assumes value /j jc A  where *j J∈ covers that row, thereby 

making 0j ij i j j
i I

x a cπ λ
∈

⎛ ⎞
− − =⎜ ⎟

⎝ ⎠
∑ . Upon completion of the assignment of dual variables, 

if there is no difficulty in assigning 1s for all columns pertaining to *\j J J∈ and 

maintaining their uniqueness, the adjustment of dual variables is not necessary. 

Otherwise, a procedure for checking and adjusting the dual variables is implemented as 

outlined below. 
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Dual variable checking and adjustment procedure 

Some new notation used in this procedure includes: 

max max{ }jj J
k A

∈
=  

q = maximum number of adjustments of dual variables needed for any column 

*\j J J∈ in order to satisfy the dual constraint jπA − λj ≤ jc . 

w  = the number of binding rows covered by a column *j J∈ . 

k = jA corresponding to the column *\J J that demands q adjustments. 

1. Consider the kn s initialized earlier in Phase 1 Step 4. As defined earlier, kn  stores the 

count of jA = k for all j J∈ , where 1, 2, , max{ }jj
k A= . It is also possible to have 

other 0kn = for k such that  max2 k k≤ ≤ .   

2. Create a list of min
kc  which stores Min jc  for jA = k . (Obviously, min

1 0c = as the 

generation procedure does not consider columns with jA =1.)  

3. Initialize q = 0 and k = 0.  

4. Determine the value of q as follows:  

i. Assign k = 2. 

ii. Find the largest i< > such that 
1

i

r
r

π< >
=

∑ ≤  min
kc . If the first value in the 

1

i

r
r

π< >
=

∑ column is greater than min
kc , then i< >  =0.  
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iii. Calculate the possible number of configurations of 1s as 
i
k

< >⎛ ⎞
⎜ ⎟
⎝ ⎠

.  

a. If 
i
k

< >⎛ ⎞
⎜ ⎟
⎝ ⎠

≥ kn , then check if k  = maxk .  

• If no, assign k  = k +1 and go to Step 4-ii. 

• Otherwise go to Step 5. 

b. Otherwise, assign q = max{ q ,( k - i< > + 1)}, k = k  and check if k = maxk .  

• If yes, assign k  = k +1 and go to Step 4-ii. 

• Otherwise go to Step 5. 

5. If q = 0 go to Step 9, otherwise, change the dual variable as follows.  

i. Create a list Z of column indices such that *j J∈ and jx  covers more than two 

binding constraints and is sorted in descending order of number of binding 

constraints covered. If there is a tie, then the j with smaller jc comes first in the 

list. Check if Z = φ, 

a. If yes, go to Step 5-v. 

b. Otherwise, go to Step 5-ii. 

ii. Let the first value in Z be 1z . Determine the number of binding rows w  

corresponding to the column 1z . 

iii. If q ≤ w -2 (that is if the number of adjustments required is less than the number 

of binding rows covered by 
1z

x minus 2), randomly select q binding rows and do 
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the following. 

a. Assign the dual variables corresponding to the rows selected above a small 

non-negative value say ∂ . (Refer to the Discussion section of this chapter on 

the calculation of ∂ .) 

b. Reassign the value of the dual variables corresponding to the rows not 

selected as 
1

( ) /( )zc q w q− ∂ − . Go to Step 9. 

iv. If q > w -2 (number of adjustment required is greater than the possible number of 

adjustment of dual variables corresponding to the rows with 1s in column of (
1z

x -

2), randomly select w -2 binding rows and do the following. 

a. Assign the dual variables corresponding to the rows selected above a small 

non-negative value say ∂ . 

b. Reassign the value of the dual variables corresponding to the rows not 

selected as ( ( 2)) / 2jc w− ∂ − . Decrease q by ( 2)w − . 

c. Z = Z - { 1z }. 

d. Check if Z = φ 

• If yes, go to Step 5-v. 

• Otherwise, go to Step 5-ii. 

v. Create a list Z of column indices such that *j J∈ covers exactly two binding 

constraints in ascending order of jc . If Z = φ go to Step 5-viii, otherwise, go to 

Step 5-vi. 
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vi. Let the first value in Z be 1z . 

vii. Select one binding row randomly out of the two binding rows covered by column 

1z and do the following: 

a. Assign the corresponding dual variable for the selected row a small value ∂ . 

b. Assign the dual variable corresponding to the binding row that was not 

selected as jc - ∂ .  

c. Decrease q by 1.  

d. Z = Z-{ 1z }. 

e. If q > 0 and Z ≠ φ go to Step 5-vi, otherwise go to Step 5-viii. 

viii. Check the following conditions. 

a. If q = 0, go to Step 9. 

b. If q = 1 and Z = φ, go to Step 6.  

c. If q > 1 and Z = φ, go to Step 10. 

6. Calculate 
1

i

r
r

π< >
=

∑  and i< >  for the adjusted dual variables. 

7. Create a list of jc s for variables with jA = k for all j J∈ and sort it in descending 

order of jc . Create a temporary variable h  and initialize h =
k

n− (i.e., k k= ). 

8. Consider the first value in the list above and do the following: 

i. Determine the corresponding i< > for the greatest value in the 
1

i

r
r

π< >
=

∑ column 
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that is less than or equal to jc .  

ii. Check if 
i
k

< >⎛ ⎞
⎜ ⎟
⎝ ⎠

≥ h ,  

a. If yes do the following  

• Assign h = h -1. 

• Check if there is any value of jc in the list created in Step 7. 

o If yes, consider next value of jc  and go to Step 8-i. 

o Otherwise, go to Step 9. 

b. Otherwise go to Step 10. 

9. The process of the checking and adjustment of the dual variables terminates with 

success.  

10. Print error message "Dual Variables Assignment unachievable". Restart the 

generation process Phase 2 with different J* columns. 

 The schematic diagram for checking and adjustment of all dual variables is shown 

in Figure 7 and the schematic diagram of checking the possibility of the unique 

configurations for columns with jA = k  is shown in Figure 8.   
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Begin

k = k+1

Yes

No

No

Yes

Create the set Z of column 
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No
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and let this be z1.

No
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binding rows covered 
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corresponding i = . 
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No
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Z = Z-{ z1}

Determine the number 
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Create new Z as indices of 
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exactly two binding rows

if
?if Z φ=

Yes

Consider first value in Z
and let this be z1.
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if
0 &

?
q
Z φ

>
≠

Yes

End Yes
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if
0?q =

if
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?
q
Z φ

=
=

No

No End Process
without success

Yes

End Process 
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Consider the 
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min
i

<i>
r=1

such that corresponding

 

Find the largest

k

i

cπ

< >

≤∑

Initialize 0 and
0. Let 2

q
k k

=

= =

?if Z φ=

 0?if q =

Create a list of  min
kc

if

( , ) kC i k n< > ≥

Assign i corresponding 
to binding rows not 

selected in the previous 
step are assigned as

1
( ( 2) / 2zc w− ∂ −

 and

 =max{ , 1}

 k k

q q k i

Assign =

− < > +

Check the possibility of 
unique configurations for 
columns with jA k=

Assign i ‘s corresponding 
to binding rows not selected 

in the previous step as

1
( ) /( )zc q w q− ∂ −
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binding row covered by 
column z1 and assign 
corresponding i =  
Assign q = q-1

∂
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to the binding row not 
selected in the previous 
step as

1
( )zc − ∂

if
Max jk A=

 

Figure 7: Schematic diagram of dual variables checking and adjustment procedure 



  

50 

 

 

Consider first value of cj
in the list and find 
corresponding <i>

Determine <i> 
corresponding to 

this cj value

Assign
h=h-1

Is there a 
next value of cj in 

the list?

Consider the 
next value of cj

Begin

No

Yes

Yes

End Process 
without success

End

No

Assign temporary 
variable   

kh n=

If
i

h
k

< >⎛ ⎞
≥⎜ ⎟

⎝ ⎠

Create a list of cj for 
columns with Aj = 

 in descending order of cj

k

 

Figure 8: Checking possibility of the unique configurations for the columns with jA = k  

 
 To illustrate the assignment of values to the dual variables, an example with 17 

constraints and 3 variables with optimal value 1 is presented in Table 3. For this problem, 

Table 4 shows that there is one variable with jA  = 2 and, with initial dual variable 

assignments, there are 105 unique configurations of 1s for this variable. Likewise there 

are 4 variables with jA  = 3 and, with these dual variable assignments, there are 330 

unique configurations of 1s. The same argument is true for variables with jA  = 4 and 5 as 

well. However, for variables with jA = 6, there are six variables and no possible 

configuration of 1s. This condition requires adjustment of the dual variables. The 

maximum number of adjustments of dual variables needed ( q ) in this case is 6n - i< > +1 
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= 6 – 0 +1 = 7. Therefore, seven dual variables have to be adjusted in such a way that 

j j jA cπ λ− ≤ is satisfied for the variable with jA  =6 and jc  = 1 (lowest). In this case that 

variable would be 20x . Table 5 shows the problem after the adjustment of 7 dual variables 

as per the procedure explained earlier. 

 

Table 3 An example of the initial dual variable assignments 

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
cj 52 193 84 64 24 140 108 130 21 12 37 32 171 114 172 62 80 96 85 1 

Aj 4 2 3 5 5 3 6 4 6 6 5 5 3 3 6 5 6 4 4 6 
xj 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 

si π iπ< >  
1

i

k
r

π < >
=

∑ i< >

1          0     1 0     1 28 2 2 1 
2          0     0 1     1 12 2 4 2 
3          0     0 1     1 12 2 6 3 
4          0     0 1     1 12 2 8 4 
5          1     0 0     1 2 2 10 5 
6          1     0 0     1 2 2 12 6 
7          1     0 0     1 2 12 24 7 
8          1     0 0     1 2 12 36 8 
9          0     0 1     1 12 12 48 9 

10          0     0 1     1 14 12 60 10 
11          1     0 0     1 2 14 74 11 
12          0     1 0     1 28 28 102 12 
13          1     0 0     1 2 28 130 13 
14          0     1 0     1 28 28 158 14 
15          0     1 0     1 28 28 186 15 
16          0     1 0     1 28 28 214 16 
17          0     1 0     1 32 32 246 17 
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Table 4 An example showing calculation of q 

jA  kn  min
kc  

1

i

r
r

π< >
=

∑  i< >  
j

i
A

< >⎛ ⎞
⎜ ⎟
⎝ ⎠

 
j

i
A

< >⎛ ⎞
⎜ ⎟
⎝ ⎠

≥ kn  q  

2 1 193 186 15 105 TRUE 0 
3 4 84 74 11 330 TRUE 0 
4 4 52 48 9 126 TRUE 0 
5 5 32 32 7 21 TRUE 0 
6 6 1 0 0 0 FALSE 7 

 

Table 5 An example of the dual variable adjustments 

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
cj 52 193 84 64 24 140 108 130 21 12 37 32 171 114 172 62 80 96 85 1 

Aj 4 2 3 5 5 3 6 4 6 6 5 5 3 3 6 5 6 4 4 6 
xj 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 

si π iπ< >  
1

i

k
r

π < >
=

∑ i< >

1          0     1 0     1 57.2 0.1 0.1 1 

2          0     0 1     1 12 0.1 0.2 2 
3          0     0 1     1 12 0.1 0.3 3 
4          0     0 1     1 12 0.1 0.4 4 
5          1     0 0     1 0.1 0.1 0.5 5 
6          1     0 0     1 5.8 0.1 0.6 6 
7          1     0 0     1 0.1 0.1 0.7 7 
8          1     0 0     1 5.8 5.8 6.5 8 
9          0     0 1     1 12 5.8 12.3 9 

10          0     0 1     1 14 12 24.3 10 
11          1     0 0     1 0.1 12 36.3 11 
12          0     1 0     1 0.1 12 48.3 12 
13          1     0 0     1 0.1 12 60.3 13 
14          0     1 0     1 57.2 14 74.3 14 
15          0     1 0     1 0.1 57.23 131.5 15 
16          0     1 0     1 57.2 57.23 188.8 16 
17          0     1 0     1 0.1 57.23 246.0 17 
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Table 6 Checking possibility of the unique configurations for the columns with jA =6 

 
 jA  jc  

1

i

r
r

π< >
=

∑  i< >  
j

i
A

< >⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Minimum 
number of 

configurations 
required  

Flag 

1 6 172 131.5 15 5005 6 Ok 
2 6 108 74.3 14 3003 5 Ok 
3 6 62 60.6 13 1716 4 Ok 
4 6 21 12.3 9 84 3 Ok 
5 6 12 6.5 8 28 2 Ok 
6 6 1 0.6 7 7 1 Ok 

 

 Table 6 shows how the checking procedure works. Each column is checked in 

descending order of jc . For example, in the first line, it shows that there are 5005 

different configurations of 1s possible and the minimum number of configurations of 1s 

required is 6 (because that is the frequency of the variables with jA  = 6). Similarly the 

second line shows that there are 3003 different combinations of columns possible and the 

minimum number of required combinations is 5. When the calculated number of 

combinations is greater than or equal to the required number of combinations then one 

can proceed with checking of the remaining variables. If, by any chance, this condition is 

not met, then the process is terminated and regeneration of the problem beginning with 

Phase 2 should be performed.  

Phase 4 - Column generation for variables with optimal value 0 

 In order to satisfy the dual constraints for columns *\j J J∈ , the configuration of 
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1s should be such that the condition j jcλ− ≤jπA  is satisfied for all *\j J J∈ . For such 

columns jx = 0 and consequently jλ =0, so in effect, the dual constraint becomes jπA  

≤ jc . Independent Bernoulli trials are performed with the success probability equal to the 

ratio of the column sum to the number of structural constraints of the primal problem 

which have dual variables less than or equal to the corresponding jc . In order to achieve 

a column with exactly jA 1s, the success probability is updated depending upon whether 

a success was achieved in the previous trial or not.  

 Consider a situation where a column to be generated for jA = 4 and the number of 

constraints = 25. In this case, the first trial will have probability of jA /25 or 4/25 that the 

1 ja will be assigned value 1. If this trial fails, then the probability for the next trial would 

be 4/24. But if this trail succeeds, then the probability for the next trial would be 3/24. 

This procedure continues and at the end of the 25th trial or sooner, this column will have 

exactly four 1s. During this process, in order to minimize the rejection of columns 

generated, trials for a row with iπ > jc  should be skipped, ija should be set to 0 and the 

success probability for the subsequent trial should account for this assignment.   

 During the generation of a column, if there is a situation where jλ−jπA > jc then 

that column is discarded and a new attempt to generate a column is made.  In the event 

that some jλ−jπA = jc , then the corresponding jx  are potential candidates for optimal 

variables in alternate optimal solutions. 
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 The schematic flow diagram of this phase is shown in Figure 9. This procedure is 

activated upon verifying that the dual variables have been assigned and that it is possible 

to generate columns for all *\j J J∈ . 

Some new concepts and notations used to explain this procedure include: 

 1 2( , ,..., )mπ π π=π is a vector of dual variables, where iπ is the dual variable 

corresponding to the constraints i .  

 A stack is a special kind of arrangement of values where any new value can be put 

only on the top of the stack. If removal of any value from the stack is required then only 

the values from the top can be removed one at a time. This special characteristic is crucial 

in assigning 1s for column *\j J J∈ . 

 The row stack is the stack of row indices where 1s for column *\j J J∈ can be 

assigned. Row stacks for different columns should differ in at least one component. An 

invalid stack is the stack of row indices for which 1s can not be assigned for a particular 

column *\j J J∈ .  

 Let it be the Boolean value (true/false) indicating whether or not row i  can be 

considered a candidate to accept 1s for column *\j J J∈ . If it = 'false' then ija  cannot be 

assigned value 1. Every time a new *\j J J∈  is considered for column generation, both 

the stacks are initialized as empty stacks and the it s are initialized as 'true'.  

 This column generation procedure searches for the combination of 1s and 0s for 

any column *\j J J∈ such that the column is unique and the dual constraint pertaining to 
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that variable is also satisfied.  

 Let '
jA be the remaining number of 1s still to be assigned for any one 

*\j J J∈ during the column generation process. (At the beginning of the process '
jA = jA ). 

Define '
j

c as jc - πΑj for the column being generated. (At the beginning of the column 

generation '
j

c = jc ).  

 The overall process of column generation for column *\j J J∈  is shown in 

Figure 9. The procedure for column generation for variables with optimal value 0 is as 

follows: 

1. Determine maxk .  

2. Consider jA = 2.  

3. Create a set 'J that stores the column indices of those columns which have column 

sum equal to jA in the ascending order of their jc s for all *\j J J∈ , i.e., '
1j  is the 

column with the smallest jc among columns with column equal to jA  

4. Check if | J' | = 0 

i. If yes, go to Step 6-ii. 

ii. Otherwise, go to Step 5. 

5. Consider the first value in the set 'J and let this value be '
ij . 

6. If ' 1
ij

x ≠ , go to Step 7. Otherwise, check if there is a next value in 'J to consider. 

i. If yes, let the next value in 'J be '
ij  and go to Step 6. 
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ii. Otherwise, check if the column sum of the column being considered is equal to 

maxk . 

a. If yes, the process terminates as the last variable with column sum as Max 

jA has already been generated. 

b. Otherwise, jA = jA +1 and go to Step 3.  

7. Assign '
' '

i
j j

A A= and '
'

i
j j

c c= . For all rows assign it  = ‘true’. 

8. Execute function inValidate( ). (The schematic flow diagram for this function is 

shown in Figure 10.) This function performs the following tasks.  

i. Initialize i = 1. 

ii. If it = ‘false’, i = i +1 and go to Step 8-iii. Otherwise, do the following: 

a. If iπ ≤ '
jc , i = i +1 and go to Step 8-iii. Otherwise, do the following: 

• Insert i in the invalid stack. 

• Assign it = ‘false’. 

• Assign i = i +1 and go to Step 8-iii. 

iii. If i > m , insert -1 at the top of the invalid stack and the function terminates. 

Otherwise, go to Step 8-ii. 

9. Check if there is any iπ , such that it =‘true’. 

i. If yes, randomly select any one iπ  with corresponding it = ‘true’ and do the 

following: 

a. Insert i  corresponding to this iπ in the row stack 
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b. Assign it = ‘false’ so that this row will not be considered again for this 

variable. 

c. Decrease the value of '
jA by 1 and '

j
c by iπ . This means, there are ' 1jA −  1s 

remaining to assign and not violate the dual constraint. The total sum of the 

dual variables corresponding to other rows which would be assigned ' 1jA −  1s 

later in this column, should not exceed '
j

c .  

d. Go to Step 10. 

ii. Otherwise, execute function reArrange( ). The schematic flow diagram for this 

function is shown in Figure 11. This function performs the following tasks: 

a. Remove the topmost value in the invalid stack, which is -1. 

b. Remove again the topmost value in the invalid stack and check if this value is 

-1. (There can be more than one -1 at the top of the stack)  

• If not, assign it = ‘true’ corresponding to the value removed in Step 9-ii-b 

and go to Step ii-b. 

• Otherwise, remove the topmost value of the row stack (let this value be k ) 

and do the following:  

o Insert k  into the invalid stack. 

o ' ' 1j jA A= +  

o ' '
j j kc c π= +  

o Insert -1 at the top of the invalid stack go to Step 10. 
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10. Check if ' 0jA =  

i. If not, go to Step 8, i.e., function inValidate( ) is executed again. 

ii. Otherwise, create one temporary binary column vector of size m with all 0's 

except in the rows whose indices are in the row stack and go to Step 11. 

11. Check for all columns whether this temporary column vector is unique compared to 

all the columns with jA = '
ij

A for j J∈ . 

i. If yes, then 1s are assigned in the column '
ij  at the rows of the primal constraint 

matrix whose indices are in the row stack, otherwise 0s are assigned. Discard both 

the invalid and row stacks. If there is a next value '
ij  in 'J to consider, go to Step 

6. Otherwise, go to Step 6-ii. 

ii. Otherwise, discard both the row and invalid stacks and go to Step 7 for the 

regeneration of column '
ij . 

 After coefficients are generated for all the variables, a quick check of the row 

sums is performed. This is necessary since a row with row sum 1 must be covered by the 

variable which has 1 in that row. This means, by inspection one can tell that this variable 

should be in the optimal solution with value 1.  

 Under the condition where there are rows with the row sum equal to 1, a 

reconfiguration of 1s should be done so that every row sum is at least equal to 2. This can 

be done in the following manner. Let a deficient row be the row for which the row sum is 

less than 2. Likewise, let a donor row be the row which has the row sum greater than 2. 

There may be more than one possible donor row; however, a simple rule can be 
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established to select one row as a donor from the pool of potential donor rows. 

1. Initialize the set R φ= . 

2. If is < 2, { }R R i= ∪  i I∀ ∈ . 

3. If R φ= , go to Step 11-b. Otherwise consider the first value in R  and let this 

value be 1r and go to Step 4. 

4. Create a list Z of the column indices in descending order of j

j

c
A for all 

*\j J J∈ except for the column which has
1

1r ja = . (This is because the column 

with 
1

1r ja = has already 1 in the deficient row.) Let the values stored in this list Z 

be 1 2, ,..., kz z z . This is the list of indices of the variables which are potential donor 

of 1s for the deficient rows. The column 1z  having the highest j

j

c
A  will have 

better probability of accepting 1s in the deficient row; however, the selection is 

restricted by the dual condition jπA  − λj ≤ jc . All i  which have 
1iza =1 and is >2 

are the potential donor rows. 

5. Consider the first value in Z and let this value be 1z . 

6. Initialize a set of indices of donor rows D = φ.  

i.  Assign i =1. 

ii. If 
1iza =1 and is >2, then { }D D i= ∪ . Otherwise i = i +1. 

iii. If  i > m go to Step 7. Otherwise, go to Step 6-ii. 
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7. Consider the first value in D and let this be id . 

8. If
1id rπ π≥ , then make 

1 1
1r za = , 

1r
s =

1r
s +1, 

ids =
ids -1, and 

1
0

id za = . Go to step 9.  

9. If 
kzc − πA 1z ≥

1 ir dπ π− then make 
1 1

1r za = ,
1

0
id za = ,

1r
s =

1r
s +1, and 

ids =
ids -1 go to 

Step 10. Otherwise, { }iD D d= − , check if D φ≠ .  

i. If true, consider the first value in D. Let this value be id and go to Step 8.  

ii. Otherwise, 1{ }Z Z z= − . If Z φ≠ consider the first value in Z, 1z , and go to 

Step 6. Otherwise go to Step 12.  

10. Check if the column 1z is unique. 

i. If yes, go to Step 11. 

ii. Otherwise, assign 
1 1

0r za = , 
1r

s =
1r

s -1, 
1

1
id za = , and 

ids =
ids +1. Check if there 

is an another value in D to consider. 

a. If yes, consider the next value in D. Let this value be id and go to Step 8.  

b. Otherwise, check if there is another value of Z to consider.  

• If yes, consider the next value in Z. Let this value be 1z and go to Step 

6. 

• Otherwise go to Step 12. 

11. 1{ }R R r= − and check if R φ≠ ,  

a. If true, consider the first value in R. Let this value be 1r and go to Step 4. 

b. Otherwise, the process terminates with success. 

12. The process terminates with an error message “row-sums adjustment 
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unattainable”.  

 The schematic diagram of the procedure to adjust row sums of the constraints 

matrix is shown in Figure 12.  

 Sometimes, however the procedure explained above can not adjust the 1s along 

the *\J J columns. In fact this procedure checks if any 1 along *\J J columns can be 

moved to a deficient row along the same column. Generally this method is adequate to 

ensure row sums at least equal to 2 after adjustment. If this procedure does not work, a 

second row sum adjustment procedure is recommended. The second procedure differs 

from the earlier procedure mainly in the scope of change. The second procedure changes 

the entire column instead of a single element in a column during the adjustment. The 

detail of this procedure is explained below. 

1. Initialize the set R φ= . 

2. If is < 2, { }R R i= ∪  i I∀ ∈ . 

3. If R φ= , go to Step 8-b. Otherwise sort R in decreasing order of the 

corresponding dual variables and let the first value be 1r and go to Step 4. 

4. Create a temporary list of column indices for *\J J columns such that for any 

column j  in *\J J , < i > is greater or equal to 1jA −  where < i > is the 

maximum value for which 
1

1
( )

i

k j r
k

cπ π< >
=

≤ −∑ . As explained earlier in the dual 

variable assignment kπ< > s are the ordered dual variables so that 

1 2 ... mπ π π< > < > < >≤ ≤ ≤ . 
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5. Create a list Z of column indices of *\J J columns from the temporary list 

created in the previous step 4 such that if these columns are assigned all zeros one 

column at a time does not alter the number of deficient rows.  

6. If Z φ= , the adjustment process terminates without success. Otherwise, consider 

the first value in Z . Let this value be 1z and go the Step 7. 

7. Create a new column 1z such that one 1 is assigned in a row 1r  and remaining 

(
1

1zA − ) 1s along the column are assigned in such a way that the corresponding 

dual constraint πΑj − λj ≤ jc is satisfied. 

8. 1{ }R R r= − and check if R φ≠ ,  

a. If true, consider the first value in R. Let this value be 1r and go to Step 4. 

b. Otherwise, the process terminates with success. 

 The schematic diagram of the second procedure to adjust row sums is shown in 

Figure 13.  

 With the completion of this phase, the procedure for creating SCP instances with 

known optimal solution and correlated coefficients terminates. An example of this SCP 

instance generation procedure is illustrated in Appendix A. If the second row sums 

adjustment procedure also fails to adjust the row sums it is suggested to regenerate the 

problem. Note that the problem generated is still a valid SCP instance, however, the 

variables covering the rows with only one 1 should have optimal value 1. To avoid easy 

preprocessing it is desired to have at least two 1s in every row of constraint matrix. 
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Figure 9: Schematic diagram for generation of columns *\j J J∈  
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Begin Function 
Invalid()

Row index i =1

Insert row index i in 
invalid stack and 
assign ti= ‘false’

If i > m

Insert “-1" in 
invalid stack

End
Function 

i = i+1No

Yes

Yes

'
ji cπ >

If ti =‘true’
No

Yes

No

 

Figure 10: Schematic diagram for function inValidate( ) 
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from solution stack 
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No End 
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c c π
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Figure 11: Schematic diagram for function reArrange( ) 
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Figure 12: Schematic diagram of row sum adjustment 

 

 



  

67 

 

 

Create a new column z1
such that selected rows to 
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1
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i
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Figure 13: Schematic diagram of row sums adjustment procedure (second) 

 

Discussion 

 A number of observations are made during the development phase of this 

procedure for generating SCP instances with known optimum solutions and correlated 
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coefficients. For instance, there cannot be any arbitrary number of structural constraints 

in an SCP instance for a given optimal solution and constraint-matrix column sums. The 

justification for the calculation of minm and maxm  is explained with examples. Even after 

the values jc , jA and jx have been finalized, prior to the generation of the binary matrix 

A, a quick check of the infeasibility condition discussed below should be made. During 

the process of generating the binary matrix A, a superfluous variable condition should be 

checked for each column generated. 

Superfluous Variable Conditions 

 The superfluous variable condition (SVC) occurs when one or more variables 

designated to have optimal value 1 have no effect on the primal feasibility of the 

structural constraints, i.e., one or more variables with indices in *J can assume value 0 in 

the optimal solution and yet primal feasibility is unchanged. This may occur when 

columns *j J∈ are generated randomly such that they cover all the primal constraints and 

any one of the columns *j J∈ is effectively a combination of some other columns *j J∈ . 

The details of SVC and how to eliminate this condition during the SCP instance 

generation are explained in Appendix B.  
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Infeasibility Conditions 

 One type of infeasibility condition occurs when the constraint matrix for SCP 

cannot be generated for the given column sums, number of variables with optimal value 

1, and number of constraints.  Upper and lower bounds on the number of constraints are 

important parameters in designing a procedure for generating SCP instances with known 

optimal solutions. The following relation must hold true regarding the number of 

constraints: 

*
j

j J
m A

∈

≤ ∑  

In other words, 
*

j
j J

A
∈
∑ is the upper limit for the number of constraints. If the chosen 

number of constraints exceeds this maximum value then primal infeasibility occurs.  

 A second type of infeasibility condition may occur when there are many candidate 

decision variables and the configuration of 1s in the constraints matrix cannot attain 

uniqueness. For example, a problem with m =6 cannot have jA =2 for more than 15 

variables. If it so happens, there will be columns with the same configuration of 1s in the 

constraint matrix. Similarly, if m =10 then, there can be at most 
10

45
2

⎛ ⎞
=⎜ ⎟

⎝ ⎠
 columns with 

jA =2. This means, the number of variables is restricted by the values of jA s and the 

value of m .  

 The calculation of the maximum number of columns for each discrete value of 

column sum can be determined by the combination formula. If there are m  constraints, 
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then, for every column with sum jA  there are 
j

m
A

⎛ ⎞
⎜ ⎟
⎝ ⎠

unique columns possible. For 

columns with jA  = 2, even m = 8 would allow 28 unique configurations of 1s. In the 

m =8 case with jA  = 3, there could be 56 ways to configure unique columns. It can be 

concluded from this discussion that more constraints allow more decision variables to be 

incorporated in the problem. Table 7 shows the maximum number of variables with 

different values of jA and m .  

Table 7 Maximum possible number of variables for given m  and jA  

jA  m =10 m =15 m =20 m =22 m =25 
1 10 15 20 22 25 
2 45 105 190 231 300 
3 120 455 1140 1540 2300 
4 210 1365 4845 7315 12650 
5 252 3003 15504 26334 53130 
6 210 5005 38760 74613 177100 
7 120 6435 77520 170544 480700 
8 45 6435 125970 319770 1081575 
9 10 5005 167960 497420 2042975 

10 1 3003 184756 646646 3268760 
11  1365 167960 705432 4457400 
12  455 125970 646646 5200300 
13  105 77520 497420 5200300 
14  15 38760 319770 4457400 
15  1 15504 170544 3268760 
16   4845 74613 2042975 
17   1140 26334 1081575 
18   190 7315 480700 
19   20 1540 177100 
20   1 231 53130 
21    22 12650 
22    1 2300 
23     300 
24     25 
25     1 
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 A question may arise as to whether m or n  should be set first. It is suggested to 

set n first and check whether unique columns with the given set of jA values may be 

generated for the chosen number of constraints as is done in the procedure outlined 

earlier in this chapter. 

Calculation of the Number of Constraints 

 The maximum and minimum numbers of constraints are functions of the number 

of decision variables with optimal value 1 and their column sums. An important 

assumption in the derivation of the range of the number of constraints is that the decision 

variables with optimal value 1 should each cover at least one unique row of the constraint 

matrix. Setting 0jx =  for any *j J∈ would result in the violation of the primal feasibility 

of SCP. Additionally, the configuration of 1s in columns *j J∈  should not encounter the 

SVC.  

 Let, maxk = { }*
max j

j J
A

∈
 as before and  mink = { }*

min jj J
A

∈
.  

The maximum number of constraints can be calculated as: 

*
max j

j J

m A
∈

= ∑  

The formula above suggests that each optimal variable can possibly cover as many 

unique rows as the corresponding column sum. For example, consider the example given 



  

72 

 

 

below. Assuming a problem has 5 optimal variables with the column sums as 1, 2, 3, 4 

and 5. In this case, maxk = 5 and mink = 1 which implies max 15m = . In the example matrix 

given below, only columns in *J have been shown. Here, it is impossible to add even a 

single row that would be covered by one of the variables with optimal value 1. This 

means 15 (1+2+3+4+5) is the upper limit on the number of structural constraints for this 

example. If we forcefully add any row in the matrix below and are still able to maintain 

the uniqueness of columns in *J  and also are able to avoid encountering SVC condition, 

then we are actually formulating a problem instance with different column sums. In 

essence, the number of constraints in the matrix below is 15 and any endeavor to increase 

that number would change their column sums. This is important as this procedure of 

generating SCP instances uses predetermined column sums as input.  

1 0 0 0 0
0 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 1 0
0 0 0 1 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦  
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 In the matrix shown above, any row or column can be interchanged to have many 

unique configurations.   

 Next various configurations of *J are considered for determining the minimum 

numbers of constraints. 

Consecutive and Unique Values Case 

 Suppose that
max

* * * *
1 2 3 ..... 1kn n n n= = = = = . 

Consider a problem with maxk =2. Then A (for only *j J∈ ) must be 

1 0 0 1 1 0 1 0 1 0
0 1  or 1 0  or 0 1  or 1 0  or 0 1
0 1 1 0 1 0 0 1 0 1

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

Basically, all the matrices shown above are obtained by interchanging rows or columns. 

(The number of possible configurations increases drastically when there are more 

variables or rows). Here, the minimum number of constraints is given by 1 + 2 = 3. 

 Now, consider a problem with maxk = 3. Then, A (for only *j J∈ ) may be 

1 0 0 1 0 0 1 0 0 0 1 0 0 1 0
0 1 0 0 1 1 0 1 1 0 1 1 0 1 0

 or  or  or  or 0 1 1 0 1 0 0 0 1 0 0 1 1 0 0
0 0 1 0 0 1 0 1 0 0 1 0 0 0 1
0 0 1 0 0 1 0 1 0 1 0 0 1 1 0

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

There are other instances of A possible by swapping any two rows or columns in the 
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matrices shown above. However, it is evident that, in every case, *
3n  has one row covered 

by *
2n  such that only two rows are added with the addition of new variable with 

corresponding *
3n =1. Here the minimum number of constraints is 5 (1+2+2) where the 1 

represents the row corresponding to an optimal variable with jA =1, the first 2 represents 

the rows corresponding to an optimal variable with jA =2 and the final 2 corresponds to 

the additional rows that must be added to include a column with jA =3. 

 Any variable with optimal value 1 and column sum = jA can have a maximum 

of 1jA −  rows with 1s such that the same rows have 1s in the columns for another optimal 

variable or combination of other optimal variables. With this notion, a table has been 

built below which shows how 1s could be configured in the *J columns in an instance 

with the minimum number of constraints possible. 

 In Table 8, it is shown how 1s could be distributed for any maxk to have the 

minimum number of constraints when the values *
kn s are consecutive and unique. For 

maxk = 2, the first shaded cell represents a row contributed by a variable with 1jA =  and 

the second shaded cell represents two rows contributed by another variable with 2jA = . 

Therefore, for maxk = 2, all rows are uniquely covered by two variables. For maxk = 3, with 

the addition of a variable with 3jA = , there cannot be a 1 in the row where there is a 1 

contributed by the variable with 1jA = . However, there can be at most one 1 in the same 

rows where there are 1s contributed by the variable with 2jA = . Therefore, the variable 
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with 3jA =  can have 2 rows uniquely covered. The minimum number of constraints 

possible in this case is 5. Similarly, the table also shows the minimum number of 

constraints for any maxk  value, which is the sum of the values in the shaded squares up to 

that particular column. By induction, min max2 1m k= − .  

 

Table 8 Configuration of 1s for minm  

Consecutive and unique k  
maxk   2 3 4 5 6 7 8 9 10 11 12 13 14 15 minm  

2 1 + 2              3 
3 1 2             5 
4 1 1 2            7 
5 1 1 1 2           9 
6 1 1 1 1 2          11 
7 1 1 1 1 1 2         13 
8 1 1 1 1 1 1 2        15 
9 1 1 1 1 1 1 1 2       17 

10 1 1 1 1 1 1 1 1 2      19 
11 1 1 1 1 1 1 1 1 1 2     21 
12 1 1 1 1 1 1 1 1 1 1 2    23 
13 1 1 1 1 1 1 1 1 1 1 1 2   25 
14 1 1 1 1 1 1 1 1 1 1 1 1 2  27 
15 

 

1 1 1 1 1 1 1 1 1 1 1 1 1 2 29 
 

Consecutive Value Case 

 If * 1kn ≥  for max1 k k≤ ≤ , then for each * 1kn ≥ , there must be at least one row added 

in the constraint matrix. Consider the examples shown above for the consecutive and 
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unique case of *
kn s and calculate the minimum number of constraints in each of the cases 

when one or more * 1kn ≥ . Recall the case of maxk =2 and * *
1 2 1n n= = : 

1 0
0 1
0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Now, consider the case for maxk =2 and *
2 2n = , i.e., there are two variables with optimal 

value 1 for which 2jA = . The portion of the constraint matrix for the variables with 

optimal value 1 would look like  

1 0 0 1 0 0
0 1 1 0 1 0

 or 
0 1 0 0 1 1
0 0 1 0 0 1

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

. 

The second matrix here is just the first matrix with the second and third rows swapped. 

The additional variable with 2jA =  has added one more row in the constraint matrix.  

 What happens if there is a different repetition pattern? Suppose that *
1n =2 and 

*
2 3n = . Then the two possible configurations of the five columns corresponding to 

variables with optimal value 1 are: 

1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0 0
0 0 1 1 1 0 0 1 0 0

 or 
0 0 1 0 0 0 0 1 1 1
0 0 0 1 0 0 0 0 0 1
0 0 0 0 1 0 0 0 1 0

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

. 
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There are many more instances of the matrices shown above that could be realized by 

swapping two rows or two columns. The minimum number of constraints is greater by 

the total number of repetitions than it is in the case where there are no repetitions among 

*
kn  values at all. In the consecutive and unique values of *

kn s case, for maxk =2, 

min max2 1m k= −  only. Since in this consecutive case, there might be some repetitions of 

*
kn s, and each repetition should be accounted for by the formula. A similar empirical 

formula to that derived above could be used with the additional terms to account for the 

repeated *
kn s. The modified expression for calculating the minimum number of 

constraints becomes:  

( ) ( )
*

*
min max

: 1

2 1 1
k

k
k n

m k n
>

= − + −∑  

Some calculations of the minimum numbers of constraints in the examples above using 

this new formula are shown below.  

 maxk =2 and *
2 2n =  

( ) ( )
*

*
min max

: 1

2 1 1

2*2 1 (1 1) (2 1)
4

k

k
k n

m k n
>

= − + −

= − + − + −
=

∑
 

The second example with *
1n =2, *

2n =3. 

( ) ( )
*

*
min max

: 1

2 1 1

2*2 1 (2 1) (3 1)
6

k

k
k n

m k n
>

= − + −

= − + − + −
=

∑
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This formula also applies to the cases of consecutive and unique *
kn  values.  

General Case 

 This is the most general case where * 1kn ≥  for max1 k k≤ ≤ . As explained earlier, if 

every variable with a value 1 covers at least one unique row of the constraint matrix, then 

SVC is avoided. In the minimum constraint condition for continuous cases, exactly one 

row is covered by a variable with optimal value 1 except when there is a variable with 

optimal value 1 and the corresponding
max

* 1kn = . In general, there would be a reduction of 

as many rows as the number of *
kn =0 such that max1 k k≤ ≤ . So, the final formula for all 

cases could be written as, 

( ) ( )
* *

*
min max

: 0 : 0

2 1 1 [1]
k k

k
k n k n

m k n
> =

= − + − −∑ ∑  

The final term in the formula applies to any *
kn s ( max1 k k≤ ≤ ) that have value zero. For 

every instance of *
kn s max(1 ) 0k k≤ ≤ = , this term adds 1 and ultimately the total number 

of cases of zero-valued *
kn s is deducted from the calculation for the consecutive values 

case. For example, let us consider maxk =4, where *
kn s for k = 1, 3 and 4 have one 

repetitive instances. The minimum number of constraints in this case is 10. Similarly, 

applying the formula for the situation, where maxk =4, and * *
1 22,  0,n n= =  *

3 2,n =  and 

*
4 2n = , the minimum number of constraints is  
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( ) ( )
( ) ( ) ( ) [ ]

* *

*
min max

: 0 : 0

2 1 1 [1]

(2*4 1) 2 1 1 1 2 1 1
8

k k

k
k n k n

m k n
> =

= − + − −

= − + − + − + − −

=

∑ ∑
 

Rationale behind Recommended Guidelines  

 There are several guidelines and recommendations made during the different 

phases of the problem generation procedure explained in this chapter. This section 

explains the rationale behind two of the recommended guidelines adopted for the SCP 

instance generation procedure.  

Value for Adjusted Dual Variable 

 During the dual variable adjustments, ∂ (a small non-negative value) is assigned 

to the adjusted dual variable so that 1s can be assigned in the column *\j J J∈  such that 

the dual constraint corresponding to the column being generated is satisfied. There are, in 

fact, a range of values for ∂  that can be used in the generation procedure. The range of 

values for ∂  depends on the marginal distributions of objective function coefficients and 

the column sums and the target population correlation between these coefficients.  

However, the safest value can be determined by considering the worst case scenario.  

 The safest value for ∂  is the value which, when assigned to any non-negative 
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dual variable during the adjustment procedure, ensures that the row corresponding to the 

adjusted dual variable can be assigned 1s in a column pertaining to columns *\j J J∈ .  

For any column *\j J J∈ , the worst case will be the case when the corresponding jc is 

the smallest value and the jA is the highest among all jA s. Generally, this case is more 

likely while generating coefficients from the minimum correlation joint distribution; 

however, this condition is also possible whenever coefficients are generated under 

independence based on a composite joint distribution.  

 Assigning higher values of ∂ may not ensure the adjustment of dual variables will 

be effective. For example, there might be a case where one or more columns *\j J J∈  

have jc s lower than ∂ . If these columns require adjustments of the dual variables and the 

dual variables are adjusted with the larger ∂ , this adjustment would be ineffective for 

those columns with jc < ∂ . Therefore, the safest maximum value of 
Min 
Max 

j

j

c
A

∂ = and the 

smallest possible value for ∂ is 0.  

Column Generation for Variable with Optimal value 0  

 It is recommended that for columns *\j J J∈ one should begin in the ascending 

order of jc  if there are several columns with the same jA s. For example, if there are five 

columns such that *\j J J∈ with jA =k, then the column generation should begin from 
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the smallest jc  to the largest jc . This rule is not mandatory; however, it eliminates the 

possibility of running out of the possible configurations of 1s for some column *\j J J∈  

despite dual variables assignments that ensure there exist enough configurations of 1s for 

the column sums generated.  

 For example, suppose 1x and 2x  have optimal value 0 with jA = 3 and their jc s 

are 7 and 42, respectively. The dual variables corresponding to 6 primal constraints are 0, 

0, 6, 10, 12 and 13. After the assignment of dual variables it was determined that 1x  can 

have one possible configuration of 1s while 2x  can have 20 different configurations of 1s. 

In this case, if the suggestion to generate the column with the smallest jc is not adopted 

and 2x  is generated first, then there is a 1/20 chance that 2x  will have its 1s assigned in 

the rows with corresponding dual variables as 0, 0 and 6. This is the only configuration 

that 1x can assume, and this assignment will make the column, pertaining to 1x  impossible 

to be generated.  

 This kind of situation where a unique column satisfying its dual constraint is 

impossible to generate may arise even when there are several columns with the same jA . 

Upon randomly generating columns with larger jc s, it may so happen that the valid 

configurations of 1s for one or several columns with smaller jc are taken by columns 

with larger jc s thereby making columns with smaller jc s impossible to generate with 

valid configurations of 1s. 

 In the next chapter, a computational demonstration of this procedure for 
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generating SCP instances with known optimal solution and correlated coefficients is 

summarized and analyzed.  
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CHAPTER FOUR: COMPUTATIONAL STUDIES AND FINDINGS 

 A computer software program was developed for the SCP generation procedure 

using the MATLAB® language. A total of 525 SCP instances were generated and solved 

using three simple greedy heuristics. This chapter summarizes the observations made 

during the generation process of SCP instances. This chapter also explains the 

experimental setup, observations made about the SCP instances generated, and 

computational results for the quality of the solutions found by the three SCP heuristics.  

Experimental Setup and Preparation 

 The SCP instances were created with 100 variables each. The probability that a 

decision variable assumes value 1 in the optimal solution was set to 0.15 for each 

variable. Two factors were controlled for the purpose of generating SCP instances: the 

number of constraint and the population correlation between the objective function 

coefficients and the column sums of the constraints matrix. A total of seven target 

population correlation levels and three levels for the number of constraints were 

considered. For each combination of factor levels, a total of 25 SCP instances were 

generated. The number of decision variables with optimal value 1 is kept constant for the 
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corresponding instances across all factor level combinations. For example, the number of 

variables with optimal value 1 in the first instance for each of the 21 factor level 

combinations is the same. This is also the case for the second instances for each of the 21 

factor level combinations, and so on. Table 9 shows the two factors and their levels with 

the notations that will be used in summarizing the findings. 

 

Table 9 Experimental factor and their levels 

Correlation levels Constraints 

Groups G1 G2 G3 G4 G5 G6 G7 

Actual number Level  ρ −  -⅔ ρ −   -⅓ ρ −   0   ⅓ ρ +   ⅔ ρ +  ρ +   

 min max0.8 0.2m m+⎡ ⎤⎢ ⎥  R1            
 min max0.5 0.5m m+⎡ ⎤⎢ ⎥  R2               
 min max0.2 0.8m m+⎡ ⎤⎢ ⎥  R3               

 

SCP Coefficient Generation 

 For computational demonstration purposes, the following distributions were 

chosen for the coefficients’ values.  The objective function coefficients are distributed as 

~ {24,25,...,176}jC U , and the column sums of the constraint matrix are distributed as 

~ {2,3,...,10}jA U . Therefore, E( ) 100jC =  and E( ) 6jA = . Since there are 153 values for 

ρ − ρ + ρ +



  

85 

 

 

the objective function coefficients and nine possible values for the column sums of the 

constraint matrix, the maximum possible population correlation with these distributions is  

 

2

2

153 9 1. 0.993829
9 153 1

ρ + −
= =

−
. 

It follows that the minimum possible population correlation is 0.993829ρ − = − . 

 As shown in Table 9, for each correlation level, a total of 75 SCP instances (25 

instances for each of 3 levels for the number of constraints) are needed. Since each 

instance has 100 variables, a total of 7500 pairs of coefficients are needed for each 

correlation level. For each decision variable a set of three random numbers are used to 

generate correlated coefficients by the ECI method as explained in Chapter 2. This was 

achieved by generating 21 streams of random numbers of length 7500 using MATLAB®. 

The composite distribution  

0 1 2( ) ( ) ( , ) ( , )A Cf a f c g a c g a cλ λ λ− ++ +  

is used to induce correlation among the SCP coefficients. For any correlation ρ  such that 

ρ ρ ρ− +< < , there are an infinite number of such composite distributions. To identify the 

composite distributions used for this demonstration, a scheme suggested by Reilly 

(2006b) is used. Specifically, the weights for the composite distributions are: 

( )
( )

0

1

2

(1 | | / )

1 (| | / 1) / / 2

1 (| | / 1) / / 2

λ ψ ρ ρ

λ ψ ρ ρ ρ ρ

λ ψ ρ ρ ρ ρ

+

+ +

+ +

= −

= + − −

= + − +
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where 0 1ψ≤ ≤ . In this demonstration, 0.5ψ = was used consistently so that a median 

level of independent sampling is expected in the SCP instances simulated for each 

correlation level. Table 10 shows the different composition weights 0 1 2( , , )λ λ λ  used for 

each of the target correlation levels ( ρ ).   

 

Table 10  ECI parameters used for SCP generation 

Correlation G1 G2 G3 G4 G5 G6 G7 
ρ  -0.99383 -0.6626 -0.3313 0 0.33128 0.66255 0.99383

0λ  0 0.16667 0.33333 0.5 0.33333 0.16667 0 

1λ  1 0.75 0.5 0.25 0.16667 0.08333 0 

2λ  0 0.08333 0.16667 0.25 0.5 0.75 1 
 

 Table 11 shows some descriptive statistics for the sample correlations induced 

among the SCP coefficients for each target population correlation level. 

 

Table 11 Summary of sample coefficient correlations in the SCP instances generated 

 G1 G2 G3 G4 G5 G6 G7 
Target correlation -0.9938 -0.6626 -0.3313 0 0.33128 0.66255 0.99383
Mean   -0.99383 -0.66854 -0.33505 0.01863 0.30993 0.64663 0.99392
Std. deviation 0.00088 0.08347 0.12573 0.10140 0.13802 0.09693 0.00078
Max -0.99053 -0.49768 0.06024 0.32531 0.58332 0.84689 0.99547
Min -0.99536 -0.82875 -0.53159 -0.18532 -0.04048 0.30230 0.99169
Range 0.00483 0.33107 0.59183 0.51063 0.62380 0.54459 0.00378

 

Note that the means of the sample correlations are normally close to the target 
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correlations. The variability in the sample correlations increases generally as the absolute 

value of the target correlation decreases. This is attributed to the proportion of coefficient 

pairs generated under independent sampling. 

J* and m in the Generated SCP Instances 

 The number of variables with optimal value 1 is kept constant for the same SCP 

instance (first, second, etc.) across all factor level combinations. Table 12 shows the 

number of variables with optimal value 1 for the SCP instances generated for every one 

of the 21 factor combinations.  

 

Table 12 Number of variables with optimal value 1 

Problem Instances *| |J  
1 to 5 12 18 16 15 15 
6 to 10 14 14 14 16 17 
11 to 15 18 15 12 17 18 
16 to 20 14 17 14 18 16 
21 to 25 14 14 17 13 13 

 

 The number of constraints for each SCP instance depends on the values of the 

coefficients generated and the level of the number of constraints, R1, R2 or R3. Table 13 

shows the summary statistics for the number of constraints generated for each factor level 

combination.  
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Table 13 Summary Statistics for number of constraints for SCP instances 

Constraints Level R1 Constraints Level R2 Constraints Level R3 Correlation 
level Mean Max Min Range Mean Max Min Range Mean Max Min Range

G1 38.5 47 31 16 58.7 73 45 28 81.7 106 62 44 
G2 37.9 46 29 17 59.2 74 39 35 81.2 105 62 43 
G3 37.5 45 29 16 56.2 70 43 27 79.2 109 59 50 
G4 37.5 45 30 15 59.8 77 47 30 80.3 102 59 43 
G5 37.1 46 26 20 58.0 78 39 39 78.6 101 64 37 
G6 36.7 44 30 14 55.7 68 40 28 78.7 104 58 46 
G7 37.3 46 29 17 55.7 68 40 28 79.7 98 56 42 

 

Other Observations Made during SCP Instances Generation 

 It was observed that only 30 instances out of 525 required two attempts or more to 

generate one or more *J columns. The average of the maximum numbers of attempts for 

a single column for these 30 instances was 6.56. Similarly, 22 out of 525 required more 

than 1 attempt to generate one or more *\J J columns. The maximum number of attempts 

to generate a *\J J  column for these 22 instances was 2.  

 Out of 525 instances of SCP generated, 56 instances required the execution of the 

row sum adjustment procedure. Out of these 56 instances, 39 instances were successfully 

adjusted by row sum adjustment Procedure 1 while the remaining 16 instances were 

adjusted by the row sum adjustment Procedure 2. Only in one case did both the 

procedures fail to adjust the row sums, and hence, that instance was regenerated.    
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Computational Experiments and Findings 

 The SCP instances generated were solved using three greedy heuristics: the Drop 

Heuristic (DH), the Add Heuristic (AH), and the Add/Drop Heuristic (ADH). The 

following sections briefly explain the procedure for these heuristics.  

Drop Heuristic (DH) or Primal Heuristic 

 This heuristic assumes all variables have value 1 initially. In every iteration, the 

variable with the highest cost and which would not violate primal feasibility if it were set 

to 0 is deselected, or “dropped”. The procedure terminates when no more variables may 

be dropped without violating primal feasibility. Since this procedure begins with a 

feasible solution, DH may be considered a primal-based procedure. 

Add Heuristic (AH) or Dual Heuristic  

 This heuristic adds a variable with value one to a partial solution. The variable 

selected is the one for which the cost per new row covered is the minimum. This process 

is repeated until primal feasibility is achieved, i.e, until all rows are covered. Since the 

procedure begins without having an established feasible solution, AH may be considered 

a dual-based procedure. 
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Add/Drop Heuristic (ADH) or Dual/Primal Tandem Heuristic 

 ADH is the tandem combination of the two heuristics AH and DH mentioned 

above. The final solution obtained from AH is checked by DH for any possible variables 

that can be dropped. ADH terminates when none of the variables in the current solution 

can be dropped without causing infeasibility. This heuristic is generally better than the 

two heuristics mentioned above. Clearly, it can never be worse than AH. 

 Two primary statistics were collected for each heuristic solution found: the 

solution value and the corresponding solution vector. Three secondary statistics were then 

derived from the primary data to measure the quality of the solutions found by the three 

greedy heuristics: 

1. Relative error: This is the ratio of the heuristic solution value divided by the 

optimal value, minus 1. Mathematically, relative error = * 1heurZ
Z

− , where heurZ is 

the solution value associated with the heuristic solution and *Z is the optimal 

solution value. 

2. Optimality: This is the Boolean value (0 (no) or 1 (yes)) indicating whether the 

heuristic solution is also an optimal solution.  

3. Number of discrepancies: These are the counts of differences in the values of the 

decision variables in the solution vector given by a heuristic compared to the 

values of the same decision variable in the known optimal solution vector.  
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Relative Error 

 Table 14 shows the average relative errors for all three greedy heuristics across all 

target population correlation levels. It shows that the relative error tends to increase with 

the increase in population correlation among the coefficients and clearly it is the highest 

for the maximum correlation condition. Additionally, Table 14 suggests that, among the 

three greedy heuristics, ADH is better than AH and AH is better than DH. This 

observation is also evident from the graphical presentation in Figure 14.  

 With the summary statistics shown in Table 14 and Figure 14, it is quite evident 

that the population correlation does matter as far as the quality of the solution given by 

the heuristics are concerned. These results do not consider the effect of the number of 

constraints on the quality of the heuristic solution found for the SCP instances generated. 

How the number of constraints affects the quality of the solution for individual heuristics 

is explained in the following sections. 

 

Table 14 Average relative error for each correlation level for individual heuristics 

Correlation DH AH ADH 
G1 10.16% 6.22% 1.67% 
G2 13.28% 7.35% 2.50% 
G3 14.54% 6.12% 1.87% 
G4 16.48% 8.37% 3.05% 
G5 17.91% 9.48% 3.97% 
G6 19.28% 10.90% 5.12% 
G7 22.11% 20.39% 11.01% 
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Figure 14: Average relative error for different correlation levels 

Drop Heuristic 

 Summaries of the average relative errors for DH are shown in Table 15 and 

Figure 15.  

Table 15 Average relative errors for Drop Heuristic 

Constraints Level Correlation 
R1 R2 R3 

Grand 
Average 

G1 0.00% 8.88% 21.60% 10.16% 
G2 2.99% 11.64% 25.22% 13.28% 
G3 5.29% 11.92% 26.43% 14.54% 
G4 7.13% 12.55% 29.76% 16.48% 
G5 7.65% 14.45% 31.61% 17.91% 
G6 9.05% 17.32% 31.46% 19.28% 
G7 9.55% 21.16% 35.61% 22.11% 
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 It is observed that, for each level of the number of constraints, the relative error 

gradually increases with the population correlation levels. It was also observed that the 

average relative error for the SCP instances with a high number of constraints (level R3) 

is always larger than that of the other two levels of the number of constraints. Constraints 

level (R1) has the lowest relative error across all correlation levels. DH performs 

consistently worse than the other two greedy heuristics, and it performs worst when the 

correlation level and the number of constraints are at the maximum levels.  
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Figure 15: Average relative error for Drop Heuristic 
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Add Heuristic 

 Summaries of the average relative errors for AH are shown in Table 16 and 

Figure 16. The average relative errors increase with the increase in the number of 

constraints across all correlation levels; however, the differences in average relative 

errors for constraints level R3 and constraints level R2 with the same correlation level are 

not as great as in the case of DH, except for the correlation level G7. The average relative 

errors for constraints level R3 are not consistently greater than the average relative errors 

for constraints level R2 as seen in the case of DH. Instead, most of the differences in the 

average relative errors are less than 1% for constraints levels R2 and R3. The slight 

apparent improvement in performance for correlation level G3 is likely due to natural 

variation (and to, a lesser extent, the way the number of variables with optimal value 1 

was held constant for the first, second, etc instances across all factor level combinations). 

 

Table 16 Average relative errors for Add Heuristic 

Constraints Level Correlation 
R1 R2 R3 

Grand 
Average 

G1 4.66% 7.07% 6.92% 6.22% 
G2 5.12% 8.36% 8.56% 7.35% 
G3 4.87% 7.50% 5.98% 6.12% 
G4 5.64% 9.68% 9.80% 8.37% 
G5 6.61% 11.77% 10.06% 9.48% 
G6 7.21% 13.19% 12.30% 10.90% 
G7 14.56% 20.39% 26.23% 20.39% 
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Figure 16: Average relative error for Add Heuristic 

Add/Drop Heuristic 

 Summaries of the average relative errors for ADH are shown in Table 17 and 

Figure 17. 

Table 17 Average relative errors for Add/Drop Heuristic 

Constraints Level Correlation 
R1 R2 R3 

Grand 
Average 

G1 0.29% 2.16% 2.57% 1.67% 
G2 0.46% 3.72% 3.31% 2.50% 
G3 0.17% 3.79% 1.66% 1.87% 
G4 0.68% 3.43% 5.05% 3.05% 
G5 1.02% 5.84% 5.05% 3.97% 
G6 1.16% 7.46% 6.75% 5.12% 
G7 2.46% 9.69% 20.87% 11.01% 
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Figure 17: Average relative error for Add/Drop Heuristic 

 

 The effect of the number of constraints is very evident for the correlation level 

G7. The average relative error for constraints level R3 is slightly smaller than the average 

relative error for constraints level R2 for correlation levels G2, G3, G5 and G6. However, 

the average relative errors for the rest of the correlation levels are consistent with those of 

the other two heuristics. This heuristic is the best of the three heuristics considered here 

in terms of the average relative error. ADH has shown average relative errors less than 

8% for all correlation levels except G7, much better than what was observed for the other 

two heuristics. 
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Optimality 

 For each correlation and number of constraints combination, counts of the number 

of times optimality was achieved were recorded for each heuristic. Table 18 shows the 

summary of the number of times each of the three heuristics achieved optimality. 

 AH, which performed better in the case of the average relative error was found to 

be the worst of all when it comes to the number of times it found the optimal solution 

value. Out of 525 SCP instances, AH found the optimal value only twice. 

 DH, which was the worst heuristic as far as relative error is concerned, performed 

slightly better as it found optimal solutions for all 25 SCP instances for the minimum 

population correlation level and for one instance with correlation level G2 with the 

constraints level R1. 

 ADH found a solution with the optimal value 147 times. Most interestingly, it 

found the optimal solution value more often for constraints levels R1 and R3 than for 

constraints level R2 across all correlation levels. The cause of this phenomenon should be 

determined through additional experimentations. 
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Table 18 Counts of optimality achieved for all heuristics 

Constraints Level 
Heuristic Correlation 

Level R1 R2 R3 
Grand 
Total 

G1 25 0 0 25 
G2 1 0 0 1 
G3 0 0 0 0 
G4 0 0 0 0 
G5 0 0 0 0 
G6 0 0 0 0 

DH 

G7 0 0 0 0 
DH Total   26 0 0 26 

G1 1 0 0 1 
G2 0 0 0 0 
G3 1 0 0 1 
G4 0 0 0 0 
G5 0 0 0 0 
G6 0 0 0 0 

AH 

G7 0 0 0 0 
AH Total   2 0 0 2 

G1 13 1 18 32 
G2 10 1 16 27 
G3 13 1 17 31 
G4 5 1 14 20 
G5 6 1 16 23 
G6 4 0 9 13 

ADH 

G7 1 0 0 1 
ADH 
Total   52 5 90 147 
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Number of discrepancies 

 Table 19 summarizes the average number of discrepancies for all the heuristics 

for all correlation levels. Figure 18 shows the same results in graphical form. The average 

numbers of discrepancies between the heuristic solution vector and the optimal solution 

vector was highest for DH and they increase as the correlation level increases. The same 

trend was evident for AH and ADH, except for the correlation level G3, where a slight 

dip in the average number of discrepancies is observed.  

 

 Table 19 Average number of discrepancies for the heuristics 

Correlation DH AH ADH 
G1 14.51 5.92 3.72 
G2 18.68 7.37 5.00 
G3 20.43 6.64 4.49 
G4 21.39 7.95 5.29 
G5 22.11 8.67 6.09 
G6 22.69 9.49 7.07 
G7 23.29 17.72 12.83 

 

 Figure 19 shows the total number of discrepancies for all three heuristics across 

all combinations of correlation levels and number of constraints levels. It is evident from 

Figure 19 that the average number of discrepancies almost always increases with the 

correlation levels and peaks at G7 correlation level for each level of number of 

constraints for all the heuristics.  
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Figure 18: Average number of discrepancies in solution vectors 
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Figure 19: Count of discrepancies in solution vectors 
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 The results and findings presented in this chapter illustrate that the population 

correlation level between the objective function coefficients and the column sums of the 

constraints matrix and the level of the number of constraints affect the relative error of 

the heuristic solutions, the number of times an optimal solution is found by the heuristics 

and the discrepancies between the heuristic and the optimal solution vectors. ADH is the 

best performing heuristic overall. Relative errors for AH are smaller than those for DH; 

however, DH finds more optimal solutions than AH, especially for correlation level G1. 

 The results for the three heuristics show that fewer optimal solutions and lower-

quality heuristic solutions are found as the correlation between SCP coefficients 

increases. Additionally, it appears more likely that an optimal solution will be found if 

there are relatively few or relatively many constraints, especially for ADH. 

 Table 20 summarizes the number of alternate optimal solutions found by the 

heuristics. Out of 1575 heuristic solutions (525 solutions x 3 heuristics), 35 solutions 

found by the heuristics are alternate optimal solutions. DH and AH never found alternate 

optimal solutions except for correlation level G1 and constraint level R1. DH found 12 

alternate optimal solutions and AH found only one alternate optimal solution; in all cases, 

the alternate optimal solutions were found for G1 and R1 combinations. ADH found 

alternate optimal solutions up to correlation level G6 for constraint level R1.One instance 

of alternate optimal solutions was found for each of the G3-R3 and G5-R2 combinations. 

Table 20 also shows the clear trend that the number of alternate optimal solutions 
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decreases as the coefficients correlation increases or the number of constraints increases. 

 

Table 20 Summary of alternate optimal solutions found by SCP heuristics 

Constraint Levels Heuristic Correlation 
Level R1 R2 R3 

Grand 
Total 

G1 12 0 0 12 
G2 0 0 0 0 
G3 0 0 0 0 
G4 0 0 0 0 
G5 0 0 0 0 
G6 0 0 0 0 

DH 

G7 0 0 0 0 
AH Total   12 0 0 12 

G1 1 0 0 1 
G2 0 0 0 0 
G3 0 0 0 0 
G4 0 0 0 0 
G5 0 0 0 0 
G6 0 0 0 0 

AH 

G7 0 0 0 0 
DH Total   1 0 0 1 

G1 6 0 0 6 
G2 4 0 0 4 
G3 4 0 1 5 
G4 2 0 0 2 
G5 2 1 0 3 
G6 2 0 0 2 

ADH 

G7 0 0 0 0 
ADH Total   20 1 1 22 

 

 In the next chapter, conclusions drawn from the research, as well as possible 

extensions for future research in this area, are reported and discussed.   
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CHAPTER FIVE: CONCLUSIONS 

 This chapter summarizes the objective and findings of this research. It also 

outlines some recommendations regarding future research that might extend this work. 

 This study clearly shows that SCP instances with known optimal solution and 

with induced target population correlation between objective function coefficients and the 

column sums of constraint coefficients can be simulated. In order to simulate SCP 

instances with known optima and specified coefficient correlation, the usual problem 

generation process must be modified significantly.  

 This research clearly shows that correlation does matter as far as the quality of the 

solutions found by heuristics for SCP is concerned. In this study, three greedy heuristics, 

AH, DH, and ADH, were used to solve the simulated SCP instances for seven different 

levels of population correlation ranging from the minimum to the maximum correlation 

possible. The computational results presented in Chapter 4 show that the relative errors of 

the solutions provided by the heuristics increase with increases in the population 

correlation between objective function coefficients and the column sums of the 

constraints matrix. 

 This study also shows that the likelihood of finding a non-optimal solution 

increases with the level of coefficient correlation. Out of the three heuristics used in the 
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study, even the best among the three, ADH, struggles to find the optimal solution when 

the target population correlation increases to the maximum.  

 Another important finding of this study is that the number of constraints also 

affects the quality of the solutions found by the heuristics. For each of the heuristics, the 

relative error typically increases as the numbers of constraints increases for the same 

correlation level. So it is fairly safe to conclude that the SCP instances with higher 

population correlation between the coefficients and a higher number of constraints 

present greater challenges for SCP heuristics.  

 Another unexpected finding of this research is that the range for the number of 

constraints for simulated SCP instances with known optimal solutions depends on the 

value of the constraint column sums and the known optimal solution. Whenever, a certain 

number of variables have been selected as variables with optimal value 1, the range for 

the feasible number of constraints in an SCP instance that can be generated with the 

coefficients in hand is restricted. The feasible range for the number of structural 

constraints m , min maxm m m≤ ≤  can be calculated using the following formulas: 

 ( ) ( ) [ ]
* *

*
min max

: 0 : 0

2 1 1 1
k k

k
k n k n

m k n
> =

= − + − −∑ ∑  

 
*

max j
j J

m A
∈

= ∑   

where  maxk = { }*
max j

j J
A

∈
 and  mink = { }*

min jj J
A

∈
. The justification for these formulas is 

given in the Discussion section in Chapter 3. 
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Future Work 

 This endeavor has added knowledge to the existing body of knowledge in the 

field of optimization, particularly in the area of generating random problems with known 

optimal solutions. It is also hoped that this will help researchers to develop new 

methodologies to generate random problems with known optimal solutions for other 

classes of optimization problems. This research has opened new research opportunities. 

Outlined below are some of the areas which could be extensions of this research. 

1. It is suggested to investigate the performance of SCP heuristics on SCP instances 

generated with different marginal distributions for the coefficients. Distributions 

could be of the same family with different parameters, or they could be of 

different family of distributions or combinations of both. 

2. The effect of ψ , a measure of the relative proportion of independent sampling, 

on the quality of the solutions found by SCP heuristics could be investigated. In 

this research, ψ =0.5 is used to generate objective function coefficients and 

column sums of the constraints matrix. It is suggested to investigate the 

performance of SCP heuristics for different values of ψ  as it can assume any real 

value between 0 and 1.  

3. In this research, three greedy heuristics for SCP are used to demonstrate the 

efficacy of the procedure to generate SCP instances with known optimal solution 

and explicitly induced correlation between objective function coefficients and 
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column sums of the constraints matrix. It is suggested to investigate the 

performance of other SCP heuristics on the quality of the solution. Additionally, 

the relationship between the number of constraints and the number of optimal 

solutions found with ADH merits further investigation. 

4. This research has shown that SCP instances with known optimal solutions and 

specified coefficients correlation can be simulated. It is suggested that the lessons 

learned from this could be extended to other class of optimization problems to 

randomly generate test problems with known optimal solution and correlated 

coefficients. Because of the long standing interest in KP01, it is recommended 

that a procedure for simulating correlated KP01 instances with known optimal 

solution be developed.  
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APPENDIX A: 
AN EXAMPLE OF SCP GENERATION 
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 An example is shown to demonstrate how a 25-variable SCP instance with a 

predetermined solution and correlated coefficients is generated. The distributions selected 

for the cost coefficients (C) and column sums (A) are: 

( )Cf c = Uniform {1, 2, ..., 200} is the marginal distribution of cost coefficients, and 

( )Af a = U+V is the marginal distribution of column sums of the constraints matrix, 

where U ~ Uniform {1, 2, 3} and V~ Uniform {1, 2, 3}. 

 The target population correlation chosen was 0.5. The composite distribution 

0 1 2( ) ( ) ( , ) ( , )A Cf a f c g a c g a cλ λ λ− ++ +  was used to generate coefficients under ECI where 

( ) ( )A Cf a f c is the joint distribution under independence, ( , )g a c−  is the minimum 

correlation distribution for (A, C), and ( , )g a c+  is the maximum correlation distribution 

for (A, C).  

 Given the marginal distributions of the coefficient values and the target 

population correlation, 0λ  = 0.084608, 1λ  = 0.207696, and 2λ  = 0.707696 were selected 

to characterize the composite distribution of (A, C). 25 values of (A, C) were generated 

and a solution vector was selected. The number of constraints was chosen to be 20. 

 The following 6 tables progressively show the generation of an SCP instance 

through different phases of the generation process, including: 

• the generation of "unique" ones in the constraint matrix (Table A.1), 

• the generation of the rest of the entries in the columns of the variable with optimal 

value 1 (Table A.2), 

• the initial arrangement of dual variables (Table A.3), 
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• the adjustment of dual variable values (Table A.4), 

• the generation of coefficients in the remaining columns (Table A.5), and 

• the adjustment of row sums (Table A.6). 

The sample correlation for the coefficients generated is 0.422. 
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Table A. 1 Generation if Iu 

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 
cj 62 163 13 187 16 23 18 53 61 101 86 182 199 46 90 179 81 148 163 143 95 193 110 11 66 
Aj 3 3 4 6 6 2 6 3 3 4 4 6 6 3 4 6 4 5 5 5 4 6 4 6 3 
xj 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

 

i                          si 
1                          1 
2    1                      1 
3                          0 
4                          0 
5         1                 1 
6                         1 1 
7                          0 
8      1                    1 
9           1               1 
10  1                        1 
11                          1 
12                          0 
13                          0 
14                          0 
15                          0 
16                          0 
17                          0 
18                          0 
19                          0 
20                          0 

Table A.1 shows that the rows 2, 5, 6, 8, 9 and 10 are now covered uniquely by 4 9 25 6 11 2,  ,  ,  ,  , and ,x x x x x x  respectively. 
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Table A. 2 Generation of columns for *j J∈  

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 
cj 62 163 13 187 16 23 18 53 61 101 86 182 199 46 90 179 81 148 163 143 95 193 110 11 66 
Aj 3 3 4 6 6 2 6 3 3 4 4 6 6 3 4 6 4 5 5 5 4 6 4 6 3 
xj 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

 

i                          si 
1  1  0  0   0  0              0 1 
2  0  1  0   0  0              0 1 
3  0  1  0   0  0              0 1 
4  0  0  0   0  0              1 1 
5  0  0  0   1  0              0 1 
6  0  0  0   0  0              1 1 
7  0  0  0   1  0              0 1 
8  0  0  1   0  0              0 1 
9  0  0  0   0  1              0 1 

10  1  0  0   0  0              0 1 
11  1  0  0   0  0              0 1 
12  0  1  1   0  0              0 2 
13  0  0  0   0  1              0 1 
14  0  1  0   0  0              0 1 
15  0  1  0   0  0              0 1 
16  0  1  0   0  0              0 1 
17  0  0  0   0  0              1 1 
18  0  0  0   1  0              0 1 
19  0  0  0   0  1              0 1 
20  0  0  0   0  1              0 1 

 



  

112 

 

 

Table A. 3 Initial dual variable assignments  

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25  
cj 62 163 13 187 16 23 18 53 61 101 86 182 199 46 90 179 81 148 163 143 95 193 110 11 66  
Aj 3 3 4 6 6 2 6 3 3 4 4 6 6 3 4 6 4 5 5 5 4 6 4 6 3  
xj 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1  
i                          si 

πi 

1

i

r
r

π< >
=
∑ <i> 

1  1  0  0   0  0              0 1 54.33 0 1 
2  0  1  0   0  0              0 1 37.4 20.33 2 
3  0  1  0   0  0              0 1 37.4 40.66 3 
4  0  0  0   0  0              1 1 22 61 4 
5  0  0  0   1  0              0 1 20.33 82.5 5 
6  0  0  0   0  0              1 1 22 104 6 
7  0  0  0   1  0              0 1 20.33 125.5 7 
8  0  0  1   0  0              0 1 23 147 8 
9  0  0  0   0  1              0 1 21.5 169 9 

10  1  0  0   0  0              0 1 54.33 191 10 
11  1  0  0   0  0              0 1 54.33 213 11 
12  0  1  1   0  0              0 2 0 236 12 
13  0  0  0   0  1              0 1 21.5 273.4 13 
14  0  1  0   0  0              0 1 37.4 310.8 14 
15  0  1  0   0  0              0 1 37.4 348.2 15 
16  0  1  0   0  0              0 1 37.4 385.6 16 
17  0  0  0   0  0              1 1 22 423 17 
18  0  0  0   1  0              0 1 20.33 477.33 18 
19  0  0  0   0  1              0 1 21.5 531.66 19 
20  0  0  0   0  1              0 1 21.5 586 20 
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Table A. 4 Dual variable adjustments 

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25  
cj 62 163 13 187 16 23 18 53 61 101 86 182 199 46 90 179 81 148 163 143 95 193 110 11 66  
Aj 3 3 4 6 6 2 6 3 3 4 4 6 6 3 4 6 4 5 5 5 4 6 4 6 3  
xj 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1  

πi 

1

i

r
r

π< >
=
∑

 

< i >

i                          si    
1  1  0  0   0  0              0 1 54.33 0 1 
2  0  1  0   0  0              0 1 93.35 0.1 2 
3  0  1  0   0  0              0 1 0.1 0.2 3 
4  0  0  0   0  0              1 1 32.95 0.3 4 
5  0  0  0   1  0              0 1 30.45 0.4 5 
6  0  0  0   0  0              1 1 0.1 0.5 6 
7  0  0  0   1  0              0 1 0.1 0.6 7 
8  0  0  1   0  0              0 1 23 0.7 8 
9  0  0  0   0  1              0 1 42.9 23.7 9 

10  1  0  0   0  0              0 1 54.33 54.15 10 
11  1  0  0   0  0              0 1 54.33 84.6 11 
12  0  1  1   0  0              0 2 0 117.55 12 
13  0  0  0   0  1              0 1 0.1 150.5 13 
14  0  1  0   0  0              0 1 0.1 193.4 14 
15  0  1  0   0  0              0 1 93.35 236.3 15 
16  0  1  0   0  0              0 1 0.1 290.63 16 
17  0  0  0   0  0              1 1 32.95 344.96 17 
18  0  0  0   1  0              0 1 30.45 399.3 18 
19  0  0  0   0  1              0 1 42.9 492.65 19 
20  0  0  0   0  1              0 1 0.1 586 20 

 

 



  

114 

 

 

Table A. 5 Generation of columns for *\j J J∈  

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 
cj 62 163 13 187 16 23 18 53 61 101 86 182 199 46 90 179 81 148 163 143 95 193 110 11 66 
Aj 3 3 4 6 6 2 6 3 3 4 4 6 6 3 4 6 4 5 5 5 4 6 4 6 3 
xj 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

 

i                          si πi 
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 54.33 
2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 3 93.35 
3 0 0 1 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 0 9 0.1 
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 3 32.95 
5 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 30.45 
6 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 1 8 0.1 
7 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 0 9 0.1 
8 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 4 23 
9 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 4 42.9 

10 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 5 54.33 
11 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 3 54.33 
12 0 0 0 1 0 1 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 8 0 
13 1 0 0 0 1 0 1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 8 0.1 
14 0 0 1 1 1 0 1 0 0 1 0 1 0 1 0 1 1 0 0 1 0 0 0 1 0 11 0.1 
15 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 3 93.35 
16 1 0 0 1 1 0 1 0 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0 1 0 11 0.1 
17 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 2 32.95 
18 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 5 30.45 
19 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 6 42.9 
20 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 6 0.1 

πAj 43 163 0.4 187 0.6 23 0.5 43 61 97 86 64 152 23 77 157 31 140 127 108 94 117 94 1 66 6 0.1 
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Table A. 6 Adjustment of row sums 

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 
cj 62 163 13 187 16 23 18 53 61 101 86 182 199 46 90 179 81 148 163 143 95 193 110 11 66 
Aj 3 3 4 6 6 2 6 3 3 4 4 6 6 3 4 6 4 5 5 5 4 6 4 6 3 
xj 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

 

I                          si πi 
1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 54.33 
2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 3 93.35 
3 0 0 1 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 0 9 0.1 
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 3 32.95 
5 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 30.45 
6 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 1 8 0.1 
7 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 0 9 0.1 
8 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 4 23 
9 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 3 42.9 

10 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 5 54.33 
11 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 3 54.33 
12 0 0 0 1 0 1 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 8 0 
13 1 0 0 0 1 0 1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 8 0.1 
14 0 0 1 1 1 0 1 0 0 1 0 1 0 1 0 1 1 0 0 1 0 0 0 1 0 11 0.1 
15 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 3 93.35 
16 1 0 0 1 1 0 1 0 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0 1 0 11 0.1 
17 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 2 32.95 
18 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 5 30.45 
19 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 6 42.9 
20 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 6 0.1 

πAj 43 163 0.4 187 0.6 23 0.5 43 61 97 86 64 152 23 77 157 31 140 127 108 94 117 94 1 66 6 0.1 



  

116 

 

 

APPENDIX B:  
Avoiding Superfluous Variable Condition 
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 The superfluous variable condition (SVC) occurs when two or more variables a 

SCP instance would have the same contributions to feasibility in the structural constraints 

if selected for the optimal solution. For example, if variables 1x and 2x cover exactly the 

same rows, then one of them is superfluous. It is impractical to consider both variables 

regardless of whether their costs in the objective function are the same or different.  

1 0 0 1 1
0 1 1 0 1
0 1 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 For illustration purposes, a binary matrix A with five variables and 6 structural 

constraints is shown above. Variables 2x and 3x  have the same contribution to feasibility 

in the structural constraints. The optimal solution for this problem includes either 2x , 4x  

and 5x or 3x , 4x  and 5x . One of the variables, either 2x or 3x , need not be considered at 

all. It is practical to remove the one with the higher cost in this situation. When 

simulating SCP instances, it is possible to avoid such a situation. 

 One might argue about the status of 1x  here. The only constraint covered by 1x  is 

the first constraint, which is also covered by both variables 4x  and 5x  which each have 

value one in the optimal solution. Since this is a small problem, visual inspection might 

indicate that 1x is superfluous, but as the problem size increases, there might be a 

possibility that the first row is covered by 1x  and the remaining rows now covered by 4x  
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and 5x  will be covered by some other variables such that the combined cost in the 

objective function is less than that what it would have been if 4x  and 5x  had been 

selected.  

 In the example above, 1x has column sum equal to 1, however in the generation 

procedure it is assumed that every variable has corresponding column sums greater than 

or equal to 2. The example above is for illustration purposes only and the key point here 

is, as long as each variable covers constraints differently, it can be considered a valid 

candidate as a decision variable.   

SVC for variable with optimal value 1   

 Since the SCP generation procedure assumes the optimal solution beforehand, it is 

not sufficient for columns in *J  to have configurations of 1s uniquely different from 

those of the rest of the columns. As the columns in *J correspond to decision variables 

with value 1 in the optimal solution, any *
jx j J∋ ∈  whose value is changed to 0 should 

result in violation of the basic structural constraints of the SCP. Sometimes, while 

generating columns for *
jx j J∋ ∈ the configuration of 1s in those columns forms a 

structure such that one or more variables representing columns in *J  becomes 

superfluous and do not appear in the actual optimal solution. This is illustrated with the 

example given below.  
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 Let us consider that we have five decision variables already selected to have value 

1 in the optimal solution. The matrix given below is the portion of the constraint matrix 

for the columns in *J  only. Close observation of the matrix shows that 2x  is superfluous 

as the rows 2 and 6 covered by this variable are also covered by 3x  (which covers row 4, 

6 and 7) and 5x  (which covers row 1, 2 and 7). We can not remove either 3x  or 5x  as 

they cover at least one unique row, namely rows 4 and 1. Therefore, 2x  must not be in the 

solution for this configuration of columns in *J  and, if it is removed, there will not be a 

violation of the primal constraints. If it is desired to have 2x  as the variable with optimal 

value 1, then the configurations of 1s should be changed in such a way that 2x covers as 

least one constraint row uniquely.  

0 0 0 0 1
0 1 0 0 1
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 1 1 0 0
0 0 1 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 Checking for a valid configuration of 1s for the columns in *J could become 

unmanageable as the constraint-matrix size increases. A small checking procedure should 

be applied to see whether the newly formed configuration is valid. Let ⊕ denote an 

operation among equal size binary vectors such that each element in the resultant vector 

is the largest value among the corresponding elements of the participating vectors. For 
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example, consider, 

1 0 1
0 0 0
0 1 1
1 1 1

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⊕ =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

  

In the example above, the resulting vector has as its elements the larger of the 

corresponding elements of the participating vectors. For every column in *J , a resultant 

vector of all already filled columns in *J is calculated excluding the current column in 

*J and if the resultant vector has 1s in every place that the current column in *J in 

question has then the current column is superfluous. If not, the current column covers at 

least one unique row.  

Remedy for SVC for variable with optimal value 1 

 The task of keeping track of whether or not a current column generation for a 

variable with index in *J has made any of the already generated variables with indices in 

*\J J superfluous is difficult. It is because even if a current column *j J∈ is unique from 

those columns *j J∈ already generated, possibilities may still exist that the insertion of a 

newly generated column may turn one or more variables corresponding to the 

columns *j J∈ already generated redundant or superfluous. An example shown below 

illustrates this fact.  

 Consider 4 decision variables with value 1 in the optimal solution. Three columns 
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generated for 1x , 2x and 3x are the valid columns as none of them is superfluous. The 

column corresponding to 4x  is now generated as shown below. 

* *4{1,3}

1 0 0 1 1
0 0 1

0 1 1 0 0
1 1 0

1 1 0 0 1
1 0 0

,   , 0 0 1 0 0
0 1 0

0 0 0 1 0
0 0 1

0 0 0 1 0
0 0 1

1 0 0 0 1

j J j J
A x A

∈ = ∈

⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

To check whether 4x  is superfluous or not, the resultant vector of 1x , 2x and 3x is created 

and checked to see if, for every entry of 1 in the column corresponding to 4x , there is a 1 

in the corresponding entry in the resultant vector. Since that is not the case here, 4x is not 

superfluous. However, it is required to check if any of 1x , 2x and 3x has now become 

superfluous. In this case, 1x  has become superfluous since it does not cover any unique 

row like the other variables do. The generation of columns *j J∈ thus becomes a 

cumbersome process. In order to avoid complications arising from the SVC, a simple rule 

can be established such that the possibility of encountering SVC can be eliminated.  

 Columns with binary entries can be made linearly independent if there is at least 

one row for every column *j J∈ that is uniquely covered. Therefore, for every 

column *j J∈ , if one random row is made to be uniquely covered by that column and no 

1s are assigned in that row for the remaining columns in *J then this column is linearly 

independent from the rest of the columns *j j J∋ ∈ . This makes at least | *J | rows 
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uniquely covered by columns in *J . The remaining rows, which are not uniquely covered 

by columns in *J , can have all the remaining 1s in the columns *j J∈ . These remaining 

rows, which were not uniquely covered, may now become either uniquely covered or 

may be covered by the combinations of columns in *j J∈ . This rule certainly avoids 

encountering SVC and the tedious process of determining the resultant vector to 

determine whether the SVC has occurred or not with the newly generated column *j J∈ . 

The SCP generation procedure generates instances such that each variable with value 1 

covers a unique row. Therefore, there are no superfluous variables in the SCP instances 

generated by this procedure.
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