1,507 research outputs found

    Interior point methods and simulated annealing for nonsymmetric conic optimization

    Get PDF
    This thesis explores four methods for convex optimization. The first two are an interior point method and a simulated annealing algorithm that share a theoretical foundation. This connection is due to the interior point method’s use of the so-called entropic barrier, whose derivatives can be approximated through sampling. Here, the sampling will be carried out with a technique known as hit-and-run. By carefully analyzing the properties of hit-and-run sampling, it is shown that both the interior point method and the simulated annealing algorithm can solve a convex optimization problem in the membership oracle setting. The number of oracle calls made by these methods is bounded by a polynomial in the input size. The third method is an analytic center cutting plane method that shows promising performance for copositive optimization. It outperforms the first two methods by a significant margin on the problem of separating a matrix from the completely positive cone. The final method is based on Mosek’s algorithm for nonsymmetric conic optimization. With their scaling matrix, search direction, and neighborhood, we define a method that converges to a near-optimal solution in polynomial time

    A Copositive Framework for Analysis of Hybrid Ising-Classical Algorithms

    Full text link
    Recent years have seen significant advances in quantum/quantum-inspired technologies capable of approximately searching for the ground state of Ising spin Hamiltonians. The promise of leveraging such technologies to accelerate the solution of difficult optimization problems has spurred an increased interest in exploring methods to integrate Ising problems as part of their solution process, with existing approaches ranging from direct transcription to hybrid quantum-classical approaches rooted in existing optimization algorithms. While it is widely acknowledged that quantum computers should augment classical computers, rather than replace them entirely, comparatively little attention has been directed toward deriving analytical characterizations of their interactions. In this paper, we present a formal analysis of hybrid algorithms in the context of solving mixed-binary quadratic programs (MBQP) via Ising solvers. We show the exactness of a convex copositive reformulation of MBQPs, allowing the resulting reformulation to inherit the straightforward analysis of convex optimization. We propose to solve this reformulation with a hybrid quantum-classical cutting-plane algorithm. Using existing complexity results for convex cutting-plane algorithms, we deduce that the classical portion of this hybrid framework is guaranteed to be polynomial time. This suggests that when applied to NP-hard problems, the complexity of the solution is shifted onto the subroutine handled by the Ising solver

    An Overview of Integral Quadratic Constraints for Delayed Nonlinear and Parameter-Varying Systems

    Full text link
    A general framework is presented for analyzing the stability and performance of nonlinear and linear parameter varying (LPV) time delayed systems. First, the input/output behavior of the time delay operator is bounded in the frequency domain by integral quadratic constraints (IQCs). A constant delay is a linear, time-invariant system and this leads to a simple, intuitive interpretation for these frequency domain constraints. This simple interpretation is used to derive new IQCs for both constant and varying delays. Second, the performance of nonlinear and LPV delayed systems is bounded using dissipation inequalities that incorporate IQCs. This step makes use of recent results that show, under mild technical conditions, that an IQC has an equivalent representation as a finite-horizon time-domain constraint. Numerical examples are provided to demonstrate the effectiveness of the method for both class of systems

    An Analytic Center Cutting Plane Method to Determine Complete Positivity of a Matrix

    Get PDF
    We propose an analytic center cutting plane method to determine if a matrix is completely positive, and return a cut that separates it from the completely positive cone if not. This was stated as an open (computational) problem by Berman, D\"ur, and Shaked-Monderer [Electronic Journal of Linear Algebra, 2015]. Our method optimizes over the intersection of a ball and the copositive cone, where membership is determined by solving a mixed-integer linear program suggested by Xia, Vera, and Zuluaga [INFORMS Journal on Computing, 2018]. Thus, our algorithm can, more generally, be used to solve any copositive optimization problem, provided one knows the radius of a ball containing an optimal solution. Numerical experiments show that the number of oracle calls (matrix copositivity checks) for our implementation scales well with the matrix size, growing roughly like O(d2)O(d^2) for d×dd\times d matrices. The method is implemented in Julia, and available at https://github.com/rileybadenbroek/CopositiveAnalyticCenter.jl.Comment: 16 pages, 1 figur
    • …
    corecore