333 research outputs found

    Practical License Plate Recognition in Unconstrained Surveillance Systems with Adversarial Super-Resolution

    Full text link
    Although most current license plate (LP) recognition applications have been significantly advanced, they are still limited to ideal environments where training data are carefully annotated with constrained scenes. In this paper, we propose a novel license plate recognition method to handle unconstrained real world traffic scenes. To overcome these difficulties, we use adversarial super-resolution (SR), and one-stage character segmentation and recognition. Combined with a deep convolutional network based on VGG-net, our method provides simple but reasonable training procedure. Moreover, we introduce GIST-LP, a challenging LP dataset where image samples are effectively collected from unconstrained surveillance scenes. Experimental results on AOLP and GIST-LP dataset illustrate that our method, without any scene-specific adaptation, outperforms current LP recognition approaches in accuracy and provides visual enhancement in our SR results that are easier to understand than original data.Comment: Accepted at VISAPP, 201

    Deep multi-modal U-net fusion methodology of infrared and ultrasonic images for porosity detection in additive manufacturing

    Get PDF
    We developed a deep fusion methodology of non-destructive (NDT) in-situ infrared and ex- situ ultrasonic images for localization of porosity detection without compromising the integrity of printed components that aims to improve the Laser-based additive manufacturing (LBAM) process. A core challenge with LBAM is that lack of fusion between successive layers of printed metal can lead to porosity and abnormalities in the printed component. We developed a sensor fusion U-Net methodology that fills the gap in fusing in-situ thermal images with ex-situ ultrasonic images by employing a U-Net Convolutional Neural Network (CNN) for feature extraction and two-dimensional object localization. We modify the U-Net framework with the inception and LSTM block layers. We validate the models by comparing our single modality models and fusion models with ground truth X-ray computed tomography images. The inception U-Net fusion model localized porosity with the highest mean intersection over union score of 0.557

    GrapeNet: A Lightweight Convolutional Neural Network Model for Identification of Grape Leaf Diseases

    Get PDF
    Most convolutional neural network (CNN) models have various difficulties in identifying crop diseases owing to morphological and physiological changes in crop tissues, and cells. Furthermore, a single crop disease can show different symptoms. Usually, the differences in symptoms between early crop disease and late crop disease stages include the area of disease and color of disease. This also poses additional difficulties for CNN models. Here, we propose a lightweight CNN model called GrapeNet for the identification of different symptom stages for specific grape diseases. The main components of GrapeNet are residual blocks, residual feature fusion blocks (RFFBs), and convolution block attention modules. The residual blocks are used to deepen the network depth and extract rich features. To alleviate the CNN performance degradation associated with a large number of hidden layers, we designed an RFFB module based on the residual block. It fuses the average pooled feature map before the residual block input and the high-dimensional feature maps after the residual block output by a concatenation operation, thereby achieving feature fusion at different depths. In addition, the convolutional block attention module (CBAM) is introduced after each RFFB module to extract valid disease information. The obtained results show that the identification accuracy was determined as 82.99%, 84.01%, 82.74%, 84.77%, 80.96%, 82.74%, 80.96%, 83.76%, and 86.29% for GoogLeNet, Vgg16, ResNet34, DenseNet121, MobileNetV2, MobileNetV3_large, ShuffleNetV2_×1.0, EfficientNetV2_s, and GrapeNet. The GrapeNet model achieved the best classification performance when compared with other classical models. The total number of parameters of the GrapeNet model only included 2.15 million. Compared with DenseNet121, which has the highest accuracy among classical network models, the number of parameters of GrapeNet was reduced by 4.81 million, thereby reducing the training time of GrapeNet by about two times compared with that of DenseNet121. Moreover, the visualization results of Grad-cam indicate that the introduction of CBAM can emphasize disease information and suppress irrelevant information. The overall results suggest that the GrapeNet model is useful for the automatic identification of grape leaf diseases

    Extracting structured information from 2D images

    Get PDF
    Convolutional neural networks can handle an impressive array of supervised learning tasks while relying on a single backbone architecture, suggesting that one solution fits all vision problems. But for many tasks, we can directly make use of the problem structure within neural networks to deliver more accurate predictions. In this thesis, we propose novel deep learning components that exploit the structured output space of an increasingly complex set of problems. We start from Optical Character Recognition (OCR) in natural scenes and leverage the constraints imposed by a spatial outline of letters and language requirements. Conventional OCR systems do not work well in natural scenes due to distortions, blur, or letter variability. We introduce a new attention-based model, equipped with extra information about the neuron positions to guide its focus across characters sequentially. It beats the previous state-of-the-art benchmark by a significant margin. We then turn to dense labeling tasks employing encoder-decoder architectures. We start with an experimental study that documents the drastic impact that decoder design can have on task performance. Rather than optimizing one decoder per task separately, we propose new robust layers for the upsampling of high-dimensional encodings. We show that these better suit the structured per pixel output across the board of all tasks. Finally, we turn to the problem of urban scene understanding. There is an elaborate structure in both the input space (multi-view recordings, aerial and street-view scenes) and the output space (multiple fine-grained attributes for holistic building understanding). We design new models that benefit from a relatively simple cuboidal-like geometry of buildings to create a single unified representation from multiple views. To benchmark our model, we build a new multi-view large-scale dataset of buildings images and fine-grained attributes and show systematic improvements when compared to a broad range of strong CNN-based baselines

    Vehicle make and model recognition for intelligent transportation monitoring and surveillance.

    Get PDF
    Vehicle Make and Model Recognition (VMMR) has evolved into a significant subject of study due to its importance in numerous Intelligent Transportation Systems (ITS), such as autonomous navigation, traffic analysis, traffic surveillance and security systems. A highly accurate and real-time VMMR system significantly reduces the overhead cost of resources otherwise required. The VMMR problem is a multi-class classification task with a peculiar set of issues and challenges like multiplicity, inter- and intra-make ambiguity among various vehicles makes and models, which need to be solved in an efficient and reliable manner to achieve a highly robust VMMR system. In this dissertation, facing the growing importance of make and model recognition of vehicles, we present a VMMR system that provides very high accuracy rates and is robust to several challenges. We demonstrate that the VMMR problem can be addressed by locating discriminative parts where the most significant appearance variations occur in each category, and learning expressive appearance descriptors. Given these insights, we consider two data driven frameworks: a Multiple-Instance Learning-based (MIL) system using hand-crafted features and an extended application of deep neural networks using MIL. Our approach requires only image level class labels, and the discriminative parts of each target class are selected in a fully unsupervised manner without any use of part annotations or segmentation masks, which may be costly to obtain. This advantage makes our system more intelligent, scalable, and applicable to other fine-grained recognition tasks. We constructed a dataset with 291,752 images representing 9,170 different vehicles to validate and evaluate our approach. Experimental results demonstrate that the localization of parts and distinguishing their discriminative powers for categorization improve the performance of fine-grained categorization. Extensive experiments conducted using our approaches yield superior results for images that were occluded, under low illumination, partial camera views, or even non-frontal views, available in our real-world VMMR dataset. The approaches presented herewith provide a highly accurate VMMR system for rea-ltime applications in realistic environments.\\ We also validate our system with a significant application of VMMR to ITS that involves automated vehicular surveillance. We show that our application can provide law inforcement agencies with efficient tools to search for a specific vehicle type, make, or model, and to track the path of a given vehicle using the position of multiple cameras
    • …
    corecore