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We developed a deep fusion methodology of non-destructive (NDT) in-situ infrared and ex-

situ ultrasonic images for localization of porosity detection without compromising the integrity

of printed components that aims to improve the Laser-based additive manufacturing (LBAM)

process. A core challenge with LBAM is that lack of fusion between successive layers of printed

metal can lead to porosity and abnormalities in the printed component. We developed a sensor

fusion U-Net methodology that fills the gap in fusing in-situ thermal images with ex-situ ultrasonic

images by employing a U-Net Convolutional Neural Network (CNN) for feature extraction and

two-dimensional object localization. We modify the U-Net framework with the inception and

LSTM block layers. We validate the models by comparing our single modality models and fusion

models with ground truth X-ray computed tomography images. The inception U-Net fusion model

localized porosity with the highest mean intersection over union score of 0.557.

Key words: Multi-Modal Deep Sensor Fusion, Convolutional Neural Network, Porosity Detection,
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CHAPTER I

INTRODUCTION

The objective of this study is to develop a non-destructive testing (NDT) method based on

the fusion of ultrasonic structural data and thermal history data for porosity detection in additive

manufacturing (AM). Additive manufacturing is a process that joins materials layer by layer to

make three-dimensional (3D) objects, which leads to advantages in (1) incorporating complexity

of part design, (2) saving time in prototyping, and (3) reducing weight through structural design.

Unfortunately, many additively manufactured parts are plagued with structural abnormalities and

internal defects. Lack of fusion between successive layers of printed metal in the AM process is

still a common issue due to porosity which is undetectable from the outer surface of the fabricated

parts [5, 13]. There is a critical need for NDT of porosity because we can determine quality without

compromising the structure of the fabricated part. NDT sensing methods can be divided into x-ray

computed tomography (XCT), ultrasonic and acoustic, and in-situ thermal imaging. Industrial XCT

sensing creates a 3D image to inspect interior features to verify printing turned out as designed

[7]. XCT is limited by cost, processing time, versatility, and penetration into larger structures.

Ultrasonic and acoustic sensing techniques measure the wave impedance through structures to

reveal structural flaws. The ultrasonic and acoustic images are limited in imaging resolution and

the wave penetration strength through a structure. Lastly, in-situ thermal images capture the melt
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pool history, which is deterministic of microstructure during the printing process [40]. The melt

pool behavior is related to the formation of porosity because of the insufficient overlap between

successive layers but is limited by only being an indirect representation of the internal structure of

AM fabricated part [5, 13]. The gap in the research is extracting reliable information practically

and pragmatically from non-destructive in-situ thermal-mechanical dynamics and ex-situ ultrasonic

structural data for improved anomaly detection.

Figure 1.1: Ultrasonic and infrared data fusion process using a two-branch convolutional U-Net

encoder-decoder. (A) Image data collection and infrared layer creation. (B) Down sampling

encoder. (C) Latent space concatenation. (D) Up sampling decoder with skip connections. (E)

Outcome: Probability of porosity feature map.

We propose a new deep learning sensor fusion approach based on the U-Net architecture to

combine thermal history images with ultrasonic images to improve the prediction accuracy of
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porosity. The use of thermal history and ultrasonic data is advantageous because we can extract

valuable information from both in-process and post-process data. The first challenge of fusing data

collected by each data collection process is spatially aligning both data streams in the fabricated

part. Additionally, the second challenge will be autonomous feature extraction from each modality

through the mapping from input data to ground-truth output data rather than handcrafted feature

extraction. We propose a new sensor fusion methodology that transforms thermal history data

from a small image representation of point to a layer-wise representation of the fabrication layer

and then employs a two-branch traditional U-Net encoder-decoder architecture to extract spatial

information each sensor modality separately. The steps of this methodology can be seen in Figure

1.1 and are described as follows:

A. We model the thermal history in a new way by converting the melt pool images of each layer
into infrared layer images by feeding the highest temperature values in each image through
K-means regression and Gaussian convolutional signal smoothing.

B. We are the first to feed in-situ infrared layer images and ex-situ ultrasonic layer images
through separate U-Net convolutional encoder (downsampling) block branches to obtain
latent space representation.

C. We concatenate the latent space of infrared layer image encoder and ultrasonic layer image
encoder.

D. We feed the combined latent space through a U-Net convolutional decoder (upsampling)
block while including skip connection between geometrically similar feature maps of the
encoder.

E. We obtain the probability of porosity label map representation of each layer mapped to output
ground truth XCT layer images.

We modify the U-Net fusion methodology with inception blocks and LSTM layers and compare

it with the traditional U-Net fusion model. The inception blocks have been shown to improve

localization when objects appear in different sizes within images. The LSTM layer processes 3D
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dimensional information as a function of time. The current observations are processed with a

specified number of previous observations. The sensor fusion methodology will be compared to

thermal and ultrasonic single modality models to show the value in sensor fusion. Practitioners

can adapt the proposed sensor fusion methodology of thermal history and ultrasonic data for the

NDT of large-scale industrial AM processes to detect abnormalities. This methodology can also be

generalized for predictive maintenance in other manufacturing mechanisms. The remainder of the

paper is organized as follows. Chapter 2 reviews the background studies in the literature; Chapter

3 provides the mathematical modeling of the proposed methodology; Chapter 4 discusses the case

study used to validate the proposed methodology; and Chapter 5 provides concluding remarks and

directions of possible future work.
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CHAPTER II

LITERATURE REVIEW

This section introduces the related background knowledge of AM processes, non-destructive

sensing techniques, machine learning in AM, and deep learning image fusion. Specifically,

information about porosity, computed tomography, thermal monitoring, ultrasonic processing, and

deep image segmentation are discussed in detail in this section.

2.1 Metal Part Fabrication and Porosity in AM

Laser-based additive manufacturing (LBAM) has become a promising method for developing

metallic parts due to its flexibility and ability to create complex parts. Traditional manufacturing

methods remove necessary material to achieve the final geometry while AM adds material in a

layer-by-layer fashion. LBAM focuses on applying a laser energy source to metallic power to melt

the material to fabricate the current layer, and cross-sectional layers [23]. Laser Engineered Net

Shaping (LENS) is a directed energy deposition method with feedback control properties that help

maintain the product’s quality and desired mechanical properties. The parts fabricated by this

technique have been shown to have no compositional degradation, and thus LENS has shown to be

a promising method of metal additive fabrication [3]. Titanium alloy is fed through multiple tubes

that allow mixing of elemental powders, and powder efficiency is reported to be 80 percent for a

laser power of 2500-3000 W [3]. Powder deficiency and melt pool distribution are quality issues
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that have prevented the universal microstructure of LBAM fabricated parts in many industries [26].

LBAM fabricated parts are prone to defects, and many of these defects are internal. Non-destructive

sensors allow the exploration of the defect without the destruction of the part.

Porosity is an important quality issue for AM parts. Porosity is demonstrated as small voids,

and micro-cracks within a metal part that can commonly lead to unexpected breaks and increases

in residual stress [13]. The objective of porosity detection methods is to improve the quality of

printed parts in AM. Lack of fusion and keyholing porosity commonly occurs during printing

and can be analyzed through thermal history. Lack of fusion commonly occurs when the melt

pool is not large enough. Melt pool size and scan pattern are critical factors in the lack of fusion

porosity. For good fusion to take place, there must be a complete overlap between melt pools.

Space between semi-circles of heat conduction to the surrounding areas of the part leads to a

lack of fusion [5, 39]. Laser power, scan velocity, and laser beam profile are critical factors in

keyhole porosity formulation. The keyholing effect results from generating a V-shaped melt pool

and vaporizing elements within the melt pool that often leads to entrapped gas [13]. Increases in

the energy density cause the melt pool to transition from a conduction mode to a keyhole mode. To

avoid keyhole porosity is to reduce laser power or to increase the scanning speed [27]. Keyholing

commonly occurs when making a turn in the printing process because the laser slows down, and

the weld is very narrow [27]. The infrared images that capture the thermal history during the

fabrication process improve AM build quality. While we can generalize how porosity occurs in

the fabrication process, there are still limitations to how much the melt pool can reveal about the

printing process [21].
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2.2 Non-destructive Sensing for Porosity Prediction

In-situ process monitoring is employed to detect defects and abnormalities in the printing

process. The melt pool determines the microstructure in the AM parts [40]. Infrared sensors

capture a two-dimensional matrix of temperature values in fast succession. The melt pool is the

superheated region of molten metal that typically appears as a spherical-shaped droplet that moves

at the traverse speed [13]. The melt pool is where the horizontal and vertical fusion between

layers/tracks occurs. Heat penetration to lower layers and heat conduction between recently printed

metals require the melt pool to reach a high temperature. Melt pool behavior is related to the

formation of the porosity in part because of insufficient overlap between successive melt pools

[26]. Product quality can significantly deteriorate, and thus optimal processing parameters need to

be identified. Thermal history sensors are limited by only being an indirect representation of the

AM fabrication process for predicting the internal structure of LBAM parts.

Post-manufacturing sensors are employed to locate structural deformities by projecting waves or

determining the level of radiation absorption. Ultrasonic sensors are employed for non-destructive

porosity detection to measure the acoustic impedance of waves through a metal part. Measuring

the opposition that a system presents to acoustic flow reveals structural damages. The waves

can propagate into the material and cause the elastic excitation of cracks and pores that cause the

amplitude to increase because there is less material inhibiting the waves [22]. There are advantages

in versatility and direct estimation of filling amplitude within a part. Based on different ultrasonic

scanning techniques and equipment types, ultrasonic imaging can be mainly classified as A-scan,

B-scan, and C-scan [20]. A-scan can be used to calculate the location of the internal defects of

a specific material or human body as a function of time. Compared to the A-scan technique,
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B-scans provide a cross-sectional view of the test specimen [20], which is generated by using a

computational imaging algorithm to display the signal amplitude in grayscale or color scale for the

entire cross-section at a specific scanning moment. Similarly, ultrasonic C scan imaging, which is

the ultrasonic imaging technique applied in this paper, is the computational rearrangement of signal

array datasets that were collected by using the B-mode scanning method at the specimen’s surface

multiple times in a 2D mesh-grid manner [20]. By applying the C-scan technique, the cross-

sectional views along the perpendicular direction to the B-scan can be easily observed. Nowadays,

ultrasonic C-scan techniques are of great interest to be applied into the modern NDT field to detect

and localize internal material defects [41]. Although, the ultrasonic wave penetration of parts is

limited by the strength of the waves and loses velocity as the waves travel through fabricated parts.

Also, ultrasonic sensors must be used on objects that have a high amount of open space because

the waves must have a path to propagate through a structure [41]. Therefore, sensors that have to

observe structural anomalies without losing observation strength and do not require a path to travel

are advantageous.

Computed tomography is a computerized x-ray imaging procedure in which a narrow beam of

x-ray is aimed at a part and quickly rotated around the part. Cross-sectional images or slices of

the part are formed and contains more detail than a single image. Successive slices are stacked

together to form a three-dimensional image of the part that allows for easy identification of voids

of space. In a CT scan, metal behaves similarly to human tissue in that it absorbs the radiation

causing it to appear as the lighter regions in a 3D image, and voided space will appear as the darker

regions. Industrial CT is used to inspect interior features to verify printing turn out as designed

[7]. Residual powder and internal features can be seen through volume graphics with a CT scan.
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However, industrial CT requires more costly higher voltages machines for large dense objects due

to the limited radiation penetration at lower voltages [7]. In addition, the absorption properties

of a given material can significantly affect the quality. CT X-ray scans are a traditional porosity

characterization tool regarded as the ground truth label in this study.

2.3 Machine Learning and Deep Learning in AM

Machine learning has been extensively used to process various data types to improve the additive

manufacturing process. Wang in [45] reviews how machine learning is used in AM in the design

phase, fabrication process phase, and production phase. The design phase consists of materials

and topology, where the design phase is a combination of materials to create a metamaterial that

can be challenging and exhaustive to formulate. Machine learning can expedite the discovery of

materials that improve AM parts by decreasing weight and improving structural integrity. Improved

prediction of material properties and optimization using machine learning [15, 28] allowed for the

structural improvements [46] and improved design through metamaterial data generation [19].

Wu in [46] combines performance evaluations with structural evolution to construct meta-atoms

with specified properties. Neural network models find the optimal configuration of meta-atoms.

Meta-atoms delicately designed subwavelength structures. Furthermore, Ma in [19] represents the

relationship and design of metamaterials in the probabilistic model. Data labeling is performed in

a semi-supervised learning strategy, and further data collection and generation is performed with

a deep generative model to accelerate the design, characterization, even discovery in the domain

of metamaterials.
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The fabrication process phase can employ machine learning to optimize process parameters

[11], powder spreading characterization, and in-process defect monitoring. Process parameters can

be optimized through physics-based simulation that reveals the part features that happen during the

fabrication process, such as melt pool geometry, keyhole, and microstructures [12]. The growth of

AM has led to increasingly more complicated techniques that can be difficult to model. Jiang in

[11] employs a deep neural network model which is proposed to predict the connection between

paths in different process parameters. Changing process parameters can achieve different goals

for the fabricated part, and the paths at which the part is fabricated can be optimized to improve

part goals. On the other hand, Liu in [16] uses a physics-informed, data-driven model instead of

machine setting parameters to predict porosity levels because many machines are different. We

can look at the output of the machine’s printing process to better understand porosity.

In-process monitoring can help to reduce AM issues such as cracks, pores, delamination,

distortion, rough surface, lack of fusion, and process instability. These problems tend to happen

with the fusion of successive layers. The various optical and acoustic sensors can improve real-time

process improvement by applying deep learning and transfer learning machine learning models.

In-situ monitoring of the melt pool has been extensively studied to determine how the morphology

can lead to porosity [13, 33]. Khanzadeh in [13] develops a monitoring tool to detect anomalies in

the microstructure of LBAM fabricated parts. The supervised learning methodology dichotomizes

the melt pools to determine what characteristics lead to a lack of fusion between successive

layers. Rao in [31] and Li in [14] apply multiple in-situ sensor approach to monitoring the AM

process. A non-parametric Bayesian Dirichlet process mixture model [31] and new ensemble

modeling [14] is compared to traditional ML approaches. Additionally, Shevchik in [35] proposes
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highly sensitive acoustic data collected using fiber Bragg grating sensors and machine learning

for process monitoring. Wavelet spectrograms of the signal and spectral clustering gather features

labels for a deep convolutional neural network for in-situ real-time quality monitoring of AM

process that requires minimal modifications to commercially available industrial machines. In-

process monitoring thermal sensors are an indirect analysis of structural irregularities in AM

fabricated parts and are limited by not considering post-fabrication changes that can be seen by

post-manufacturing sensors[13].

Lastly, AM production phase can employ ML product quality control by assisting in the

planning to determine the manufacturability of parts. Product quality control is vital to the

development of AM because many manufacturing methods are inconsistent from machine to

machine. Inconsistency is due to geometrical accuracy, relative density, process stability, and

mechanical properties [24]. The challenge with quality control in many AM parts is that many of

the defects are internal. In recent years, non-destructive methods of determining quality, such as

CT and ultrasonic sensors, have been employed for abnormality detection. In [48], A hierarchical

synthesis CNN model is used to improve the sparse-view CT reconstruction. Undersampled

reconstructions are converted into high-fidelity estimates to train the neural network. This study

examines the global-scale pore evolution in post-processing. Likewise, in [34], a deep neural

network is employed for the correlation of in-situ acoustic and optical microscopy with ultrasonic

properties for porosity content detection. Micrographic images have also been used for defect

detection through the use of machine learning [9]. The limitations of ex-situ post-processing

detection of porosity are that it does not consider fabrication process irregularities and cannot

make changes during processing to improve fabricated parts [22]. The limitations of in-situ and
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ex-situ porosity detection methods with machine learning suggest the need for a study that takes

advantage of both in-process and post-processing data for porosity detection. This data would

provide valuable information on the printing process and structural integrity.

2.4 Review of Deep Learning based Image Fusion

Image data fusion seeks to combine two-dimensional matrix data from the different image

capturing techniques. Image fusion categories are multi-focus, multi-exposure, medical image,

visible/infrared, remote sensing [17]. Methods based on super-resolution have been shown to have

the most promise in general image fusion. Typical transforms using multi-scale decomposition-

based (MSD) fusion include image pyramids, wavelet-based transforms, multi-scale geometric

transforms, and spatial filtering-based decomposition. In the fusion phase, the activity level

of source images is measured by the decomposed coefficients abed on some specific pixel or

window-based approaches and followed by a predesigned fusion rule like choose-max or weighted

average are adopted to combine coefficients[17]. The conventional methods reviewed above lack

effective image representation that is not characterized by the complex mapping of the relationship

between input and target images[17, 47]. Convolutional Neural Networks (CNN) have achieved

significant advances in visual recognition problems compared with conventional methods. CNN

avoids handcrafted design and is more likely to achieve better performance. The success is mainly

due to the strong capability of DL models in characterizing the complex relationship between

different signals. A CNN-based method for measuring the local similarity between two image

patches demonstrates the superiority of the CNN-based method over traditional methods[17, 47].

The advantages of deep learning are summarized below.
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1. Can automatically extract the most useful features from data to overcome the difficulty of
manual design.

2. Can characterize very complex relationship between input and targeting data.

3. Community provides some potential image representation approaches which could be useful
to the study of image fusion.

Typical convolutional neural networks produce a classification label of an image, but for

many problems, the desired output requires localization. Deep learning image segmentation was

first introduced in [18] and has shown to be an effective method of partitioning images into

multiple segments. The U-Net architecture was an improvement upon [18] by Ronneberger in

[32]. Convolutional layers gather spatial information from images in windowing motion and feed

into a nonlinear activation function. Sub-sampling or pooling layers are often inserted between

each convolution layer for resolution reduction and reduced overfitting. Progressively more refined

feature extraction at every layer and less computational overhead [36, 44]. Encoder-decoder

networks can use a convolutional layer to encode the image into latent representation to create

an output map of the original image. Encoder-decoder-based models such as U-Net for 2D

segmentation use convolutional layer to reduce input images and use up-sampling convolutional

transpose layer to systematically produce a classification map the same size as the original image

[36]. The critical advantage of U-Net architecture is the introduction of skip connections which

allows the network to propagate contextual information to higher resolution layers parallel to

the decoder layers from the encoder [32]. At all the levels, the convolutional layer’s output,

before the encoder’s downsampling operation, is transferred to the decoder with geometrically

similar dimensions. These feature maps are then concatenated with the output of the up-sampling
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operation, and the concatenated feature map is propagated to the successive layers. The advantages

of U-Net are as follows:

1. Draws on additional information due to skip connections to allow for improved training and
improved prediction accuracy.

2. Can process smaller dataset due to dense connections that cause a regularizing effect pre-
venting overfitting.

3. The network does not have any fully connected dense layers and only uses the valid part of
each convolution containing the pixels, which provides full context of input images.

Recent studies have proposed changes to U-Net to improve further performance given challenging

problems with limited datasets. In [10], a U-Net has been employed for multi-modal biomedical

image segmentation with the addition of an inception-like block that captures local and global

information by employing multiple parallel convolutional filters on the previous layer. Each

convolutional filter has a different kernel size to capture the preferred information from images

with uneven distributions of information. The filters are then concatenated before being fed into

the next block. Arbella in [1] implements temporal information into the U-net structure with a

convolutional LSTM function in the encoder for Microscopy cell segmentation. Spatial-temporal

encoding allows the model to make predictions based on the frame-to-frame differences. Past cell

appearance can allow the model to track the movement of cells. Additional literature for changes to

the U-Net architecture are a gated multi-modal fusion network [2], a pixel transpose convolutional

network [8], and hyper-dense connectivity [6].
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2.5 Contributions of Our Work on Fusion Model of Ultrasonic and Infrared Data

We contribute a sensor fusion methodology that addresses the challenges of combining data

from two distinctly different sensors for quality predictions of LBAM fabricated parts. The critical

technical contributions of our work in this regard are summarized as follows

1. Our work develops a layer-wise infrared thermal history image of the fabricated part using
the non-parametric K-means regression and Gaussian convolutional smoothing function.
This allows for the ultrasonic and infrared thermal history to be spatially aligned within the
LBAM fabricated part.

2. Our work is the first to combine in-situ thermal images with ex-situ ultrasonic images for
porosity detection in LBAM. Sensor fusion enables practitioners better understanding of the
quality of the printing fabricated parts to improve industrial uses of AM.

3. Our methodology extends the traditional U-Net architecture by implementing inception block
and convolutional LSTM functions in U-Net architecture for sensor fusion. Inception blocks
have advantages in locating objects of different sizes in images, and convolutional LSTM
functions use spatial-temporal information as a 3D representation of the fabricated part.

4. In addition to model architecture, our framework localizes porosity within each layer by
creating a 3D representation of porosity throughout the entire part. Porosity localization
enables our model to better capture the structural integrity of the fabricated part.
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CHAPTER III

METHODOLOGY: SMART FUSION OF INFRARED AND ULTRASONIC IMAGES USING

U-NET ARCHITECTURE

We model the fusion infrared and ultrasonic image data for porosity detection in additive

manufacturing. By fusing both data types, we can predict the probability of porosity in each

layer of the fabricated part. In this section, we discuss the data properties, formulate the problem,

and modify U-Net architecture. Inception and LSTM U-Net modification are made to the U-Net

structure to improve the localization of objects of different sizes and incorporate three-dimensional

information into the current prediction.

3.1 Characteristics of Sensor Fusion

The data capturing systems of the two sensors can be seen in Figure 3.1. The infrared images

are captured during the fabrication of LBAM parts by placing a pyrometer camera in the chamber.

After fabrication, the ultrasonic images are captured using a transducer connected to a function

generator and oscilloscope to send and capture ultrasonic waves as they propagate through the

fabricated part. The characteristics of each sensor can be seen in Section 3.1.1 and 3.1.2.
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[a] [b]

Figure 3.1: Signal capturing systems of infrared and ultrasonic data. (a) LENS fabrication

chamber with pyrometer camera. (b) Post-processing ultrasonic transducer with function generator

and oscilloscope.

3.1.1 Pyrometer Data

A co-axial, dual-wavelength pyrometer camera is a non-destructive remote sensing technology

that works to capture the emitted radiation from the surface without contact with surface [38]. The

pyrometers act as a thermometer to measure the temperature of distant objects. Data acquisition

from the pyrometer occurs during AM parts fabrication by placing the camera inside the fabrication

chamber seen in Figure 3.1a. The camera is aligned with the laser of the LENS machine to capture

the surface temperature of the melt pool of superheated metal alloy. The pyrometer exports

752 × 480 pixels images with an approximate pixel spacing of 6.45 microns and seven images

per second. The pyrometer captures temperatures ranging from 1000 degrees Celsius and above.
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Thermaviz software converts each image into a CSV format. The pyrometer images CSV files are

cropped to 80 × 80 micros pixel images to contain only the melt pool temperature values greater

than 1000 degrees Celsius. The removed temperature values are noise not related to the printing

process.

[a] [b]

Figure 3.2: A single ultrasonic layer of the fabricated part with fabrication tracks overlay compared

to the size of the size of melt pool pyrometer images. (a) Ultrasonic fabrication image with

fabrication tracks and melt pool locations. (b) Pyrometer melt pool image

Figure 3.2a is an example of the melt pool image size in relation to the size of the fabricated

part. A melt pool image is captured at various locations in the build process by the pyrometer. The

lines and small circles in Figure 3.2a are the fabrication tracts and melt pool locations, respectively.
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This data capturing process is limited by not creating an entire thermal history of each fabrication

layer.

3.1.2 Ultrasonic Data

An ultrasonic transducer is a non-destructive remote sensing technique that emits and receives

ultrasonic waves that pass through a structure. The increased amplitude of waves indicates voided

space within a structure because waves can pass through with less resistance. Data acquisition

occurs post-processing of fabricated part using an ultrasonic transducer controlled by Tektronix

AFG3052C function generator to send 5M Hz sine wave and Tektronix DPO2024B oscilloscope to

capture the ultrasonic acoustic waveform of AM sample seen in Figure 3.1b. A C-scan technique

is employed to capture the amplitude of ultrasonic waves at each layer. Sine waves are sent

periodically through the fabricated part attached to the bottom of a water tank stabilized by

acoustic-damping-free plasticine and glue. A computational numerical control (CNC) station

moves the transducer in a mesh-grid square of 61 × 61 scanning points with a spatial interval of

0.25𝑚𝑚 over a 15𝑚𝑚 × 15𝑚𝑚 area covers the Ti-6Al-4V sample.

The data signal are collected in a MATLAB program that removes the noise from scanning

points with a fast Fourier and inverses fast Fourier algorithm. The ultrasonic wave amplitude

is captured in 61x61 two-dimensional (2D) arrays of each layer within the fabricated part. The

ultrasonic (2D) arrays are then cropped to 48 × 48 to remove noise and center array around the

fabricated part. Figure 3.2a is an example of the ultrasonic layer image captured by the ultrasonic

C-scan process. Contrary to the pyrometer data acquisition process, we capture the entire layer of

information during the ultrasonic data acquisition process. However, this data capturing process is
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limited by losing momentum as waves pass through the part, and the resolution of data provides

minor detail of the fabricated part.

3.1.3 X-Ray Computed Tomography Data

Non-destructive XCT transmits high-energy electromagnetic waves with a very short wave-

length. X-rays have enough energy to ionize matter, and electrons are rearranged within an atom.

A Nikon X-Ray CT XT H225 machine is used to collect XCT data. Figure 3.3 provides a layout of

the X-ray system that has an X-ray bean tube, a high voltage generator, a sample manipulator, and a

flat panel detector. The machine uses a kV voltage of 180 and a uA current of 98 for the specimens.

X-rays pass through the sample, forming a shadow image on the flat panel detector. The object of

interest is placed on a CNC machine and rotated on an axis, which is a beneficial technique for cap-

turing large objects. To create a quality scan of the object of interest, we align the 2D images using

beam source, manipulator, and detector to perform a 3D reconstruction with a high-pass filtered

back-projection for edge sharpening. Machined components are scanned by rotating the specimen

around the central axis [25]. A porosity algorithm scans the gauge section using VGSTUDIO Max

analysis and visualization software for industrial computed tomography. The specimen porosity

information is converted to a CSV containing porosity location and descriptive variables such as

sphericity, compactness, and radius[43]. The exact shape of the pore is unknown; we assume the

pore is circular. Pores are reconstructed into a map of the pore within each fabrication layer of the

object of interest. The XCT machine is limited by being expensive, slow processing time compared

to alternative methods, and is ineffective for larger parts that cannot fit on a rotating axis.
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Figure 3.3: Post-processing XCT System with a high voltage generator, manipulator, X-ray beam

tube, and flat panel detector.

3.2 Formation of the Problem

We model the peak temperature data fusion in pyrometer images and the entire image of

ultrasonic data. Ultrasonic data represents the entire fabrication layer 𝒂ℓ but has a lower resolution.

The peak temperature is the single value representation of the pyrometer image 𝒑ℓ,𝜂 and we smooth

the peak value from each pyrometer image 𝜂 in each layer ℓ to represent the entire fabrication layer.

Figure 3.2 show that the pyrometer image covers a small area of the LBAM fabricated part.

Maximum temperature in a pyrometer image is indicative of the thermal history in a pyrometer

image because high temperatures result in higher penetration to lower layers and increased melt

pool spread on current layer [5, 13]. 𝒑ℓ,𝜂 (𝑖, 𝑗) = 𝑀𝑎𝑥(𝑇ℓ,𝜂 (𝑖, 𝑗)) is the maximum temperature for

a pyrometer image at ℓth part layer and 𝜂th image in the layer. 𝑇 is the pyrometer image, and 𝑖, 𝑗

are the coordinates of each pixel in a pyrometer image.

After extracting the maximum temperature from each pyrometer image in a layer we obtain a

vector of representing each image 𝜂th in a single layer 𝒑ℓ = (𝑝ℓ,1, ..., 𝑝ℓ,𝜂)′. We will then smooth

21



the peak temperature values using K-means regression and Gaussian convolutional function that

can be seen in Section 3.4.1 to obtain a matrix 𝒑∗
ℓ

of thermal layer history seen as follows:

𝒑∗ℓ =



𝑝ℓ (0, 0) 𝑝ℓ (1, 0) ... 𝑝ℓ (𝑢, 0)

𝑝ℓ (0, 1) 𝑝ℓ (1, 1) ... 𝑝ℓ (𝑢, 1)
...

...
. . .

...

𝑝ℓ (0, 𝑣) 𝑝ℓ (1, 𝑣) ... 𝑝ℓ (𝑢, 𝑣)


(3.1)

The ultrasonic image data captured by the transducer represents the entire layer of fabricated

part as a matrix seen as follows:

𝒂ℓ =



𝑎ℓ (0, 0) 𝑎ℓ (1, 0) ... 𝑎ℓ (𝑢, 0)

𝑎ℓ (0, 1) 𝑎ℓ (1, 1) ... 𝑎ℓ (𝑢, 1)
...

...
. . .

...

𝑎ℓ (0, 𝑣) 𝑎ℓ (1, 𝑣) ... 𝑎ℓ (𝑢, 𝑣)


(3.2)

Now both the infrared thermal history image matrix 𝒑∗
ℓ

and ultrasonic image matrix 𝒂ℓ represent

the same space in the fabricated part. The next challenge is developing a smart way to fuse the data

from each modality. For example, using a simple method such as choosing the maximum value

from each modality would fuse the information, but, likely, this information would not indicate

porosity. A deep learning convolutional neural network algorithm would map the pyrometer and

ultrasonic image data to ground-truth porosity labels ensuring that the relevant information from

each modality image is captured. Machine learning models are generally specified under fixed

settings to process and map input variables to output. The U-Net convolutional neural network

fusion model 𝐹 for predicting porosity is

𝒚̂ℓ = 𝐹 ( 𝒑∗ℓ , 𝒂ℓ) + 𝜖 (3.3)
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In deep learning, the U-Net neural network layers feed into each other in succession in a feed-

forward manner from the input variables 𝒑∗
ℓ
, 𝒂ℓ to the 𝑛 layers of the encoder 𝐸 to the 𝑛 layers

of the decoder 𝐷. Additionally, we consider the case of two modalities, let 𝐸1
ℓ,𝑛

and 𝐸2
ℓ,𝑛

denote

the 𝑛th encoder layer and the 𝑙th fabrication layer in branch 1 and 2, respectively. In general, the

output of the 𝑛th network layer in the U-Net encoder branch 𝑤 can be defined as follows:

𝐸𝑤
ℓ,𝑛 = 𝐻 (𝐸1

ℓ,𝑛−1, 𝐸
2
ℓ,𝑛−1, 𝐸

1
ℓ,𝑛−2, 𝐸

2
ℓ,𝑛−2, ..., 𝒑

1
ℓ
∗, 𝒂2

ℓ ) (3.4)

where 𝐻 denotes the hidden layer of the U-Net encoder-decoder network architecture. After

processing of each modality in separate branches of U-Net encoder, the final layers of each branch

are concatenated. Processing continues with decoder layers 𝑛.

𝐷ℓ,𝑛 = 𝐻 (𝐷ℓ,𝑛−1, 𝐷ℓ,𝑛−2, ..., [𝐸1
ℓ,𝑛, 𝐸

2
ℓ,𝑛]) (3.5)

where 𝑛 denotes network layer of the U-Net decoder and the square brackets represent concatenation

network layers. The hidden layers of the U-Net architecture are further discussed in Step 2, 3, and

4 of the details of the algorithm seen in Section 3.4.2, 3.4.3, and 3.4.4, respectively.

Lastly, it would be more valuable to localize porosity in each layer rather than know if porosity

exists in each layer. Deep learning image segmentation strategies could show where porosity is

located in each layer through a sensor fusion encoder-decoder architecture. The outputs of image
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segmentation strategies produce a matrix of labeled values predicting the probability of porosity

in each fabrication layer.

𝒚̂ℓ,𝑛 =



𝐷ℓ,𝑛 (0, 0) 𝐷ℓ,𝑛 (1, 0) ... 𝐷ℓ,𝑛 (𝑢, 0)

𝐷ℓ,𝑛 (0, 1) 𝐷ℓ,𝑛 (1, 1) ... 𝐷ℓ,𝑛 (𝑢, 1)
...

...
. . .

...

𝐷ℓ,𝑛 (0, 𝑣) 𝐷ℓ,𝑛 (1, 𝑣) ... 𝐷ℓ,𝑛 (𝑢, 𝑣)


(3.6)

where each location in 𝒚̂ℓ,𝑛 produces a probability that porosity is present in (𝑢, 𝑣) location in the

current fabrication layer ℓ. The output feature maps compared to the ground truth output feature

matrix and incorrect neurons are adjusted through back propagation.
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3.3 Outline of Algorithm

Figure 3.4: Deep multi-Modal U-net fusion framework. (Step 1:) Create an infrared layer image

𝒑∗
ℓ

from pyrometer melt pool data. (Step 2:) Feed infrared 𝒑∗
ℓ

layer images and ultrasonic 𝒂ℓ

layer images into separate encoder branches 𝐸𝑣
ℓ,𝑛

. (Step 3) Concatenate the latent space from each

branch 𝐸ℓ,𝑛. (Step 4:) Decode latent space 𝐷ℓ,𝑛 and apply skip connections to each modality after

each decoder block. (Outcome:) Probability of porosity map 𝒚̂ℓ,𝑛.

The outline of the proposed methodology is summarized below.

1. Create an infrared layer image 𝒑∗
ℓ

from pyrometer melt pool data.

2. Feed infrared 𝒑∗
ℓ

layer images and ultrasonic 𝒂ℓ layer images into separate encoder branches
𝐸𝑣
ℓ,𝑛

.

3. Concatenate the latent space from each branch 𝐸𝑣
ℓ,𝑛

.
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4. Decode latent space 𝐷ℓ,𝑛 and apply skip connections in Equation 3.13 to each modality after
each decoder block.

5. Predict the probability of porosity 𝒚̂ℓ,𝑛 compared to XCT layer images.

3.4 Details of Algorithm
3.4.1 Step 1: Create an infrared layer image 𝒑∗

ℓ
from pyrometer melt pool data.

[a] [b] [c]

Figure 3.5: Infrared layer image creation steps. (a) Peak temperature and meltpool locations. (b)

K-means smoothed fabrication layer of temperature values. (c) Smoothed edges with Gaussian

convolutional signal blur and part mask.

The transformation of pyrometer image data to infrared thermal history layer image expressed

in Section 3.2 was achieved by using non-parametric K-mean regression. First, the maximum

temperature of every infrared image in a single layer is extracted, along with the coordinates of

each infrared image. An example of the maximum temperature value taken from each infrared

image can be seen in Figure 3.5a. The values in Figure 3.5a are then smoothed using non-parametric

K-means regression to form a matrix 𝒑∗
𝑙

to represent the entire fabrication layer with a coordinate
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area of 9x9 with a spatial interval of 0.167. Figure 3.5b is an example of the infrared layer image

formulated by the Kmean model. In Equation 3.7, we minimize the Euclidean distance values in a

cluster and the nearest centroid.

𝑎𝑟𝑔𝑚𝑖𝑛
∑︁
𝑗=1

∑︁
𝜂=1

| | 𝒑ℓ,𝜂 − 𝑞 𝑗 | |2 (3.7)

𝑞 is the 𝑗 th centroid, and 𝒑 is the 𝜂th coordinate in the ℓth layer. After K-means regression, we

have a 52× 52 mesh grid expressed in Equation 3.1 as 𝒑ℓ and then we smooth the edges within the

feature map with a Gaussian convolutional kernel function. Smoothing the edges between clusters

will add additional noise to data. Equation 3.8 is a two dimensional Gaussian convolutional kernel

function 𝐺 (𝑖, 𝑗).

𝐺 (𝑖, 𝑗) = 1
2𝜋𝜎

𝑒
− 𝑖2+ 𝑗2

2𝜎2

𝒑∗𝑙 (𝑢, 𝑣) =
∑︁

𝐺 (𝑖, 𝑗) ∗ 𝒑𝑙 (𝑢, 𝑣)
(3.8)

𝑖, 𝑗 is the size of the Gaussian kernel at which pixel values are combined and ∗ represents the

convolution operations. 𝐺 is the Gaussian kernel filter and 𝒑ℓ is the input signal. The Gaussian

convolutional filter reduces the size of each dimensions original image by 𝑖 × 𝑗 . The function

reduces the size of 𝒑∗
ℓ

to a 48 × 48 mesh grid when the filter size (𝑖, 𝑗) = (2, 2). Figure 3.5c is

an example of applying a Gaussian convolutional blur to K-Means feature map. This is a novel

process of creating a thermal history layer representation in additive manufacturing.
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3.4.2 Step 2: Feed infrared 𝒑∗
ℓ

layer images and ultrasonic 𝒂ℓ layer images into separate
encoder branches 𝐸𝑣

ℓ,𝑛
.

Figure 3.6: Traditional encoder block for U-Net framework

Figure 3.7: Traditional decoder block for U-Net framework

U-Net encoder processes infrared layer images 𝒑∗
ℓ

and ultrasonic layer images 𝒂ℓ separately

in a two-branch structure seen in step 2 of Figure 3.4. Equation 3.3 express the deep learning

fusion function of infrared and ultrasonic data, and Equation 3.4 expresses the encoding of two

separate branches. The U-Net architecture is fully connected deep learning model formulated

in Equation 3.4 and Equation 3.5. The input, hidden, and output layers feed into each other in

succession. For image processing, a convolutional layer is employed to extract relevant features

from the two-dimensional input matrix. Mathematically, the convolutional layer in a 2D-CNN is

expressed in Equation 3.9.

𝐸ℓ,𝑛 = 𝑏𝑛 +
∑︁
𝑖

∑︁
𝑗

𝑘 (𝑖, 𝑗) ∗ 𝐸ℓ,𝑛−1 (3.9)
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where 𝐸ℓ,𝑛−1 is the output of the previous layer and 𝑘 (𝑖, 𝑗) is the size of the kernel that passes over

the output of the previous layer. The bias is a network parameter represented by 𝑏𝑛, and the symbol

∗ denotes the 2D convolution. Notable parameters in a convolutional layer are stride and padding.

Stride controls the travel distance of the filter horizontally and laterally over the input, and padding

controls the spaces of input not to be mapped by the filter. Common non-linear activation functions

are sigmoid, rectified linear units (ReLUs), and exponential linear Units (ELUs). A convolution

layer and ELU layer are jointly expressed in Equation 3.10.

𝐸ℓ,𝑛 (𝑢, 𝑣) =


𝑏𝑛 +

∑
𝑖

∑
𝑗 𝑘 (𝑖, 𝑗) ∗ 𝐸ℓ,𝑛−1 𝐸𝑙,𝑛−1 ≥ 0

𝛼(𝑒𝑏𝑛+
∑

𝑖

∑
𝑗 𝑘 (𝑖, 𝑗)∗𝐸ℓ,𝑛−1 − 1) 𝐸𝑙,𝑛−1 ≤ 0

(3.10)

where 𝛼 is a smoothing parameter which is usually between 0.1 and 0.3 and controls the scale of

negative outputs. Negative outputs nudge weights and biases in the right direction compared to

ReLU function that stops at 0. Convolutional layers are always followed by a non-linear activation

layer. Dropout layer that randomly zeroes some of the elements of the input tensor with probability

parameter 𝜌 using samples from a Bernoulli distribution can be seen following the activation

layer. This is a regularization technique that prevents the co-adaption of neuron in a network. The

non-zeroed neuron are up scaled by factor of 1
1−𝜌 making the dropout layer an identity function and

no change is made to input shape. A common operation in building a CNN is spatial pooling. It

is popular to employ a max-pooling operation, which can bring some desirable invariance into the

model. Equation 3.11 max-pooling kernel 𝑘 operation downsamples the inputs based on the pool

size parameter in the layer.

𝑘 = 𝑚𝑎𝑥(𝐸ℓ,𝑛−1(𝑢, 𝑣)); 𝑢, 𝑣 = 1, ..., 𝑚 (3.11)
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𝑢 and 𝑣 represents the pixel location and 𝑚 is the dimension size of the kernel that passes over each

section. The left side U-Net architecture learns features and reduces the size of inputs by stacking

layers for downsampling in Figure 3.6. U-Net encoder can be commonly seen with 4 stacks of

layers.

3.4.3 Step 3: Concatenate the latent space from each branch 𝐸ℓ,𝑛.

The two encoder branches 𝐸1
ℓ,𝑛

and 𝐸2
ℓ,𝑛

are concatenated to be further processed. In the

proposed fusion model, the last layer of encoder operations for each modality is concatenated.

Equation 3.5 combines the separate processing branches before we proceed with decoder operations.

Combining each branch of U-Net architecture will provide more features for improved porosity

prediction.

3.4.4 Step 4: Decode latent space 𝐷ℓ,𝑛 and apply skip connections to each modality after
each decoder block.

The decoder upsamples the combined latent space information from each modality. A convo-

lutional transpose layer generates a feature map of spatial dimensions greater than that of the input.

Equation 3.9 operation is employed to map to output greater than the input dimensions by filling

the space between input values with zeros and fractionally slide kernel function over feature map

smoothing output. The size of the output dimension map size 𝛾 for a convolutional transpose layer

with a stride 𝑠 greater than 1 with no padding is expressed as

𝛾 = 𝑠(𝑑 − 1) + 𝑘 (3.12)

𝑘 is the kernel size, and 𝑑 is the input activation map dimensions. Each input feature is expanded

to the size of the kernel in the convolution transpose layer. The expanded input feature fills the
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shape of the output dimension map expressed in Equation 3.12 based on the stride parameter.

Overlapping output feature map values are summed.

Furthermore, skip connections are unique to the U-net architecture for improving image pro-

cessing. Skip connections concatenate encoder and decoder layers at specific points to add a

regularization effect that helps to prevent overfitting of data. We employ skip connections between

geometrically similar blocks of layers in the U-Net architecture for porosity detection.

𝐷 𝑙,𝑛 = 𝐻 ( [𝐸1
ℓ,1, 𝐷ℓ,𝑛−1, 𝐸

2
ℓ,1], ..., [𝐸

1
ℓ,𝑛−1, 𝐷ℓ,2, 𝐸

2
ℓ,𝑛−1]), 𝑛 = 1, ..., 5 (3.13)

Equation 3.13 concatenates skip connection after every convolutional transpose layer. The skip

connections can be visualized in Figure 3.4 and the connections create another path for back-

propagation to take place. Section 3.4.2 convolutional layer and activation function operations in

Equation 3.10 followed by the dropout layer operation are employed after the skip connection con-

catenation. The upsampling, skip connection concatenation, and feature learning network layers

can be visualized in Figure 3.7.

3.4.5 Outcome: Probability Porosity Image

Localization of porosity within a layer is the output of the U-Net architecture. Equation

3.6 expresses the output of U-Net architecture as convolutional label map expressing probability

locations of porosity. The last convolutional layer has a sigmoid activation function that activates

the different features in map if an object exist in Equation 3.6. The sigmoid is expressed as

𝒚̂𝑙,𝑛 (𝑚, 𝑛) = 1
1 + 𝑒−𝐷𝑙,𝑛 (𝑚,𝑛) (3.14)

Equation 3.14 pushes values in the last feature map that are between 0 and 1 closer toward the

extremes. Thus, the last feature map contains the probability of porosity from the current fabrication
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layer input images. Knowing the likely locations of porosity in each layer is more valuable than

know if porosity is located in a layer because we understand how the thermal history information

may have affected the quality of the build.

3.5 Inception Block and LSTM Modifications to U-Net Framework

Modifications to the U-Net architecture can be seen in Sections 3.5.1 and 3.5.2. The traditional

model can be overfitted to data and only locate objects within a certain number of pixels. The use of

some alternate layers in the U-Net structure could show improvements in object localization. The

inception blocks create a wider deep learning network with parallel branches processing the same

sensor data. The changes in depth and kernel function of parallel branches in the inception block

often result in better recognition when the objects appear in different sizes. The LSTM blocks

create a three-dimensional representation by processing the previous successive layer information.

The number of processing images fed into each layer help the model not to overfit the training data.

The modified U-Nets are compared to the original U-Net predictions.

3.5.1 Inception Block U-Net

The inception block changes the encoder-decoder framework of the original model, but the

outcome stays the same. Inception blocks employ multiple parallel branches to process the same

input activation map. Equation 3.9 2D-CNN, Equation 3.11 max pooling, and batch normalization

layers are stacked in different orders. The exploration and development of the inception block are

sought after because often, objects being detected appear in a large variety of sizes. The number

of pixels being occupied by the object can change, making choosing the kernel size difficult. The

kernel sizes in the 2D-CNN layers change in each branch of the inception block for improved
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object detection. The outputs of each line are concatenated and fed into the next inception block.

The neuron in each block line is activated to predict the output best. Large kernels are for global

information, and smaller kernels are for local information.

Figure 3.8: Inception Block with four parallel channels of varying length and kernel sizes.

Figure 8 input activation map flow into four separate channels with different varying levels of

depth. In this block, the input dimensions are not changing but are being processed by different

kernel sizes. Batch Normalization (BatchNormal) provides a regularization effect. Each channel is

concatenated and processed by a final 2D-CNN layer before exiting the inception block. Consider
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the inception block that processes the input activation map in four separate branches. Let 𝑧 denote

the branches of the inception block 𝐸1
ℓ,𝑛

, 𝐸2
ℓ,𝑛

, 𝐸3
ℓ,𝑛

, and 𝐸4
ℓ,𝑛

𝐸 𝑧
ℓ,𝑛

= 𝐻 (𝐸ℓ,𝑛−1, [𝐸1
ℓ,𝑛−2, 𝐸

2
ℓ,𝑛−2, 𝐸

3
ℓ,𝑛−2, 𝐸

4
ℓ,𝑛−2], ..., 𝐸

1
ℓ,𝑛−3, 𝐸

2
ℓ,𝑛−3, 𝐸

3
ℓ,𝑛−3, 𝐸

4
ℓ,𝑛−3) (3.15)

Square bracket represent concatenation and layers fed into each other in fed forward manner. Each

branch of the inception block is processing the input activation map separately in Equation 3.15.

[a] [b]

Figure 3.9: U-Net Inception encoder-decoder blocks for activation map downsampling and upsam-

pling. (a) Inception encoder block. (b) Inception decoder block.

The inception encoder-decoder blocks used in the modified U-Net architecture can be seen

in Figure 3.9. Important to note that different channels have varying kernel sizes for improved
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processing when objects appear in different sizes. The encoder and decoder block downsample

and upsample the input activation maps with a stride 𝑠 of (2, 2), which either reduces the size of

the activation map by half or doubling the size of the activation map, respectively.

3.5.2 Convolutional LSTM Block U-Net

The Convolutional LSTM block changes the encoder framework and the skip connections of

the original model, but the outcome stays the same. Also, the framework requires an additional

dimension of input to process 3D objects. The convolutional LSTM function replaces one of the

2D-CNN layers (Equation 3.9) in the original U-Net architecture with ConvLSTM2D equations

below. The LSTM function captures temporal information, and we regard the temporal information

as depth in this study. We have a 3D object feeding the images into the Convolutional LSTM

function as 2D frames. We are exploiting depth information to improve image segmentation with

a Convolutional LSTM function expressed as:

𝑖𝑡 = 𝜙(𝜃𝑥𝑖 ∗ 𝑥𝑡 + 𝜃ℎ𝑖 ∗ ℎ𝑡−1 + 𝜃𝑐𝑖 ◦ 𝑐𝑡−1 + 𝑏𝑖)

𝑓𝑡 = 𝜙(𝜃𝑥 𝑓 ∗ 𝑥𝑡 + 𝜃ℎ 𝑓 ∗ ℎ𝑡−1 + 𝜃𝑐 𝑓 ◦ 𝑐𝑡−1 + 𝑏 𝑓 )

𝑐𝑡 = 𝑓𝑖 ◦ 𝑐𝑡−1 + 𝑖𝑡 ◦ 𝑡𝑎𝑛ℎ(𝜃𝑥𝑐 ∗ 𝑥𝑡 + 𝜃ℎ𝑐 ∗ ℎ𝑡−1 + 𝑏𝑐)

𝑜𝑡 = 𝜙(𝜃𝑥𝑜 ∗ 𝑥𝑡 + 𝜃ℎ𝑜 ∗ ℎ𝑡−1 + 𝜃𝑐𝑜 ◦ 𝑐𝑡 + 𝑏𝑜)

𝒚̂ℓ,𝑛 = 𝑜𝑡 ◦ 𝑡𝑎𝑛ℎ(𝑐𝑡)

Convolutional LSTM layer in ConvLSTM2D is expressed as input gate 𝑖𝑡 , forget gate 𝑓𝑡 , cell

memory 𝑐𝑡 , output gate 𝑜𝑡 , and output feature map 𝒚̂ℓ,𝑛 and it can be visualized in Figure 3.10.

𝑡, 𝜙, 𝜃, ℎ(𝑡−1) , and 𝑐𝑡−1 is the current observation location, activation function, weight, previous

cell output, and previous cell memory, respectively. ◦ represents element-wise multiplication,
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and ∗ represents convolution operations. The input gate decides what to update, and forget gate

decides what to throw away. These gates help regulate the flow of information in and out of the

cell. The cell memory remembers values over arbitrary time intervals to update the current cell

state. The output gate decides the next hidden state to make predictions on the output feature map.

The placement convolutional LSTM layer at the start of the encoder block to include temporal

information can be seen in Figure 3.10.

Figure 3.10: Convolutional LSTM Block with the function gate visualization.
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CHAPTER IV

CASE STUDY: DEEP MULTI-MODAL FUSION POROSITY DETECTION MODEL FOR

TI-6AL-4V MANUFACTURED CYLINDERS

4.1 Experimental Setup

Three tests are performed to determine the ideal structure and number of processing blocks for

the U-Net model. The three tests are: (1) Compare the combined traditional U-Net fusion models

vs. combined inception and LSTM modified U-Nets fusion models to test if the modification

improves the localization of porosity. (2) Compare combined U-Net model vs. single modality

U-Net models to test if sensor fusion improves the localization of porosity. (3) Tuning the number

of encoder-decoder processing blocks to determine the ideal number of block layers. Finally, each

model is validated with three metrics that assess the quality of porosity predictions from U-Net

fusion models. The three selected metrics are (1) Mean intersection over union (IOU) 𝑄 𝐼 , which

measures the amount of mutual information between XCT labels and predicted porosity [30, 42].

(2) Structural similarity index 𝑄𝑆, which measures the amount of structural information preserved

in the fused image [4]. (3) Peak signal to noise ratio 𝑄𝑃, which measures noise through the

efficiency of compressors [29].

An OPTOMEC LENS 750 system that utilizes Ti-6Al-4V powder to manufacture cylinders

additively. Ultrasonic and pyrometer data is collected for three Ti-6AL-4V cylinders for our case

study to test the performance of U-Net models. The cylinders varied in height, ranging from
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23.06mm to 27.12mm, but were printed with a constant height of 8mm. The optimized process

parameters that were implemented when manufacturing cylinders are in Table 4.1. Each cylinder

did not enter any post-processing heating chambers and was left as built.

Table 4.1: Processing parameters for manufactured cylinders

Processing Parameter Cylinder 16 Cylinder 19 Cylinder 25

Laser Power (W) 300 350 400

Travel Speed (ipm) 40 30 50

Powder Flow Rate (rpm) 3 2.5 3

Layer Thickness (mm) 0.381 0.635 0.508

Hatch distance (mm) 0.508 0.635 0.508

Scan Pattern Uni-directional Zig-zag Zig-Zag

Hatch Rotation (degrees) 180 180 180

Ultrasonic data is collected every 0.25mm compared to pyrometer data collected at each layer

fabrication layer corresponding with layer thickness in Table 4.1 resulting more layers of data. It

is necessary to have the same number of layers from each data type. The nearest ultrasonic layer

data to fabrication layer are extracted for processing in sensor fusion model. Furthermore, XCT

data is collected at various locations within the Ti-6AL-4V cylinders rather than layer by layer

for pyrometer and ultrasonic data. It is important to have for ground truth XCT to have the same

number of layers as input data. The nearest XCT porosity location to fabrication layer with a
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interval of 0.05mm and probability threshold of 1.2 percent are extracted as labels for sensor fusion

model. For image segmentation, the XCT data is transformed into a layer image using the radius

of each pore. A total of 61, 41, and 54 images from each modality are collected from cylinders

16, 19, 25, respectively. 157 images in total from each modality and sample images can be seen in

Figure 4.1. Note the infrared images are after step 1 in sensor fusion methodology, infrared layer

creation.

Figure 4.1: Sample images 7, 33, 40, 78, and 124 for U-Net sensor fusion. (Top) Ultrasonic layer

images. (Middle) Infrared Layer images. (Bottom) XCT layer images.
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4.2 Results of Sensor Fusion prediction of porosity for Ti-4AL-4V cylinders

After fabricating Ti-6AL-4V cylinders and collecting the pyrometer, ultrasonic, and XCT data,

we seek to fit ultrasonic and pyrometer data to the sensor fusion model and predict the likelihood of

porosity under the mapping of the model to XCT data. The mapping of ultrasonic and pyrometer

data to XCT provides a baseline for the model to predict porosity in the subsequent layers of the

Ti-4AL-4V cylinder fabrication layers. The models are trained with 100 epochs, a binary cross-

entropy loss function, and an Adam optimizer. We perform leave one out fivefold cross-validation

where 20 percent of the data is left out of training to test the model’s performance. We train the

model twice to verify results and then leave the next 20 percent of image data out of training to test

performance. We repeat this process until all data has been part of the training and testing process.

4.2.1 Traditional U-Net vs. Inception and LSTM modified U-Net Models

The quantitative results of combined traditional, inception, and LSTM U-Net models with four

encoder-decoder blocks are shown in Table 4.2. Overall, the inception U-Net models exhibit a

higher degree of overlap between actual and predicted pixels as seen in the bolded regions of

the 𝑄 𝐼 metric in Table 4.2. We do see less noise in the traditional U-Net model leading to less

incorrect predictions measured by observing the 𝑄𝑃 metric and slightly more structural similarity

by observing the 𝑄𝑆 metric. The combined inception model exhibits the highest 𝑄 𝐼 , and the

traditional model exhibits the highest 𝑄𝑃 value amongst all the models.
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Table 4.2: Average metric results combined traditional, inception, and LSTM U-Net models

Model 𝑄 𝐼 𝑄𝑆 𝑄𝑃 𝑇𝑖𝑚𝑒(𝑠𝑒𝑐)

Combined Traditional U-Net 0.501 0.99883 77.923 971

Combined Inception U-Net 0.514 0.98855 74.821 7976

Combined LSTM U-Net 0.482 0.98435 64.332 8612

Figure 4.2 shows the localization quality of the traditional, inception, and LSTM U-Net com-

bined fusion model. Three XCT testing images are paired with the U-Net models to compare the

quality of prediction. The XCT sample images can be seen in Figure 4.2a. It can be seen that

the inception U-Net fusion model images in Figure 4.2c localize porosity significantly better than

the single modality models. The traditional combined model does not perform as well when the

pores are significantly larger than one another seen in the last row of Figure 4.2b. In addition, the

traditional model achieves a higher 𝑄 𝐼 than the LSTM model. We expected the LSTM model to

achieve improved 𝑄 𝐼 because we are incorporating successive layer data into the current layer as a

3D dimensional representation, but 𝑄𝑃 shows a high degree of noise. When training these models,

the inception model and LSTM model training time are significantly higher. Therefore, it is benefi-

cial to run the traditional model if a quick turnaround of results is necessary. Overall, the𝑄 𝐼 metric

is the best indicator of the quality localization of an object in an image. The combined inception

model performed the best compared to the combined traditional and LSTM U-Net models. The

subsequent study will compare the combined inception U-Net to the infrared and ultrasonic single

modality U-Net models.
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[a] [b] [c] [d]

Figure 4.2: Samples 13, 18, and 28 image predictions of traditional, inception, and LSTM U-Net

thermal and ultrasonic fusion models. (a) XCT. (b) Traditional U-Net fusion predictions. (c)

Inception U-Net fusion predictions. (d) LSTM U-Net fusion predictions.

4.2.2 Combined U-Net fusion model vs. thermal and ultrasonic U-Net single modality
models

We compare the results of the inception U-Net fusion model to inception U-Net thermal

and ultrasonic single modality models to verify that sensor fusion produces better results. The

qualitative results of training inception U-Net models are shown in Table 4.3. The inception U-Net

fusion model out preformed the U-Net ultrasonic single modality model and U-Net thermal single
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modality model by 0.028 percent and 0.029 percent 𝑄 𝐼 , respectively. We would expect the U-Net

ultrasonic single modality model to outperform the U-Net thermal single modality model because

the ultrasonic data is similar to XCT, in which both sensors test for structural irregularities. The𝑄𝑃

metric is showing a minor degree of noise in the U-Net fusion model than U-Net single modality

models. The 𝑄𝑆 shows a sightly better structural similarity between XCT and U-Net fusion models

than U-Net single modality models. Figure 4.3 shows sample image predictions of each model.

Table 4.3: Average metric results for combined, thermal single modality, ultrasonic single modality

inception U-Net models

Model 𝑄 𝐼 𝑄𝑆 𝑄𝑃 𝑇𝑖𝑚𝑒(𝑠𝑒𝑐)

Combined Inception U-Net 0.514 0.98855 80.821 7976

Ultrasonic Inception U-Net 0.486 0.98852 78.381 4713

Thermal Inception U-Net 0.485 0.98824 77.756 4318

The U-Net ultrasonic single modality model value over the thermal single modality model can

be seen when comparing the prediction images in Figure 4.3c and Figure 4.3d. The ultrasonic

single modality prediction shows significantly better localization of porosity than thermal single

modality predictions. U-Net fusion model prediction shows better localization with less noise in the

sample images. The run time of the U-Net fusion model is nearly double the U-Net single modality

models. Fusion of ultrasonic and thermal images produces the best results. In the previous study,
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we are tuning the number of processing blocks of the inception U-Net model to produce the best

results.

[a] [b] [c] [d]

Figure 4.3: Samples 13, 18, and 28 image predictions of inception U-Net fusion model, inception

U-Net thermal single modality model, and inception U-Net ultrasonic single modality model. (a)

XCT. (b) Inception U-Net fusion model. (c) Inception U-Net ultrasonic single modality model. (d)

Inception U-Net thermal single modality model.

4.2.3 Tuning the number of encoder-decoder processing blocks

The performance of the fusion model might not be reaching expected accuracy because too

small of dimension reduction of input might be resulting in a loss of too much information.
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Therefore, we explore using fewer encoder-decoder block layers to tune the inception U-Net fusion

model. The qualitative results of training inception U-Net models are shown in Table 4.4. The two

encoder-decoder block inception U-Net fusion model produced the high percent 𝑄 𝐼 while having

a significantly lower run time than the three and four encoder-decoder block models. Additionally,

the 𝑄𝑆 showed a higher average structural similarity and higher 𝑄𝑃 noise ratio between XCT and

two encoder-decoder block models. Sample image predictions are compared in Figure 4.4.

Table 4.4: Average metric results for inception U-Net fusion model with four, three, and two

encoder-decoder blocks

Number of encoder-decoder blocks 𝑄 𝐼 𝑄𝑆 𝑄𝑃 𝑇𝑖𝑚𝑒(𝑠𝑒𝑐)

Four 0.514 0.98855 80.821 7976

Three 0.555 0.99502 76.332 6219

Two 0.557 0.99608 78.137 4445

Overall, the sample image predictions in Figure 4.4 showed similar results. The two and three

encoder-decoder block models localize porosity when the pore is smaller in the first row of Figures

4.4c and 4.4d. All the models failed to recognize the second pore in the last image of Figure 4.4a.

The two encoder-decoder block inception U-Net fusion model is the ideal number of blocks for

improved performance and faster run time.
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Figure 4.4: Samples 13, 18, and 28 image predictions of inception U-Net fusion model with four,

three, and two encoder-decoder blocks (a) XCT. (b) Four encoder-decoder blocks inception U-Net

fusion model. (c) Three encoder-decoder blocks inception U-Net ultrasonic single modality model.

(d) Two encoder-decoder blocks inception U-Net thermal single modality model.
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CHAPTER V

CONCLUSION

Sensor fusion in additive manufacturing is a promising technique for improving manufactured

components without compromising the structure. The use of various sensors in additive manu-

facturing can provide distinctly different features that can help illustrate the quality of the printed

component. For example, thermal history data provides information about the printing process,

while ultrasonic and XCT data provides information on structural integrity. The effective use of

timely collected in-situ thermal data and ultrasonic data collected at significantly faster processing

time as opposed to XCT can allow professionals to understand the complex relationship between

processing parameters and the quality of the build. Taking advantage of the valuable information

from each sensor can help manufacture parts with a higher degree of residual stress and print parts

as anticipated the first time. Although, often, the sensor data analyzes different geometric locations

and comes in different dimensions and formats. The sensor fusion methodology presented in this

paper can bridge the gap between combining different sensors in LBAM by transforming data into

the same field of view and autonomously extracting relevant features. It does so by efficiently

utilizing K-means smoothing of multiple data points and a deep learning U-Net framework that

can localize porosity from distinct features in ultrasonic and infrared layer images. To the best of
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our knowledge, our framework is the first to bridge the gaps between combining in-situ and ex-situ

sensors in LBAM.

Our fusion model method possesses multiple advantages for practitioners and researchers in

LBAM.

1. The cost-efficient collection of data and computational run time of sensor fusion porosity
detection models are significantly faster than XCT scans. Computationally fast models allow
the practitioners and researchers to test the quality of newly fabricated parts quickly.

2. It leverages information from different streams and configures data to the same field of view
in an effective manner, and extracts features without hand-crafted fusion specifications. This
advantage is beneficial in extracting only relevant features that aim to achieve a specific
outcome.

3. The model can effectively work for small datasets (observations > 150) with various parts
created with different processing parameters. The addition of data from geometrically
different parts created with different processing and structural makeup could take advantage
of the low economic and computational cost.

Ultimately, our model can accelerate the use of various sensing techniques that were not clear

how to combine in the past. The reduced cost and processing time compared to XCT can lead to

the identification of abnormalities in fabricated parts and further advance the adoption of sensor

fusion in LBAM and related industries. Additional sensors can be investigated that may yield

benefits to further fabricated part quality. Furthermore, more significant complex parts can begin

to be created when the quality of the printing process improves with the use of multi-sensor fusion

models. Further sensor fusion research may find the correct combination of sensors to suit better

the product being created.

Future work includes applying additional sensors to measure geometry and capture a different

view of points of the manufactured component. The hope for this research is to determine

abnormalities in the printing process at the time of the fault, remove unanticipated metal, and reprint
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sections of parts to correctly manufacture parts the first time, saving money and time. However,

sensor data collection can be expensive, difficult to obtain, or limited to a small number of machines

creating the components. For example, fabrication of Ti-6AL-4V powder parts can cost 300-600

dollars per kilogram [37], can be limited on the number of sensors that can fit in the fabrication

chamber, and take over 30 minutes to create parts about the size of a pencil. A consequence of

this is that many of the parts created are small, only 1-2 sensors can be placed in the fabrication

chamber, and much of the data collected is primarily focused on a few selected configurations. The

addition of various parts would significantly improve prediction quality and understanding of the

complex relationship between modalities in the sensor fusion model. In addition, future studies

involving the (1) transfer learning of experience could be further investigated to bridge the gap

in porosity predictions in other fabricated parts. (2) Data generative models could increase the

number of training predictions to further use sensor fusion in LBAM. Ultimately, our methodology

provides a sensor fusion framework for combining image data to predict porosity that takes steps

toward improving LBAM part fabrication.
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