192,151 research outputs found

    Extending the 5S Framework of Digital Libraries to support Complex Objects, Superimposed Information, and Content-Based Image Retrieval Services

    Get PDF
    Advanced services in digital libraries (DLs) have been developed and widely used to address the required capabilities of an assortment of systems as DLs expand into diverse application domains. These systems may require support for images (e.g., Content-Based Image Retrieval), Complex (information) Objects, and use of content at fine grain (e.g., Superimposed Information). Due to the lack of consensus on precise theoretical definitions for those services, implementation efforts often involve ad hoc development, leading to duplication and interoperability problems. This article presents a methodology to address those problems by extending a precisely specified minimal digital library (in the 5S framework) with formal definitions of aforementioned services. The theoretical extensions of digital library functionality presented here are reinforced with practical case studies as well as scenarios for the individual and integrative use of services to balance theory and practice. This methodology has implications that other advanced services can be continuously integrated into our current extended framework whenever they are identified. The theoretical definitions and case study we present may impact future development efforts and a wide range of digital library researchers, designers, and developers

    eBPF-based Content and Computation-aware Communication for Real-time Edge Computing

    Full text link
    By placing computation resources within a one-hop wireless topology, the recent edge computing paradigm is a key enabler of real-time Internet of Things (IoT) applications. In the context of IoT scenarios where the same information from a sensor is used by multiple applications at different locations, the data stream needs to be replicated. However, the transportation of parallel streams might not be feasible due to limitations in the capacity of the network transporting the data. To address this issue, a content and computation-aware communication control framework is proposed based on the Software Defined Network (SDN) paradigm. The framework supports multi-streaming using the extended Berkeley Packet Filter (eBPF), where the traffic flow and packet replication for each specific computation process is controlled by a program running inside an in-kernel Virtual Ma- chine (VM). The proposed framework is instantiated to address a case-study scenario where video streams from multiple cameras are transmitted to the edge processor for real-time analysis. Numerical results demonstrate the advantage of the proposed framework in terms of programmability, network bandwidth and system resource savings.Comment: This article has been accepted for publication in the IEEE International Conference on Computer Communications (INFOCOM Workshops), 201

    Multicast broadcast services support in OFDMA-based WiMAX systems [Advances in mobile multimedia]

    Get PDF
    Multimedia stream service provided by broadband wireless networks has emerged as an important technology and has attracted much attention. An all-IP network architecture with reliable high-throughput air interface makes orthogonal frequency division multiplexing access (OFDMA)-based mobile worldwide interoperability for microwave access (mobile WiMAX) a viable technology for wireless multimedia services, such as voice over IP (VoIP), mobile TV, and so on. One of the main features in a WiMAX MAC layer is that it can provide'differentiated services among different traffic categories with individual QoS requirements. In this article, we first give an overview of the key aspects of WiMAX and describe multimedia broadcast multicast service (MBMS) architecture of the 3GPP. Then, we propose a multicast and broadcast service (MBS) architecture for WiMAX that is based on MBMS. Moreover, we enhance the MBS architecture for mobile WiMAX to overcome the shortcoming of limited video broadcast performance over the baseline MBS model. We also give examples to demonstrate that the proposed architecture can support better mobility and offer higher power efficiency

    Building self-optimized communication systems based on applicative cross-layer information

    Get PDF
    This article proposes the Implicit Packet Meta Header(IPMH) as a standard method to compute and represent common QoS properties of the Application Data Units (ADU) of multimedia streams using legacy and proprietary streams’ headers (e.g. Real-time Transport Protocol headers). The use of IPMH by mechanisms located at different layers of the communication architecture will allow implementing fine per-packet selfoptimization of communication services regarding the actual application requirements. A case study showing how IPMH is used by error control mechanisms in the context of wireless networks is presented in order to demonstrate the feasibility and advantages of this approach

    Symbolic Computing with Incremental Mindmaps to Manage and Mine Data Streams - Some Applications

    Full text link
    In our understanding, a mind-map is an adaptive engine that basically works incrementally on the fundament of existing transactional streams. Generally, mind-maps consist of symbolic cells that are connected with each other and that become either stronger or weaker depending on the transactional stream. Based on the underlying biologic principle, these symbolic cells and their connections as well may adaptively survive or die, forming different cell agglomerates of arbitrary size. In this work, we intend to prove mind-maps' eligibility following diverse application scenarios, for example being an underlying management system to represent normal and abnormal traffic behaviour in computer networks, supporting the detection of the user behaviour within search engines, or being a hidden communication layer for natural language interaction.Comment: 4 pages; 4 figure

    iCrawl: Improving the Freshness of Web Collections by Integrating Social Web and Focused Web Crawling

    Full text link
    Researchers in the Digital Humanities and journalists need to monitor, collect and analyze fresh online content regarding current events such as the Ebola outbreak or the Ukraine crisis on demand. However, existing focused crawling approaches only consider topical aspects while ignoring temporal aspects and therefore cannot achieve thematically coherent and fresh Web collections. Especially Social Media provide a rich source of fresh content, which is not used by state-of-the-art focused crawlers. In this paper we address the issues of enabling the collection of fresh and relevant Web and Social Web content for a topic of interest through seamless integration of Web and Social Media in a novel integrated focused crawler. The crawler collects Web and Social Media content in a single system and exploits the stream of fresh Social Media content for guiding the crawler.Comment: Published in the Proceedings of the 15th ACM/IEEE-CS Joint Conference on Digital Libraries 201
    corecore