103 research outputs found

    Combining logic and probability in tracking and scene interpretation

    Get PDF
    The paper gives a high-level overview of some ways in which logical representations and reasoning can be used in computer vision applications, such as tracking and scene interpretation. The combination of logical and statistical approaches is also considered

    Probabilistic Dynamic Logic of Phenomena and Cognition

    Full text link
    The purpose of this paper is to develop further the main concepts of Phenomena Dynamic Logic (P-DL) and Cognitive Dynamic Logic (C-DL), presented in the previous paper. The specific character of these logics is in matching vagueness or fuzziness of similarity measures to the uncertainty of models. These logics are based on the following fundamental notions: generality relation, uncertainty relation, simplicity relation, similarity maximization problem with empirical content and enhancement (learning) operator. We develop these notions in terms of logic and probability and developed a Probabilistic Dynamic Logic of Phenomena and Cognition (P-DL-PC) that relates to the scope of probabilistic models of brain. In our research the effectiveness of suggested formalization is demonstrated by approximation of the expert model of breast cancer diagnostic decisions. The P-DL-PC logic was previously successfully applied to solving many practical tasks and also for modelling of some cognitive processes.Comment: 6 pages, WCCI 2010 IEEE World Congress on Computational Intelligence July, 18-23, 2010 - CCIB, Barcelona, Spain, IJCNN, IEEE Catalog Number: CFP1OUS-DVD, ISBN: 978-1-4244-6917-8, pp. 3361-336

    Semantics for Probabilistic Inference

    Full text link
    A number of writers(Joseph Halpern and Fahiem Bacchus among them) have offered semantics for formal languages in which inferences concerning probabilities can be made. Our concern is different. This paper provides a formalization of nonmonotonic inferences in which the conclusion is supported only to a certain degree. Such inferences are clearly 'invalid' since they must allow the falsity of a conclusion even when the premises are true. Nevertheless, such inferences can be characterized both syntactically and semantically. The 'premises' of probabilistic arguments are sets of statements (as in a database or knowledge base), the conclusions categorical statements in the language. We provide standards for both this form of inference, for which high probability is required, and for an inference in which the conclusion is qualified by an intermediate interval of support.Comment: Appears in Proceedings of the Eighth Conference on Uncertainty in Artificial Intelligence (UAI1992

    Relational Representations in Reinforcement Learning: Review and Open Problems

    Get PDF
    This paper is about representation in RL.We discuss some of the concepts in representation and generalization in reinforcement learning and argue for higher-order representations, instead of the commonly used propositional representations. The paper contains a small review of current reinforcement learning systems using higher-order representations, followed by a brief discussion. The paper ends with research directions and open problems.\u

    SkILL - a Stochastic Inductive Logic Learner

    Full text link
    Probabilistic Inductive Logic Programming (PILP) is a rel- atively unexplored area of Statistical Relational Learning which extends classic Inductive Logic Programming (ILP). This work introduces SkILL, a Stochastic Inductive Logic Learner, which takes probabilistic annotated data and produces First Order Logic theories. Data in several domains such as medicine and bioinformatics have an inherent degree of uncer- tainty, that can be used to produce models closer to reality. SkILL can not only use this type of probabilistic data to extract non-trivial knowl- edge from databases, but it also addresses efficiency issues by introducing a novel, efficient and effective search strategy to guide the search in PILP environments. The capabilities of SkILL are demonstrated in three dif- ferent datasets: (i) a synthetic toy example used to validate the system, (ii) a probabilistic adaptation of a well-known biological metabolism ap- plication, and (iii) a real world medical dataset in the breast cancer domain. Results show that SkILL can perform as well as a deterministic ILP learner, while also being able to incorporate probabilistic knowledge that would otherwise not be considered
    • ā€¦
    corecore