227 research outputs found

    The ILLTP Library for Intuitionistic Linear Logic

    Get PDF
    Benchmarking automated theorem proving (ATP) systems using standardized problem sets is a well-established method for measuring their performance. However, the availability of such libraries for non-classical logics is very limited. In this work we propose a library for benchmarking Girard's (propositional) intuitionistic linear logic. For a quick bootstrapping of the collection of problems, and for discussing the selection of relevant problems and understanding their meaning as linear logic theorems, we use translations of the collection of Kleene's intuitionistic theorems in the traditional monograph "Introduction to Metamathematics". We analyze four different translations of intuitionistic logic into linear logic and compare their proofs using a linear logic based prover with focusing. In order to enhance the set of problems in our library, we apply the three provability-preserving translations to the propositional benchmarks in the ILTP Library. Finally, we generate a comprehensive set of reachability problems for Petri nets and encode such problems as linear logic sequents, thus enlarging our collection of problems

    On noncommutative extensions of linear logic

    Full text link
    Pomset logic introduced by Retor\'e is an extension of linear logic with a self-dual noncommutative connective. The logic is defined by means of proof-nets, rather than a sequent calculus. Later a deep inference system BV was developed with an eye to capturing Pomset logic, but equivalence of system has not been proven up to now. As for a sequent calculus formulation, it has not been known for either of these logics, and there are convincing arguments that such a sequent calculus in the usual sense simply does not exist for them. In an on-going work on semantics we discovered a system similar to Pomset logic, where a noncommutative connective is no longer self-dual. Pomset logic appears as a degeneration, when the class of models is restricted. Motivated by these semantic considerations, we define in the current work a semicommutative multiplicative linear logic}, which is multiplicative linear logic extended with two nonisomorphic noncommutative connectives (not to be confused with very different Abrusci-Ruet noncommutative logic). We develop a syntax of proof-nets and show how this logic degenerates to Pomset logic. However, a more interesting problem than just finding yet another noncommutative logic is to find a sequent calculus for this logic. We introduce decorated sequents, which are sequents equipped with an extra structure of a binary relation of reachability on formulas. We define a decorated sequent calculus for semicommutative logic and prove that it is cut-free, sound and complete. This is adapted to "degenerate" variations, including Pomset logic. Thus, in particular, we give a variant of sequent calculus formulation for Pomset logic, which is one of the key results of the paper

    Non-contractive logics, paradoxes, and multiplicative quantifiers

    Get PDF
    The paper investigates from a proof-theoretic perspective various non-contractive logical systems, which circumvent logical and semantic paradoxes. Until recently, such systems only displayed additive quantifiers (Grišin and Cantini). Systems with multiplicative quantifiers were proposed in the 2010s (Zardini), but they turned out to be inconsistent with the naive rules for truth or comprehension. We start by presenting a first-order system for disquotational truth with additive quantifiers and compare it with Grišin set theory. We then analyze the reasons behind the inconsistency phenomenon affecting multiplicative quantifiers. After interpreting the exponentials in affine logic as vacuous quantifiers, we show how such a logic can be simulated within a truth-free fragment of a system with multiplicative quantifiers. Finally, we establish that the logic for these multiplicative quantifiers (but without disquotational truth) is consistent, by proving that an infinitary version of the cut rule can be eliminated. This paves the way to a syntactic approach to the proof theory of infinitary logic with infinite sequents

    Modal Linear Logic in Higher Order Logic, an experiment in Coq

    No full text
    The sequent calculus of classical modal linear logic KDT 4lin is coded in the higher order logic using the proof assistant COQ. The encoding has been done using two-level meta reasoning in Coq. KDT 4lin has been encoded as an object logic by inductively defining the set of modal linear logic formulas, the sequent relation on lists of these formulas, and some lemmas to work with lists.This modal linear logic has been argued to be a good candidate for epistemic applications. As examples some epistemic problems have been coded and proven in our encoding in Coq::the problem of logical omniscience and an epistemic puzzle: ’King, three wise men and five hats’
    • …
    corecore