29,961 research outputs found

    C super 1: Compatible interpolation over a triangle

    Get PDF
    An elementary derivation and a complete description is given of an algorithm for interpolation over a plane triangle when function values and first partial derivatives are given at the vertices. The method gives C1 continuity with neighboring triangles. The interpolation method is mathematically equivalent to one that has been discussed previously in the literature; however, the algorithmic form given here is more efficient than has previously been described

    An adjoint for likelihood maximization

    No full text
    The process of likelihood maximization can be found in many different areas of computational modelling. However, the construction of such models via likelihood maximization requires the solution of a difficult multi-modal optimization problem involving an expensive O(n3) factorization. The optimization techniques used to solve this problem may require many such factorizations and can result in a significant bottle-neck. This article derives an adjoint formulation of the likelihood employed in the construction of a kriging model via reverse algorithmic differentiation. This adjoint is found to calculate the likelihood and all of its derivatives more efficiently than the standard analytical method and can therefore be utilised within a simple local search or within a hybrid global optimization to accelerate convergence and therefore reduce the cost of the likelihood optimization

    Gr\"obner Bases and Generation of Difference Schemes for Partial Differential Equations

    Full text link
    In this paper we present an algorithmic approach to the generation of fully conservative difference schemes for linear partial differential equations. The approach is based on enlargement of the equations in their integral conservation law form by extra integral relations between unknown functions and their derivatives, and on discretization of the obtained system. The structure of the discrete system depends on numerical approximation methods for the integrals occurring in the enlarged system. As a result of the discretization, a system of linear polynomial difference equations is derived for the unknown functions and their partial derivatives. A difference scheme is constructed by elimination of all the partial derivatives. The elimination can be achieved by selecting a proper elimination ranking and by computing a Gr\"obner basis of the linear difference ideal generated by the polynomials in the discrete system. For these purposes we use the difference form of Janet-like Gr\"obner bases and their implementation in Maple. As illustration of the described methods and algorithms, we construct a number of difference schemes for Burgers and Falkowich-Karman equations and discuss their numerical properties.Comment: Published in SIGMA (Symmetry, Integrability and Geometry: Methods and Applications) at http://www.emis.de/journals/SIGMA
    corecore