60 research outputs found

    Uncertainty-of-Information Scheduling: A Restless Multi-armed Bandit Framework

    Full text link
    This paper proposes using the uncertainty of information (UoI), measured by Shannon's entropy, as a metric for information freshness. We consider a system in which a central monitor observes multiple binary Markov processes through a communication channel. The UoI of a Markov process corresponds to the monitor's uncertainty about its state. At each time step, only one Markov process can be selected to update its state to the monitor; hence there is a tradeoff among the UoIs of the processes that depend on the scheduling policy used to select the process to be updated. The age of information (AoI) of a process corresponds to the time since its last update. In general, the associated UoI can be a non-increasing function, or even an oscillating function, of its AoI, making the scheduling problem particularly challenging. This paper investigates scheduling policies that aim to minimize the average sum-UoI of the processes over the infinite time horizon. We formulate the problem as a restless multi-armed bandit (RMAB) problem, and develop a Whittle index policy that is near-optimal for the RMAB after proving its indexability. We further provide an iterative algorithm to compute the Whittle index for the practical deployment of the policy. Although this paper focuses on UoI scheduling, our results apply to a general class of RMABs for which the UoI scheduling problem is a special case. Specifically, this paper's Whittle index policy is valid for any RMAB in which the bandits are binary Markov processes and the penalty is a concave function of the belief state of the Markov process. Numerical results demonstrate the excellent performance of the Whittle index policy for this class of RMABs.Comment: 28 pages, 5 figure

    Policy iteration for perfect information stochastic mean payoff games with bounded first return times is strongly polynomial

    Full text link
    Recent results of Ye and Hansen, Miltersen and Zwick show that policy iteration for one or two player (perfect information) zero-sum stochastic games, restricted to instances with a fixed discount rate, is strongly polynomial. We show that policy iteration for mean-payoff zero-sum stochastic games is also strongly polynomial when restricted to instances with bounded first mean return time to a given state. The proof is based on methods of nonlinear Perron-Frobenius theory, allowing us to reduce the mean-payoff problem to a discounted problem with state dependent discount rate. Our analysis also shows that policy iteration remains strongly polynomial for discounted problems in which the discount rate can be state dependent (and even negative) at certain states, provided that the spectral radii of the nonnegative matrices associated to all strategies are bounded from above by a fixed constant strictly less than 1.Comment: 17 page

    Illustrated review of convergence conditions of the value iteration algorithm and the rolling horizon procedure for average-cost MDPs

    Get PDF
    International audienceThis paper is concerned with the links between the Value Iteration algorithm and the Rolling Horizon procedure, for solving problems of stochastic optimal control under the long-run average criterion, in Markov Decision Processes with finite state and action spaces. We review conditions of the literature which imply the geometric convergence of Value It- eration to the optimal value. Aperiodicity is an essential prerequisite for convergence. We prove that the convergence of Value Iteration generally implies that of Rolling Horizon. We also present a modified Rolling Horizon procedure that can be applied to models without analyzing periodicity, and discuss the impact of this transformation on convergence. We il- lustrate with numerous examples the different results. Finally, we discuss rules for stopping Value Iteration or finding the length of a Rolling Horizon. We provide an example which demonstrates the difficulty of the question, disproving in particular a conjectured rule pro- posed by Puterman

    Fast Reinforcement Learning for Energy-Efficient Wireless Communications

    Full text link
    We consider the problem of energy-efficient point-to-point transmission of delay-sensitive data (e.g. multimedia data) over a fading channel. Existing research on this topic utilizes either physical-layer centric solutions, namely power-control and adaptive modulation and coding (AMC), or system-level solutions based on dynamic power management (DPM); however, there is currently no rigorous and unified framework for simultaneously utilizing both physical-layer centric and system-level techniques to achieve the minimum possible energy consumption, under delay constraints, in the presence of stochastic and a priori unknown traffic and channel conditions. In this report, we propose such a framework. We formulate the stochastic optimization problem as a Markov decision process (MDP) and solve it online using reinforcement learning. The advantages of the proposed online method are that (i) it does not require a priori knowledge of the traffic arrival and channel statistics to determine the jointly optimal power-control, AMC, and DPM policies; (ii) it exploits partial information about the system so that less information needs to be learned than when using conventional reinforcement learning algorithms; and (iii) it obviates the need for action exploration, which severely limits the adaptation speed and run-time performance of conventional reinforcement learning algorithms. Our results show that the proposed learning algorithms can converge up to two orders of magnitude faster than a state-of-the-art learning algorithm for physical layer power-control and up to three orders of magnitude faster than conventional reinforcement learning algorithms

    Stochastic Shortest Path with Energy Constraints in POMDPs

    Full text link
    We consider partially observable Markov decision processes (POMDPs) with a set of target states and positive integer costs associated with every transition. The traditional optimization objective (stochastic shortest path) asks to minimize the expected total cost until the target set is reached. We extend the traditional framework of POMDPs to model energy consumption, which represents a hard constraint. The energy levels may increase and decrease with transitions, and the hard constraint requires that the energy level must remain positive in all steps till the target is reached. First, we present a novel algorithm for solving POMDPs with energy levels, developing on existing POMDP solvers and using RTDP as its main method. Our second contribution is related to policy representation. For larger POMDP instances the policies computed by existing solvers are too large to be understandable. We present an automated procedure based on machine learning techniques that automatically extracts important decisions of the policy allowing us to compute succinct human readable policies. Finally, we show experimentally that our algorithm performs well and computes succinct policies on a number of POMDP instances from the literature that were naturally enhanced with energy levels.Comment: Technical report accompanying a paper published in proceedings of AAMAS 201

    Discrete-time controlled markov processes with average cost criterion: a survey

    Get PDF
    This work is a survey of the average cost control problem for discrete-time Markov processes. The authors have attempted to put together a comprehensive account of the considerable research on this problem over the past three decades. The exposition ranges from finite to Borel state and action spaces and includes a variety of methodologies to find and characterize optimal policies. The authors have included a brief historical perspective of the research efforts in this area and have compiled a substantial yet not exhaustive bibliography. The authors have also identified several important questions that are still open to investigation
    corecore