901 research outputs found

    Energy Efficient Bandwidth Management in Wireless Sensor Network

    Get PDF

    IEEE 802.15.4: a Federating Communication Protocol for Time-Sensitive Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks (WSNs) have been attracting increasing interests for developing a new generation of embedded systems with great potential for many applications such as surveillance, environment monitoring, emergency medical response and home automation. However, the communication paradigms in WSNs differ from the ones attributed to traditional wireless networks, triggering the need for new communication protocols. In this context, the recently standardised IEEE 802.15.4 protocol presents some potentially interesting features for deployment in wireless sensor network applications, such as power-efficiency, timeliness guarantees and scalability. Nevertheless, when addressing WSN applications with (soft/hard) timing requirements some inherent paradoxes emerge, such as power-efficiency versus timeliness, triggering the need of engineering solutions for an efficient deployment of IEEE 802.15.4 in WSNs. In this technical report, we will explore the most relevant characteristics of the IEEE 802.15.4 protocol for wireless sensor networks and present the most important challenges regarding time-sensitive WSN applications. We also provide some timing performance and analysis of the IEEE 802.15.4 that unveil some directions for resolving the previously mentioned paradoxes

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    An Energy Aware and Secure MAC Protocol for Tackling Denial of Sleep Attacks in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks which form part of the core for the Internet of Things consist of resource constrained sensors that are usually powered by batteries. Therefore, careful energy awareness is essential when working with these devices. Indeed,the introduction of security techniques such as authentication and encryption, to ensure confidentiality and integrity of data, can place higher energy load on the sensors. However, the absence of security protection c ould give room for energy drain attacks such as denial of sleep attacks which have a higher negative impact on the life span ( of the sensors than the presence of security features. This thesis, therefore, focuses on tackling denial of sleep attacks from two perspectives A security perspective and an energy efficiency perspective. The security perspective involves evaluating and ranking a number of security based techniques to curbing denial of sleep attacks. The energy efficiency perspective, on the other hand, involves exploring duty cycling and simulating three Media Access Control ( protocols Sensor MAC, Timeout MAC andTunableMAC under different network sizes and measuring different parameters such as the Received Signal Strength RSSI) and Link Quality Indicator ( Transmit power, throughput and energy efficiency Duty cycling happens to be one of the major techniques for conserving energy in wireless sensor networks and this research aims to answer questions with regards to the effect of duty cycles on the energy efficiency as well as the throughput of three duty cycle protocols Sensor MAC ( Timeout MAC ( and TunableMAC in addition to creating a novel MAC protocol that is also more resilient to denial of sleep a ttacks than existing protocols. The main contributions to knowledge from this thesis are the developed framework used for evaluation of existing denial of sleep attack solutions and the algorithms which fuel the other contribution to knowledge a newly developed protocol tested on the Castalia Simulator on the OMNET++ platform. The new protocol has been compared with existing protocols and has been found to have significant improvement in energy efficiency and also better resilience to denial of sleep at tacks Part of this research has been published Two conference publications in IEEE Explore and one workshop paper

    The Design of Medium Access Control (MAC) Protocols for Energy Efficient and QoS Provision in Wireless Sensor Networks

    Get PDF
    This thesis work focuses on innovative design of media access control (MAC) protocols in wireless sensor networks (WNSs). The characteristics of the WSN inquire that the network service design considers both energy efficiency and the associated application requirement. However, most existing protocols address only the issue of energy efficiency. In this thesis, a MAC protocol has been proposed (referred to as Q-MAC) that not only minimized the energy consumption in multi-hop WSNs, but also provides Quality of Service (QoS) by differentiating network services based on priority levels prescribed by different applications. The priority levels reflect the state of system resources including residual energy and queue occupancies. Q-MAC contains both intra- and inter- node arbitration mechanisms. The intra-node packet scheduling employs a multiple queuing architectures, and applies a scheduling scheme consisting of packet classification and weighted arbitration. We introduce the Power Conservation MACAW (PC-MACAW), a power-aware scheduling mechanism which, together with the Loosely Prioritized Random Access (LPRA) algorithm, govern the inter-node scheduling. Performance evaluation are conducted between Q-MAC and S-MAC with respect to two performance metrics: energy consumption and average latency. Simulation results indicate Q-MAC achieves comparable performance to that of S-MAC in non-prioritized traffic scenarios. When packets with different priorities are introduced, Q-MAC yields noticeable average latency differentiations between the classes of service, while preserving the same degree of energy consumption as that of S-MAC. Since the high density nature of WSN may introduce heavy traffic load and thus consume large amount of energy for communication, another MAC protocol, referred to as the Deployment-oriented MAC (D-MAC)has been further proposed. D-MAC minimalizes both sensing and communication redundancy by putting majority of redundant nodes into the sleep state. The idea is to establish a sensing and communication backbone covering the whole sensing field with the least sensing and communication redundancy. In specific, we use equal-size rectangular cells to partition the sensing field and chose the size of each cell in a way such that regardless of the actual location within the cell, a node can always sense the whole cell and communicate with all the nodes in neighboring cells. Once the sensing field has been partitioned using these cells, a localized Location-aware Selection Algorithm (LSA) is carried out to pick up only one node within each cell to be active for a fixed amount of period. This selection is energy-oriented, only nodes with a maximum energy will be on and the rest of nodes will be put into the sleep state once the selection process is over. To balance the energy consumption, the selection algorithm is periodically conducted until all the nodes are out of power. Simulation results indicated that D-MAC saves around 80% energy compared to that of S-MAC and Q-MAC, while maintaining 99% coverage. D-MAC is also superior to S-MAC and Q-MAC in terms of average latency. However, the use of GPS in D-MAC in identifying the nodes within the same cell, would cause extra cost and complexity for the design of sensor nodes

    On the use of IEEE 802.15.4/ZigBee as federating communication protocols for Wireless Sensor Networks

    Get PDF
    Tese de mestrado. Redes e Serviços de Comunicação. Faculdade de Engenharia. Universidade do Porto, Instituto Superior de Engenharia. 200

    Collision-free beacon scheduling mechanisms for IEEE 802.15.4/Zigbee cluster-tree wireless sensor networks

    Get PDF
    The recently standardized IEEE 802.15.4/Zigbee protocol stack offers great potentials for ubiquitous and pervasive computing, namely for Wireless Sensor Networks (WSNs). However, there are still some open and ambiguous issues that turn its practical use a challenging task. One of those issues is how to build a synchronized multi-hop cluster-tree network, which is quite suitable for QoS support in WSNs. In fact, the current IEEE 802.15.4/Zigbee specifications restrict the synchronization in the beacon-enabled mode (by the generation of periodic beacon frames) to star-based networks, while it supports multi-hop networking using the peer-to-peer mesh topology, but with no synchronization. Even though both specifications mention the possible use of cluster-tree topologies, which combine multi-hop and synchronization features, the description on how to effectively construct such a network topology is missing. This paper tackles this problem, unveils the ambiguities regarding the use of the cluster-tree topology and proposes two collision-free beacon frame scheduling schemes. We strongly believe that the results provided in this paper trigger a significant step towards the practical and efficient use of IEEE 802.15.4/Zigbee cluster-tree networks
    • …
    corecore