1,951 research outputs found

    A Family of matroid intersection algorithms for the computation of approximated symbolic network functions

    Get PDF
    In recent years, the technique of simplification during generation has turned out to be very promising for the efficient computation of approximate symbolic network functions for large transistor circuits. In this paper it is shown how symbolic network functions can be simplified during their generation with any well-known symbolic network analysis method. The underlying algorithm for the different techniques is always a matroid intersection algorithm. It is shown that the most efficient technique is the two-graph method. An implementation of the simplification during generation technique with the two-graph method illustrates its benefits for the symbolic analysis of large analog circuits

    Parametric shortest-path algorithms via tropical geometry

    Full text link
    We study parameterized versions of classical algorithms for computing shortest-path trees. This is most easily expressed in terms of tropical geometry. Applications include shortest paths in traffic networks with variable link travel times.Comment: 24 pages and 8 figure

    Counting and Enumerating Crossing-free Geometric Graphs

    Full text link
    We describe a framework for counting and enumerating various types of crossing-free geometric graphs on a planar point set. The framework generalizes ideas of Alvarez and Seidel, who used them to count triangulations in time O(2nn2)O(2^nn^2) where nn is the number of points. The main idea is to reduce the problem of counting geometric graphs to counting source-sink paths in a directed acyclic graph. The following new results will emerge. The number of all crossing-free geometric graphs can be computed in time O(cnn4)O(c^nn^4) for some c<2.83929c < 2.83929. The number of crossing-free convex partitions can be computed in time O(2nn4)O(2^nn^4). The number of crossing-free perfect matchings can be computed in time O(2nn4)O(2^nn^4). The number of convex subdivisions can be computed in time O(2nn4)O(2^nn^4). The number of crossing-free spanning trees can be computed in time O(cnn4)O(c^nn^4) for some c<7.04313c < 7.04313. The number of crossing-free spanning cycles can be computed in time O(cnn4)O(c^nn^4) for some c<5.61804c < 5.61804. With the same bounds on the running time we can construct data structures which allow fast enumeration of the respective classes. For example, after O(2nn4)O(2^nn^4) time of preprocessing we can enumerate the set of all crossing-free perfect matchings using polynomial time per enumerated object. For crossing-free perfect matchings and convex partitions we further obtain enumeration algorithms where the time delay for each (in particular, the first) output is bounded by a polynomial in nn. All described algorithms are comparatively simple, both in terms of their analysis and implementation

    Simplicial and Cellular Trees

    Get PDF
    Much information about a graph can be obtained by studying its spanning trees. On the other hand, a graph can be regarded as a 1-dimensional cell complex, raising the question of developing a theory of trees in higher dimension. As observed first by Bolker, Kalai and Adin, and more recently by numerous authors, the fundamental topological properties of a tree --- namely acyclicity and connectedness --- can be generalized to arbitrary dimension as the vanishing of certain cellular homology groups. This point of view is consistent with the matroid-theoretic approach to graphs, and yields higher-dimensional analogues of classical enumerative results including Cayley's formula and the matrix-tree theorem. A subtlety of the higher-dimensional case is that enumeration must account for the possibility of torsion homology in trees, which is always trivial for graphs. Cellular trees are the starting point for further high-dimensional extensions of concepts from algebraic graph theory including the critical group, cut and flow spaces, and discrete dynamical systems such as the abelian sandpile model.Comment: 39 pages (including 5-page bibliography); 5 figures. Chapter for forthcoming IMA volume "Recent Trends in Combinatorics
    corecore