18,290 research outputs found

    An evaluation of scaffolding for virtual interactive tutorials

    Get PDF
    Scaffolding refers to a temporary support framework used during construction. Applied to teaching and learning it describes measures to support a learner to become confident and self-reliant in a subject. In a Web environment scaffolding features need to replace the instructor. We discuss our approach to Web-based scaffolding based on the cognitive apprenticeship and activity theories. We suggest a set of four scaffold types that have made our scaffolding-supported virtual interactive tutorial successful. We present a novel evaluation approach for virtual tutorials that is embedded into an iterative, evolutionary instructional design

    Personalised Learning: Developing a Vygotskian Framework for E-learning

    Get PDF
    Personalisation has emerged as a central feature of recent educational strategies in the UK and abroad. At the heart of this is a vision to empower learners to take more ownership of their learning and develop autonomy. While the introduction of digital technologies is not enough to effect this change, embedding the affordances of new technologies is expected to offer new routes for creating personalised learning environments. The approach is not unique to education, with consumer technologies offering a 'personalised' relationship which is both engaging and dynamic, however the challenge remains for learning providers to capture and transpose this to educational contexts. As learners begin to utilise a range of tools to pursue communicative and collaborative actions, the first part of this paper will use analysis of activity logs to uncover interesting trends for maturing e-learning platforms across over 100 UK learning providers. While personalisation appeals to marketing theories this paper will argue that if learning is to become personalised one must ask what the optimal instruction for any particular learner is? For Vygotsky this is based in the zone of proximal development, a way of understanding the causal-dynamics of development that allow appropriate pedagogical interventions. The second part of this paper will interpret personalised learning as the organising principle for a sense-making framework for e-learning. In this approach personalised learning provides the context for assessing the capabilities of e-learning using Vygotsky’s zone of proximal development as the framework for assessing learner potential and development

    London FoundationCampus : review for educational oversight by the Quality Assurance Agency for Higher Education

    Get PDF

    Personalised trails and learner profiling within e-learning environments

    Get PDF
    This deliverable focuses on personalisation and personalised trails. We begin by introducing and defining the concepts of personalisation and personalised trails. Personalisation requires that a user profile be stored, and so we assess currently available standard profile schemas and discuss the requirements for a profile to support personalised learning. We then review techniques for providing personalisation and some systems that implement these techniques, and discuss some of the issues around evaluating personalisation systems. We look especially at the use of learning and cognitive styles to support personalised learning, and also consider personalisation in the field of mobile learning, which has a slightly different take on the subject, and in commercially available systems, where personalisation support is found to currently be only at quite a low level. We conclude with a summary of the lessons to be learned from our review of personalisation and personalised trails

    A literature synthesis of personalised technology-enhanced learning: what works and why

    Get PDF
    Personalised learning, having seen both surges and declines in popularity over the past few decades, is once again enjoying a resurgence. Examples include digital resources tailored to a particular learner’s needs, or individual feedback on a student’s assessed work. In addition, personalised technology-enhanced learning (TEL) now seems to be attracting interest from philanthropists and venture capitalists indicating a new level of enthusiasm for the area and a potential growth industry. However, these industries may be driven by profit rather than pedagogy, and hence it is vital these new developments are informed by relevant, evidence-based research. For many people, personalised learning is an ambiguous and even loaded term that promises much but does not always deliver. This paper provides an in-depth and critical review and synthesis of how personalisation has been represented in the literature since 2000, with a particular focus on TEL. We examine the reasons why personalised learning can be beneficial and examine how TEL can contribute to this. We also unpack how personalisation can contribute to more effective learning. Lastly, we examine the limitations of personalised learning and discuss the potential impacts on wider stakeholders

    Connecting Undergraduate Students as Partners in Computer Science Teaching and Research

    Get PDF
    Connecting undergraduate students as partners can lead to the enhancement of the undergraduate experience and allow students to see the different sides of the university. Such holistic perspectives may better inform academic career choices and postgraduate study. Furthermore, student involvement in course development has many potential benefits. This paper outlines a framework for connecting research and teaching within Computer Science- though this is applicable across other disciplines. Three case studies are considered to illustrate the approach. The first case study involves students in their honours’ stage (level 6, typically 3rd year) project, the second an undergraduate intern between stages 5 and 6, and finally, a MSc (level 7) project. All three case studies have actively involved students in core parts of the University’s teaching and research activities, producing usable software systems to support these efforts. We consider this as a continuing engagement process to enhance the undergraduate learning experience within Computer Science

    Data mining technology for the evaluation of learning content interaction

    Get PDF
    Interactivity is central for the success of learning. In e-learning and other educational multimedia environments, the evaluation of interaction and behaviour is particularly crucial. Data mining – a non-intrusive, objective analysis technology – shall be proposed as the central evaluation technology for the analysis of the usage of computer-based educational environments and in particular of the interaction with educational content. Basic mining techniques are reviewed and their application in a Web-based third-level course environment is illustrated. Analytic models capturing interaction aspects from the application domain (learning) and the software infrastructure (interactive multimedia) are required for the meaningful interpretation of mining results

    Collaborative trails in e-learning environments

    Get PDF
    This deliverable focuses on collaboration within groups of learners, and hence collaborative trails. We begin by reviewing the theoretical background to collaborative learning and looking at the kinds of support that computers can give to groups of learners working collaboratively, and then look more deeply at some of the issues in designing environments to support collaborative learning trails and at tools and techniques, including collaborative filtering, that can be used for analysing collaborative trails. We then review the state-of-the-art in supporting collaborative learning in three different areas – experimental academic systems, systems using mobile technology (which are also generally academic), and commercially available systems. The final part of the deliverable presents three scenarios that show where technology that supports groups working collaboratively and producing collaborative trails may be heading in the near future
    corecore