32 research outputs found

    Mitigating Colluding Attacks in Online Social Networks and Crowdsourcing Platforms

    Get PDF
    Online Social Networks (OSNs) have created new ways for people to communicate, and for companies to engage their customers -- with these new avenues for communication come new vulnerabilities that can be exploited by attackers. This dissertation aims to investigate two attack models: Identity Clone Attacks (ICA) and Reconnaissance Attacks (RA). During an ICA, attackers impersonate users in a network and attempt to infiltrate social circles and extract confidential information. In an RA, attackers gather information on a target\u27s resources, employees, and relationships with other entities over public venues such as OSNs and company websites. This was made easier for the RA to be efficient because well-known social networks, such as Facebook, have a policy to force people to use their real identities for their accounts. The goal of our research is to provide mechanisms to defend against colluding attackers in the presence of ICA and RA collusion attacks. In this work, we consider a scenario not addressed by previous works, wherein multiple attackers collude against the network, and propose defense mechanisms for such an attack. We take into account the asymmetric nature of social networks and include the case where colluders could add or modify some attributes of their clones. We also consider the case where attackers send few friend requests to uncover their targets. To detect fake reviews and uncovering colluders in crowdsourcing, we propose a semantic similarity measurement between reviews and a community detection algorithm to overcome the non-adversarial attack. ICA in a colluding attack may become stronger and more sophisticated than in a single attack. We introduce a token-based comparison and a friend list structure-matching approach, resulting in stronger identifiers even in the presence of attackers who could add or modify some attributes on the clone. We also propose a stronger RA collusion mechanism in which colluders build their own legitimacy by considering asymmetric relationships among users and, while having partial information of the networks, avoid recreating social circles around their targets. Finally, we propose a defense mechanism against colluding RA which uses the weakest person (e.g., the potential victim willing to accept friend requests) to reach their target

    Online Social Networks with Message Filtered Policy Administration by Multiparty Access Control

    Get PDF
    Recently we have studied the Multiparty Access management for Online Social Networks Model and Mechanisms. Online social networks have experienced massive growth in recent years and become a de facto portal for millions of Internet users. These OSNs offer fetching means for digital social interactions and information sharing, but also occurs a number of security and privacy issues. While OSNs allow users to limit access to shared data, they at present do not provide any mechanism to enforce privacy concerns over data related with multiple users. To this end, we propose an approach to enable the security of shared data related with multiple users in OSNs. They make an access control model to capture the spirit of multiparty authorization requirements, along with a multiparty policy requirement scheme and a policy application mechanism. In addition, we access control model that we have various tasks on our model to analyze the features of existing logic solvers allows to take advantage of a logical representation exists. We have more comprehensive privacy approach to conflict resolution and analysis services for collaborative management of shared data in OSNs are proposed. DOI: 10.17762/ijritcc2321-8169.150611

    Security techniques for intelligent spam sensing and anomaly detection in online social platforms

    Get PDF
    Copyright © 2020 Institute of Advanced Engineering and Science. All rights reserved. The recent advances in communication and mobile technologies made it easier to access and share information for most people worldwide. Among the most powerful information spreading platforms are the Online Social Networks (OSN)s that allow Internet-connected users to share different information such as instant messages, tweets, photos, and videos. Adding to that many governmental and private institutions use the OSNs such as Twitter for official announcements. Consequently, there is a tremendous need to provide the required level of security for OSN users. However, there are many challenges due to the different protocols and variety of mobile apps used to access OSNs. Therefore, traditional security techniques fail to provide the needed security and privacy, and more intelligence is required. Computational intelligence adds high-speed computation, fault tolerance, adaptability, and error resilience when used to ensure security in OSN apps. This research provides a comprehensive related work survey and investigates the application of artificial neural networks for intrusion detection systems and spam filtering for OSNs. In addition, we use the concept of social graphs and weighted cliques in the detection of suspicious behavior of certain online groups and to prevent further planned actions such as cyber/terrorist attacks before they happen

    Security techniques for intelligent spam sensing and anomaly detection in online social platforms

    Get PDF
    Copyright © 2020 Institute of Advanced Engineering and Science. All rights reserved. The recent advances in communication and mobile technologies made it easier to access and share information for most people worldwide. Among the most powerful information spreading platforms are the Online Social Networks (OSN)s that allow Internet-connected users to share different information such as instant messages, tweets, photos, and videos. Adding to that many governmental and private institutions use the OSNs such as Twitter for official announcements. Consequently, there is a tremendous need to provide the required level of security for OSN users. However, there are many challenges due to the different protocols and variety of mobile apps used to access OSNs. Therefore, traditional security techniques fail to provide the needed security and privacy, and more intelligence is required. Computational intelligence adds high-speed computation, fault tolerance, adaptability, and error resilience when used to ensure security in OSN apps. This research provides a comprehensive related work survey and investigates the application of artificial neural networks for intrusion detection systems and spam filtering for OSNs. In addition, we use the concept of social graphs and weighted cliques in the detection of suspicious behavior of certain online groups and to prevent further planned actions such as cyber/terrorist attacks before they happen

    Social Turing Tests: Crowdsourcing Sybil Detection

    Full text link
    As popular tools for spreading spam and malware, Sybils (or fake accounts) pose a serious threat to online communities such as Online Social Networks (OSNs). Today, sophisticated attackers are creating realistic Sybils that effectively befriend legitimate users, rendering most automated Sybil detection techniques ineffective. In this paper, we explore the feasibility of a crowdsourced Sybil detection system for OSNs. We conduct a large user study on the ability of humans to detect today's Sybil accounts, using a large corpus of ground-truth Sybil accounts from the Facebook and Renren networks. We analyze detection accuracy by both "experts" and "turkers" under a variety of conditions, and find that while turkers vary significantly in their effectiveness, experts consistently produce near-optimal results. We use these results to drive the design of a multi-tier crowdsourcing Sybil detection system. Using our user study data, we show that this system is scalable, and can be highly effective either as a standalone system or as a complementary technique to current tools

    Digital fingerprinting for identifying malicious collusive groups on Twitter

    Get PDF
    Propagation of malicious code on online social networks (OSN) is often a coordinated effort by collusive groups of malicious actors hiding behind multiple online identities (or digital personas). Increased interaction in OSN have made them reliable for the efficient orchestration of cyber-attacks such as phishing click bait and drive-by downloads. URL shortening enables obfuscation of such links to malicious websites and massive interaction with such embedded malicious links in OSN guarantees maximum reach. These malicious links lure users to malicious endpoints where attackers can exploit system vulnerabilities. Identifying the organised groups colluding to spread malware is non-trivial owing to the fluidity and anonymity of criminal digital personas on OSN. This paper proposes a methodology for identifying such organised groups of criminal actors working together to spread malicious links on OSN. Our approach focuses on understanding malicious users as ‘digital criminal personas’ and characteristics of their online existence. We first identify those users engaged in propagating malicious links on OSN platforms, and further develop a methodology to create a digital fingerprint for each malicious OSN account/digital persona. We create similarity clusters of malicious actors based on these unique digital fingerprints to establish ‘collusive’ behaviour. We evaluate the ability of a cluster-based approach on OSN digital fingerprinting to identify collusive behaviour in OSN by estimating within-cluster similarity measures and testing it on a ground truth dataset of five known colluding groups on Twitter. Our results show that our digital fingerprints can identify 90% of cyber-personas engaged in collusive behaviour 75% of collusion in a given sample set

    Security and Privacy in Online Social Networks

    Get PDF
    The explosive growth of Online Social Networks (OSNs) over the past few years has redefined the way people interact with existing friends and especially make new friends. OSNs have also become a great new marketplace for trade among the users. However, the associated privacy risks make users vulnerable to severe privacy threats. In this dissertation, we design protocols for private distributed social proximity matching and a private distributed auction based marketplace framework for OSNs. In particular, an OSN user looks for matching profile attributes when trying to broaden his/her social circle. However, revealing private attributes is a potential privacy threat. Distributed private profile matching in OSNs mainly involves using cryptographic tools to compute profile attributes matching privately such that no participating user knows more than the common profile attributes. In this work, we define a new asymmetric distributed social proximity measure between two users in an OSN by taking into account the weighted profile attributes (communities) of the users and that of their friends’. For users with different privacy requirements, we design three private proximity matching protocols with increasing privacy levels. Our protocol with highest privacy level ensures that each user’s proximity threshold is satisfied before revealing any matching information. The use of e-commerce has exploded in the last decade along with the associated security and privacy risks. Frequent security breaches in the e-commerce service providers’ centralized servers compromise consumers’ sensitive private and financial information. Besides, a consumer’s purchase history stored in those servers can be used to reconstruct the consumer’s profile and for a variety of other privacy intrusive purposes like directed marketing. To this end, we propose a secure and private distributed auction framework called SPA, based on decentralized online social networks (DOSNs) for the first time in the literature. The participants in SPA require no trust among each other, trade anonymously, and the security and privacy of the auction is guaranteed. The efficiency, in terms of communication and computation, of proposed private auction protocol is at least an order of magnitude better than existing distributed private auction protocols and is suitable for marketplace with large number of participants

    Securing email through online social networks

    Get PDF
    Despite being one of the most basic and popular Internet applications, email still largely lacks user-to-user cryptographic protections. From a research perspective, designing privacy preserving techniques for email services is complicated by the requirement of balancing security and ease-of-use needs of everyday users. For example, users cannot be expected to manage long-term keys (e.g., PGP keypair), or understand crypto primitives. To enable intuitive email protections for a large number of users, we design FriendlyMail by leveraging existing pre-authenticated relationships between a sender and receiver on an Online Social Networking (OSN) site, so that users can send secure emails without requiring direct key exchange with the receiver in advance. FriendlyMail can provide integrity, authentication and confidentiality guarantees for user-selected messages among OSN friends. FriendlyMail is mainly based on splitting the trust without introducing new trusted third parties. A confidentiality-protected email is encrypted by a randomly-generated key and sent through email service providers, while the key and hash of the encrypted content are privately shared with the receiver via the OSN site as a second secure channel. Our implementation consists of a Firefox addon and a Facebook application, and can secure the web-based Gmail service using Facebook as the OSN site. However, the design can be implemented for preferred email/OSN services as long as the email and OSN providers are non-colluding parties. FriendlyMail is a client-end solution and does not require changes to email or OSN servers

    Privacy-preserving friend recommendations in online social networks

    Get PDF
    Online social networks, such as Facebook and Google+, have been emerging as a new communication service for users to stay in touch and share information with family members and friends over the Internet. Since the users are generating huge amounts of data on social network sites, an interesting question is how to mine this enormous amount of data to retrieve useful information. Along this direction, social network analysis has emerged as an important tool for many business intelligence applications such as identifying potential customers and promoting items based on their interests. In particular, since users are often interested to make new friends, a friend recommendation application provides the medium for users to expand his/her social connections and share information of interest with more friends. Besides this, it also helps to enhance the development of the entire network structure. The existing friend recommendation methods utilize social network structure and/or user profile information. However, these methods can no longer be applicable if the privacy of users is taken into consideration. This work introduces a set of privacy-preserving friend recommendation protocols based on different existing similarity metrics in the literature. Briefly, depending on the underlying similarity metric used, the proposed protocols guarantee the privacy of a user\u27s personal information such as friend lists. These protocols are the first to make the friend recommendation process possible in privacy-enhanced social networking environments. Also, this work considers the case of outsourced social networks, where users\u27 profile data are encrypted and outsourced to third-party cloud providers who provide social networking services to the users. Under such an environment, this work proposes novel protocols for the cloud to do friend recommendations in a privacy-preserving manner --Abstract, page iii
    corecore