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Montréal, Québec, Canada

August 2013

© Atieh Saberi Pirouz, 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Concordia University Research Repository

https://core.ac.uk/display/211516744?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Concordia University

School of Graduate Studies

This is to certify that the thesis prepared

By: Atieh Saberi Pirouz

Entitled: Securing Email Through Online Social Networks

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Information Systems Security)

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining commitee:

Dr. Benjamin C. M. Fung Chair

Dr. Lingyu Wang Examiner

Dr. Zhenhua Zhu Examiner

Dr. Mohammad Mannan Supervisor

Approved

Chair of Department or Graduate Program Director

20

Dr. Christopher Trueman, Dean

Faculty of Engineering and Computer Science



Abstract

Securing Email Through Online Social Networks

Atieh Saberi Pirouz

Despite being one of the most basic and popular Internet applications, email still

largely lacks user-to-user cryptographic protections. From a research perspective,

designing privacy preserving techniques for email services is complicated by the re-

quirement of balancing security and ease-of-use needs of everyday users. For example,

users cannot be expected to manage long-term keys (e.g., PGP key-pair), or under-

stand crypto primitives.

To enable intuitive email protections for a large number of users, we design Friend-

lyMail by leveraging existing pre-authenticated relationships between a sender and

receiver on an Online Social Networking (OSN) site, so that users can send secure

emails without requiring direct key exchange with the receiver in advance. Friend-

lyMail can provide integrity, authentication and confidentiality guarantees for user-

selected messages among OSN friends. FriendlyMail is mainly based on splitting the

trust without introducing new trusted third parties. A confidentiality-protected email

is encrypted by a randomly-generated key and sent through email service providers,

while the key and hash of the encrypted content are privately shared with the receiver

via the OSN site as a second secure channel. Our implementation consists of a Firefox

addon and a Facebook application, and can secure the web-based Gmail service using

Facebook as the OSN site. However, the design can be implemented for preferred

email/OSN services as long as the email and OSN providers are non-colluding par-

ties. FriendlyMail is a client-end solution and does not require changes to email or

OSN servers.
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Chapter 1

Introduction

In this chapter, we discuss our motivation for this thesis and summarize our contri-

butions.

1.1 Motivation

Billions of emails are sent everyday, with almost all of them being stored/available in

plaintext to one or multiple third parties, e.g., email service providers, ISPs, and wifi

hotspot providers. Imagine the outrage that would have erupted if a large paper-mail

provider such as the U.S. Postal Service would have opened and kept a scanned copy of

every mail/document they processed. Yet, today’s email users are apparently finding

it acceptable that a few email providers have complete access to their most intimate

messages. (The CEOs of Sun Microsystems, Google and Facebook remarked at var-

ious times that “privacy is dead”). This is a fantastic development that happened

within the span of only a few decades. Apparently, century-old privacy expectations

of personal communication have just evaporated into thin air.

We believe the current situation is the result of several factors, including the

following. (a) Most people are unaware that their emails are not private at all.

The email infrastructure (e.g., ISPs, email providers) are more or less transparent to

average users. When sending an email, or any message for that matter, users have
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the illusion that they are sending the email directly to the recipient. Some experts

identify this situation as web service providers (e.g., Facebook) being a transparent

man-in-the-middle (see e.g., [46]). (b) A wide-spread, common misconception among

users is “I’ve got nothing to hide” [78]. Most users apparently believe their emails

or other messages are not very sensitive or interesting to service providers; i.e., users

may take precautions not to disclose an email to their family and friends, but they

do not believe that large corporations like Google or Facebook would be interested

to dig in their personal lives. So, even if some users understand that their emails

are accessible to service providers, they do not feel the necessity to explore privacy-

friendly alternatives. (c) The inadequacy of existing email security solutions.

Without the availability of effective solutions, issues in (a) and (b) cannot possi-

bly be addressed, e.g., just asking people not to send anything sensitive via email is

a non-solution. PGP is one of the pioneer solutions enabling adequate security fea-

tures for emails (e.g., confidentiality, authentication, integrity). Unfortunately, even

though PGP has been available for over two decades now, most emails are still sent

unencrypted. Other proposals also emerged, e.g., STEED [48], Waterhouse [50] and

Aquinas [10]. Most solutions require a certain level of technical understanding for

proper use (e.g., the idea of public key systems); later work has identified several

shortcomings when these tools are used by everyday people (e.g., [87, 76, 82]). The

end result, so far, is that the adoption of these techniques remains consistently low.

1.2 Thesis Statement

The primary objective of this thesis is to address security and privacy challenges of

email services as faced by everyday Internet users. As part of this goal, I will explore

the following research questions:

Question 1. Can we design novel privacy-preserving architectures and tech-

niques for popular email services given that users will continue using these free ser-

vices?
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Question 2. Can we integrate usable security/privacy mechanisms with the

functioning of the existing (privacy-unfriendly) systems without introducing a new

service?

This dissertation explores new directions in privacy research to enable usable pri-

vacy friendly emails by leveraging existing services, and strengthen existing research

on online message privacy in general. Another important focus of this research is to

increase awareness and understanding of email privacy issues among everyday users.

1.3 Summary of Our Proposal

We propose FriendlyMail , a secure email technique designed for everyday users. To

achieve security goals, FriendlyMail leverages widely popular, frequently-used online

social networking (OSN) services, e.g., Facebook. We assume senders and receivers

are connected through OSN sites (e.g., as Facebook friends). A sender-side addon

creates a per-message symmetric key to encrypt the email content; a cryptographic

hash of the encrypted message is also generated. When confidentiality is unwanted

and instead, the goals are to authenticate the sender via a second (secure) channel

and to verify the integrity of the email content, a hash of the plaintext message is

created. The hash/key values are then published on the OSN site, which are instantly

accessible only to the receiver, e.g., on the sender’s Facebook wall, or as a private

Twitter message, etc. An addon in the recipient’s email client (stand-alone or browser

addon) is configured to access the hash and message key; the addon verifies the hash

and decrypts the email content (if encrypted). The receiver is assured of the email’s

integrity from the result of the hash verification; the sender’s authenticity is verified

implicitly by the OSN site, as the hash/key values are accessible only to the receiver

through the pre-existing social relationship. Confidentiality is maintained by the

per-message encryption key.

Obviously, FriendlyMail requires the email and OSN sites to be non-colluding

entities. We use existing OSN sites as a key transport method to simplify the key
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sharing and verification process, which has been identified as an important barrier to

PGP’s adoption [87]. Our hope is that FriendlyMail’s design leads to better adoption

rates among regular users than existing public-key based solutions. FriendlyMail

is designed and implemented considering web-based Gmail and Facebook services;

however, it can be extended to other email clients/services, and be used with other

OSN services. Note that there are about 425 million Gmail users [68] (as of June

2012) and 1.11 billion monthly active Facebook users [22] (as of March 2013).

1.4 Contributions

Following the above discussion, the main contributions of this dissertation towards

securing emails are as follows.

1. FriendlyMail takes advantage of existing user practices (i.e., the use of OSN)

to make popular email services more privacy-friendly. We expect this design

choice to increase adoption rates, as it can reach a significant portion of web

users.

2. No changes to the server-side of the social networking sites or email providers

are needed. Therefore, users can immediately benefit from FriendlyMail.

3. To facilitate gradual adoption, FriendlyMail allows a sender to indicate which

emails should have integrity and confidentiality protections. Default encryption

of all emails would be a more privacy-preserving design choice; however, such a

design may not work for many users (due to e.g., not using OSN).

4. Unlike most other solutions, FriendlyMail does not require the receiver of a

confidential email to create keying materials (as in public key systems) before

she can receive such emails. The only pre-requisite for the sender to initiate a

confidential email exchange is to be friends with the receiver in a common OSN.
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5. In addition to email privacy, FriendlyMail can provide email integrity and origin

authentication between parties with weak pre-existing OSN relationships (e.g.,

Facebook Like). When the sender and receiver have no previous contact, in-

tegrity is perhaps more important than confidentiality. Integrity protection can

be enabled without any OSN relationships. Past work generated some theoret-

ical proposal in this area, e.g., public corroboration [84]. FriendlyMail extends

such work so that it can be deployed in reality and used by common email users.

6. To evaluate the feasibility of our design, we have implemented FriendlyMail

for the web-based Gmail interface using Facebook as the OSN provider. Basic

email features between two users, e.g., message compose, send, receive, reply,

and forward have been implemented.

7. FriendlyMail has carefully been integrated with Gmail UI to reduce disrup-

tion to regular email use. Some features are still in progress, including multi-

party/group email, attachments, etc.

1.5 Outline

The rest of this thesis is organized as follows. Chapter 2 reviews related work regard-

ing existing email security standards and proposals. Chapter 3 provides our threat

model and assumptions. We propose FriendlyMail email security solution and detail

its design in Chapter 4. Implementation details of FriendlyMail and some variants to

FriendlyMail are also presented in Chapter 5. In Chapter 6, attacks on FriendlyMail

based on our presented threat model are analyzed. We also discuss several usability

and deployment issues of FriendlyMail. Chapter 7 discusses some conclusions of this

thesis and future research directions.
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Chapter 2

Background and Related Work

In this chapter we briefly discuss few email security mechanisms. Then we go through

several related proposals.

Security for emails using cryptography can be provided in various ways. Signature

schemes are used for authentication and integrity verification. Encryption mecha-

nisms such as symmetric, public key encryption are generally used to achieve email

confidentiality. Other proposals incorporate steganography to avoid secret sharing

and the existence of confidential emails. Considering a network adversary, confiden-

tiality protection of the message body and header can also be provided by encrypting

the client-to-mail server and mail server-to-mail server connections, e.g., using TLS.

Numerous proposals for email integrity and confidentiality have been put forward.

Some designs are completely client-side. Thus, users are in the control of their email

encryption. Installation of additional software or plug-in is also required. Moreover,

interoperability is a known issue for client side end-to-end approaches. Other de-

signs employ third party servers, to take the burden of key management away from

users (e.g., Enlocked [20]). Therefore, they cannot offer a complete end-to-end en-

cryption, as they have access to the encryption keys and email contents. Encrypted

communications between different email providers also do not always guarantee end-

to-end confidentiality. TLS for the same service is safe from network attacker, but not
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against the email provider itself. TLS protected emails may still be unsafe from net-

work attacker, if either of the sender’s or receiver’s email service is not TLS-protected.

Moreover, there is no way to make sure that every hop on the email’s route to the

receiver’s inbox, has also TLS enabled.

Several email security standards have been introduced. Privacy Enhanced Mail

(PEM [53]) and MIME Object Security Services (MOSS [15]) are introduced in 1987

and 1995 respectively, which were never widely deployed or implemented. Currently,

PGP/OpenPGP (RFC 4880 [1]) and S/MIME (RFC 2634 [72]) are the most widely

used standards, that can provide end-to-end email security. In the following sections

we discuss some standards and related proposals, but exclude enterprise solutions as

they are unsuitable for zero-cost mass deployment. The evaluation and comparison

of discussed schemes are presented in details in Section A.2

2.1 PKI-Based Approaches

2.1.1 PGP/OpenPGP

OpenPGP(RFC 4880 [1]) is a standard based on PGP, originally developed by Phillip

R. Zimmermann in 1991. To provide non-reputation and message authenticity (origin

and content integrity verification), it employs hash functions (e.g., MD5, SHA-1) and

signature algorithms to digitally sign email bodies and data files. Confidentiality is

also provided through the use of a combination of symmetric (e.g., IDEA, CAST)

and public key cryptography (e.g., RSA, Diffie-Hellman, Elgamal). Each PGP user

generates a key pair (public/private) and must share his/her public key with other

PGP users before starting PGP confidential communications. There is no actual key

distribution mechanism in PGP; public keys can be exchanged using, e.g., email,

personal web pages, meet in person. Each user should also verify the identity and

public key (fingerprint) of other users using, e.g., phone or meet in person. Key

distribution and verification using above mentioned methods are not appropriate for

large communities with unknown users. Thus, public keys can also be shared through
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a key server. However, key distribution via key servers still does not guarantee that a

key belongs to the intended person, as anyone can create and publish a key on these

key servers using any identifier. To deal with this issue, PGP introduced the Web of

Trust model, which is discussed below.

The process of encrypting an email using PGP is as follows. Email content is first

compressed to save transmission time. It is then encrypted using a one-time-only

random session key (symmetric key). The session key is then encrypted using the

sender’s public key and is sent along with the encrypted email to the sender. The

receiver decrypts the session key, using his own private key, to be able to decrypt

the received email. To provide message authenticity, the hash of the email content

is calculated and digitally signed using the sender’s private key and is accompanied

with the email content. Using the sender’s public key, the receiver verifies the sender’s

signature on the message digest. If both confidentiality and message authenticity are

desired, the signature is first generated, after applying compression on the signature

and email content, the result is encrypted as the last step. Different PGP versions

use different algorithms during each process (e.g., MD5, SHA-1, IDEA, CAST, RSA,

Diffie-Hellman).

PGP trust model. Compared to previous email security standards, PGP trust

model does not require a centralized PKI with a single root or any trusted third

parties as certificate authorities to sign the certificates and enable trust among users.

Instead, each user can act as a CA and certify other users’ public keys and identi-

ties. Therefore, instead of one signature, there can be multiple signatures on PGP

certificates. The signer of a certificate can also indicate his/her level of trust on the

owner of the certificate to express his/her trust in a user as a voucher for other users’

certificate authenticity. This form of decentralized trust model in which users recom-

mend each others’ certificates is called Web of Trust. On the plus side, Web of Trust

is similar to how trust is established in the real life. Therefore, it may seem closer to

the user’s mental model compared to other trust models. Although, it still has few

downsides. This trust model does not completely match the user’s mental model, as
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users may certify other users, whom they may not know directly beforehand; and as

the circle of communications grows, there is no actual accountability of trustworthi-

ness on users’ certificate, as their owners are not in a close circle. Moreover, trust is

based on others’ recommendations than the user experience with certificates during

communications over time [48].

PGP shortcomings. In addition to its trust model issues, PGP has several limi-

tations. Key management is considered as a big challenge in PGP and PKI-based

solutions in general. Public key cryptography requires the sender to obtain the re-

ceiver’s public key beforehand, to be able to start any PGP encrypted communication

(also it should be done in a secure way to prevent man-in-the-middle attacks). More-

over, there is still no practical secure approach to private key management; users

should create a backup of their private key, store it in a safe place and be careful

not to loose it, otherwise old encrypted emails cannot be decrypted anymore. Ad-

ditionally, in case the private key is compromised, the attacker can trivially decrypt

all the (old or new) encrypted emails. Therefore, a certificate revocation list (CRL)

is required to facilitate the revocation of all compromised keys which also must be

shared with all users. Key revocation prevents the attacker from having access to the

encrypted emails in the future. However, key revocation brings the same usability

problem regarding key distribution and also requires consistent updates.

Other usability problems of PGP software (PGP 5) regarding the user interface

have been discussed in detail by Whitten and Tygar [87]. The result of their user

study and cognitive walkthrough on PGP 5 also suggests that the desired security

level of the PGP software has not achieved due to usability problems. Some users

could not figure out the concept of PKI and did not know which key to use to encrypt

their email. Those who had knowledge about PKI, still had difficulty to find out how

they can get a key for the receiver. Also, one user accidentally sent a sensitive email

in the clear, while she thought it had already been encrypted. In another usability

study on PGP 9 [75], key verification is considered confusing; users could not figure

out that in order to verify a key they need to sign it. Unlike PGP 5, users had so much
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difficulty with digital signatures in PGP 9 due to the absence of a cue in the interface,

representing signing emails. Transparent encryption is also found problematic when

there is no feedback to the user if an email will be encrypted or not. Additionally,

when emails are automatically decrypted spoofing attacks may not be noticeable to

all users; and users should compare and verify the key presented in the email, with

the one existed in PGP.

Unlike S/MIME, major email clients including Microsoft Outlook, IBM Lotus

Notes, and Mozilla Thunderbird do not directly support PGP. However, PGP can be

enabled by adding an additional add-on or plug-in to the mail client. Compared to

other email security standards, PGP has been adopted or improved by some email

security tools and other proposals. The GNU Privacy Guard (GnuPG) is a free

implementation of OpenPGP. GPG and OpenPGP have been incorporated by several

tools. For example, Enigmail [56] is an extension to the Mozilla Thunderbird and

Seamonkey. It provides encryption and signing using OpenPGP. To secure emails,

one should install OpenPGP in addition to the Enigmail extension. To eliminate

the need for installing PGP on user’s machine, OpenPGP has been implemented

for browsers in JavaScript, so that it can be used in other applications and plug-ins

as an open-source library [65]. GMail-crypt [73] and GPG4Browsers [33] are also

chrome extensions to the Gmail interface and enable email security using OpenPGP

JavaScript library. Other proposals based on PGP are discussed in detail in the

following sections.

2.1.2 PGP-based Proposals

Waterhouse. Waterhouse [50] is proposed to secure existing email clients using

PGP. It uses OSN sites such as Facebook to distribute long-term public-keys, by

posting them on OSN profiles and to leverage existing OSN connections between

users. However, the burden of managing private keys remains on end users; which is

still an open problem that negatively impacts PKI-based approaches in general.

For intuitive identity verification, Waterhouse suggests displaying a sender’s OSN
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photo with each email (cf. Facemail [52]). As the sender’s photo alone cannot guar-

antee trustworthiness of the OSN profile owner (due to the existence of fake account

impersonating OSNs’ users), the use of a Web of Trust (WoT) model is also suggested;

only public keys of senders with at least n friends in common with the receiver are

accepted.

All outgoing messages are signed even in the absence of any connection on the

OSN. However, to have a confidential communication, senders and receivers must be

friends in the targeted OSN site. Their current prototype has been integrated into an

open-source, web-based email client. No implementation of this proposal is available

(as far as we are aware of).

Stream. Stream [36] is a POP and SMTP proxy that sits between the email client

and server. To remove all user involvement and elevate the usability, Stream offers

no user interface; all emails are encrypted using PGP at the SMTP proxy, when the

receiver’s public key is available (opportunistic encryption), otherwise they are sent

in the clear. Stream [37] also provides users with an option, by which if the subject

line contains mandatory encryption character, and the recipients’ public keys could

not be found, the email is sent back to the sender, explaining that the email could

not be encrypted for those recipients.

At the sender side, Stream grabs the message right after leaving the sender’s inbox

and before reaching to the SMTP mail server. It then uses sender’s email address

as an index to locate the associated key pair in the key database; If no key pairs

are found, public/private keys are automatically generated and stored on the fly by

the proxy. Stream offers opportunistic key distribution by signing each recipient’s

public key and adding it to each email’s header. At the receiver side, the POP proxy

verifies the sender’s public key, decrypts and delivers the email. If a new public key is

detected for an existing email address, the receiver is notified through an email. The

public key is then added to the user’s database.

Stream eases the burden of key management but requires users to trust its proxy
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servers with private keys that can decrypt any email at any time without users’ knowl-

edge; such a trust model is particularly unsuitable for webmail providers. Moreover,

opportunistic encryption used in Stream may disclose sensitive email content, in the

case when the receiver’s public key cannot be found and the email is sent unencrypted,

without any feedback to the user. Stream does not come up with any solution ad-

dressing man-in-the-middle attacks, as public keys are sent along with the encrypted

messages. If a public key is replaced by an attacker and all of the outgoing messages

are modified by the attacker, the attack could not be noticeable to the receiver.

STEED. STEED [48] employs a set of existing techniques to address usability prob-

lems of PGP and S/MIME, including non-user friendly trust models. To reduce

the user involvement, it proposes significant changes to email providers and Mail

User Agents (MUAs). MUAs would automatically generate public/private keys (or

self-signed certificates) each time a new email account is created, and perform oppor-

tunistic encryption using GPG. Key/certificate distribution is done through the DNS

server of an email provider. Compared to key servers, DNS is decentralized, available

and its structure also matches email addresses that can be used to bind the user’s

identity with a certificate. Incorporating DNS also brings the benefit of the improved

security using DNSSEC. This feature provides a secure channel for key/certificate

distribution which prevents man-in-the-middle attacks.

Users are still responsible for managing their private keys. They believe there

should be a Personal Information Manager (PIM), protecting all the user’s sensitive

information (e.g., phone numbers, address books, mail account, etc.) in addition to

passphrases. Although in the absence of a promising solution, a temporary solution

is needed.

STEED’s proposed trust model is based on “trust upon first contact” and “per-

sistency of pseudonym” (TUFC/POP). In this model, keys/certificates are accepted

in the first contact, and then verified during further communications. Users can ver-

ify suspicious certificates at the first contact, through an out-of-band channel, e.g.,

phones or meet in person. After trust is established, the system helps users to track
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any suspicious changes made into trusted certificates.

2.1.3 S/MIME

The process toward securing emails in S/MIME (RFC 2634 [72]) is similar to the

one used in OpenPGP and they both use digital certificates for key management.

S/MIME users obtain a X.509 digital certificate including the user’s identity, public

key, expiration date and, etc. As S/MIME also uses asymmetric encryption, it has

many of PGP limitations. In addition to the PKI-related issues in PGP and S/MIME

(e.g., key management), obtaining certificates from well-known CAs with actual iden-

tity verification is costly and time consuming. It also requires additional effort and

submission of personal information to CAs, which some users may be reluctant to

do [76, 51]. Self-signed certificates may seem user-friendly, however they bring their

own security risks and usability issues [38].

S/MIME is built into most popular desktop email clients, e.g., Microsoft’s Out-

look and Mozilla Thunderbird, but is not supported by web-based email clients, e.g.,

Gmail and Hotmail. However, usability issues of S/MIME specifically regarding its

trust model, make it unusable in practice. CoPilot [76] is proposed based on Key con-

tinuity management (KCM [42]), to address usability issues of identity certification

and automate key management in S/MIME. Instead of concerning about the certifi-

cate authenticity of each secure incoming email, the sender’s S/MIME certificate is

automatically accepted for the first time (as key certification used in SSH) and a new

digital ID is generated to be associated with the email address. Copilot then keeps

track of further emails sent from the same email address and notifies users about

any changes made to the digital ID, associated with each email address, through the

use of different background colors and presented information. For example, if a se-

cure email is received from a new address for the first time, it is flagged as yellow.

Further digitally signed emails sent from the same address are shown within a green

background; CoPilot also counts the number of emails that has been sent with the

same email address and digital ID. If an incoming email from the same address has a
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different certificate (digital ID), it is shown within a red background and, etc. CoPi-

lot does not guarantee any trustworthiness; it is on users to decide whether to trust

a new or changed digital ID or not. Despite all efforts toward having simpler trust

model for S/MIME, complexity of public key cryptography concept, and some user

interface related usability problems of email clients supporting S/MIME (discussed

in a recent work [35]), are still barriers to S/MIME’s adoption. Since S/MIME is

not broadly used due to the above mentioned problems, we do not discuss further

S/MIME related proposals.

2.1.4 IBE-based Proposals

Identity-based encryption (IBE) was initially introduced by Adi Shamir [74] in 1984

to reduce the issues of public key management. In 2001, Boneh and Franklin [7]

proposed a practical IBE solution with an actual application for email encryption.

IBE is based on public key cryptography. However, unlike PGP and S/MIME, pub-

lic/private keys are not randomly generated by users themselves. Public keys are

derived from the arbitrary, unique and publicly available user identifiers, e.g., email

address. No certificate or public key exchange is required. Moreover, email communi-

cation through IBE is not limited to those who have their own public key in advance;

senders can send encrypted emails to the receivers who does not have a public key. A

trusted third party key server, called Private Key Generator (PKG), generates its own

master public/private keys and publishes its own corresponding master public key.

The sender encrypts emails using the receiver’s unique information and the PKG’s

master public key. On the receiver side, the receiver retrieves his own private key

from PKG, after authenticating himself to PKG and decrypts the email. Voltage

Security [85], Trend micro [83] and FortiMail [34], all offer enterprise email security

solutions through IBE. Therefore, we do not discuss them further.

One problem arises from using unique identity information as the public key, in

which if the corresponding private key is compromised, there is no substitution to

the unique identity information to be able to easily revoke the public key. Therefore,

14



a time period is also added to the public key. Public keys are then automatically

expired and revoked after a specific duration of time. Moreover, one concern about

IBE is the ability of PKG to access original content of encrypted emails, as it is in

possession of all users’ private keys. In contrast to PGP and S/MIME, private keys

are generated on demand by PKG and are shared with the user through a secure

channel. Therefore, in addition to the security of PKG servers, trust in PKG servers

is also of great importance. In the following, we discuss a proposal which addresses

the aforementioned problems.

Lightweight Encryption for Email. In their previous work, Adida et al. [2] pro-

pose using each email domain as a PKG to provide email authentication using IBE.

Each email domain distributes its own MPKs (Master Public Keys) through the Do-

main Name Server (DNS). Each user’s secret key is directly delivered to their inbox

using email-based authentication. In another proposal [3], Adida et al. extend their

approach to provide email encryption using IBE, based on their previous proposals

of key distribution through DNS servers.

Their proposal exposes users to two potential privacy issues. First, storing the

MSK (Master Secret Key) on a single DNS server, leaves the server vulnerable to

malicious attacks by external attackers. By compromising a DNS maintaining the

MSK, the attacker can trivially generate all users’ private keys from the MSK. To

mitigate the problem, Adida et al. perform the key generation distribution among

several DNS servers instead of one server. Thus, in order to compromise users’ private

keys, the attacker should compromise all PKGs to combine all MSK’s shares.

Second, an email provider can easily gather all the shared MSKs from all DNS

servers, combine them together to generate the final MSKs and obtain all users’

private keys. Therefore, Adida et al. further introduce two countermeasures to this

problem. Their main approach is to incorporate two separate channels for key sharing:

email providers’ DNS as and a user preferred channel. Therefore, they put users in

charge of generation and distribution of their own key pairs by the means of any

online medium, such as personal web pages; and users can be in possession of their
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own key pairs which cannot be accessible by email providers. However, this approach

suffers from usability issues regarding publishing user generated key shares. It also

introduces the same key loss problem as in PGP and S/MIME. Alternatively, two

different email providers can be used to send an encrypted email. The way it works

is to first encrypt emails using the recipient’s public key, published on the first email

DNS server, then encrypt the generated ciphertext using the recipient’s public key

stored on the second email domain. The latter solution, prevents each domain from

decrypting the email, as they are not in possession of both private keys at the same

time.

2.2 Symmetric Encryption and Trust Split Based

Proposals

Aquinas. Aquinas [10] employs symmetric encryption with per-email keys, and thus

avoids several key management issues. An implementation of Aquinas as an open-

source Java applet enables confidentiality through AES encryption, deniability using

a steganography technique (SNOW) to hide confidential email communications, and

message integrity using MAC. Keys and encrypted messages are split, and transmitted

separately through competitor email providers; so that a compromised account would

not reveal the secret message to the attacker. At the receiver side, all shares are

combined to regenerate the original message and keys.

A malicious ISP may collect all key/message shares and retrieve the message,

when user to email channels are not SSL-protected. SSL protected channels prevent

from revealing the content of transmitted messages, yet cannot hide the source and

destination of the packets. Therefore the ISP learns all the involved email providers

and colludes with them. To restrict this attack, several solutions have been proposed,

including the use of proxies or different email accounts for sending different emails. As

another solution, additional email accounts are added to communicate bogus message

shares; e.g., 20 out of 40 shares may be used for the actual message. The ISP now
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sees all 40 shares, but does not know which ones would construct the real message.

The sender and receiver must communicate an initial secret that will be used to

determine the shares for the real message; this secret should be established through

an out-of-band mechanism (e.g., phone).

A publicly available directory is also suggested to maintain all users’ email ac-

counts. This publicly available directory would not reveal any information to the

attacker, as the subset of these accounts is still unknown, yet a public directory of

users’ email accounts endangers users’ privacy to some extent. Another concern could

be the need of user authentication when a new email account is added to the list,

otherwise an adversary can impersonate a user by supplying fake email accounts, and

trick other users to send their key and message shares to the fake account.

TrustSplit. TrustSplit [30] proposes the confidentiality as a service (CaaS) paradigm,

and splits the trust between a cloud provider (e.g., Gmail, Dropbox) and CaaS

provider(s) to secure users’ data before sharing through the cloud, and manage keys

transparently. To benefit from CaaS, users should first register for the service and

create a new CaaS account. Users are required to provide an email address and a

password, which should be different than the cloud service’s password to enable CaaS

to authenticate users and bind their newly created CaaS accounts to their existing

cloud service ones. To protect user data from CaaS provider, multiple layers of com-

mutative encryption are used, called cLayers, which can be added/removed from user

data in an arbitrary order.

The hash value of Alice’s data is first computed. Alice’s data is then encrypted

(AES in counter mode) with a local layer (+cLayerLocalPre), by XORing (⊕) the

original data with a key stream of the same size and sent to the CaaS provider. If

Alice is authenticated successfully and all the recipients are CaaS users, CaaS provider

applies an additional layer of encryption (+cLayerRemote), and returns the result to

Alice. The local layer is removed (-cLayerLocalPre) by the client and data encrypted

with the CaaS remote cLayer is shared via the cloud provider with the intended

recipients.
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When the encrypted data is received, Bob adds his local cLayer (+cLocalLay-

erPost), and then sends the data and the list of recipients to the CaaS provider.

CaaS provider removes the remote cLayer (-cLayerRemote) and returns the data to

Bob. Now, Bob’s local cLayer is removed to reveal the plaintext (-cLayerLocalPost).

TrustSplit requires third parties to run CaaS servers; users also must register with

these services. The service has been implemented to secure Dropbox, Facebook and

Mozilla Thunderbird. The general approach is the same for all, but slightly different in

case of Dropbox and email attachments. In these cases, the above mentioned process

is done on the symmetric key, used for encrypting the whole data or email attach-

ments instead of the whole data or attachment itself. Their current implementation

for email security is an extension to Thunderbird, written using Greasemonkey [41]

script to provide encryption and decryption on client side.

SPEmail. In another attempt of eliminating usability issues of public key cryptogra-

phy used in email security, SPEmail [66] uses secret sharing and linguistic steganog-

raphy to provide confidentiality for webmails. Therefore no key setup, exchange or

management is needed. Each message is divided into two shares. After encoding

secret shares by applying a form of text steganography based on Huffman coding of

Markov graph, secret shares are delivered via two different webmail providers. These

providers should be located in countries with different legislations to prevent collusion.

SPEmail does not provide sender authentication or message integrity. In addition, no

approach for searching among secret shares has been suggested. SPEmail, has cur-

rently been implemented as a Greasemonkey script in a Firefox extension, securing

Gmail web client. Although the tool is out-dated and cannot be tested.
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Chapter 3

Threat Model and Assumptions

In this chapter, we first explain FriendlyMail’s defined levels of trust relationships

on OSNs. We also discuss FriendlyMail’s assumptions and threat model, categorized

into in-scope and out-of-scope threats.

3.1 Trust Relationships and Protections

FriendlyMail can provide different levels of cryptographic guarantees such as message

authentication, integrity and confidentiality depending on user choice and the (exist-

ing) trust relationships between the sender and receiver on OSNs. We assume the

following trust relationships:

(a) a direct OSN connection between a sender and receiver (e.g., Facebook friends),

where both parties know each other to some extent (e.g., real-life relations, online-

only acquaintances).

(b) indirect OSN personal connections (e.g., Facebook friends-of-friends), where the

sender and receiver are related via one or more direct acquaintances.

(c) impersonal OSN connections with web presences of known physical/online en-

tities, e.g., users connected to a Facebook page (e.g., of a bank, organization,

entertainer) possibly through the Like feature.
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(d) unconnected.

Table 1 summarizes FriendlyMail protections for these relationships. Different (exist-

ing) OSN trust relationships have different levels of authentication strength. Friendly-

Mail mainly provides email content confidentiality based on (existing) strong authen-

tication in friends’ circle. However, confidentiality protection can be extended to the

lower levels of authentication strength (e.g., among friends-of-friends; see Section 4.4

under “User authentication”). Note that, there is a trade-off between providing email

content confidentiality based on indirect connections beyond the friends’ circle, and

increasing the risk of spam or malicious emails. This is due to the existence of fake

accounts and the lack of a proper and effective supervision on the users’ actual iden-

tity on the OSN (see Section 6.1 item 6). However, email content integrity does not

require prior direct connections on the OSN between sender and receiver. We also

assume trust relationships e.g., OSN connections (or lack thereof) can be determined

based on available information in email clients. For example, the receiver’s email

address or full-name can be searched in the sender’s OSN friends’ list to verify if they

have a direct connection. This verification may require the receiver to be registered

with the same email address or full-name for the OSN account.

Trust relationships
Protections provided

Origin authentication Integrity Confidentiality

Direct strong X X

Indirect weak X X

Impersonal weak X

Unconnected X

Table 1: FriendlyMail protections for different OSN trust relationships. An empty box

indicates the stated protection is not provided.
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3.2 In-scope Threats

We assume the adversary is capable of performing the following attacks.

1. We assume a Dolev-Yao [17, 60] network adversary. Network connections be-

tween users and OSN/email servers are also assumed to be protected (e.g., via

SSL).

2. As a sender, the adversary may impersonate a friend, i.e., the adversary is aware

of the user’s social contacts, or a known company (e.g., the user’s bank); i.e., the

FROM field can be arbitrary, and we do not assume any other sender verification

techniques being used (e.g., Sender Policy Framework (SPF) [55]/DomainKeys

Identified Mail (DKIM) [16]).

3. The adversary may compromise the credential of a FriendlyMail user’s email

account. At the sender side, she may try to abuse FriendlyMail to send malicious

emails, in the form of trusted ones, through the compromised email account. She

also has access to the email content residing on the inbox of the compromised

email account.

4. Email providers are non-malicious but possibly curious, motivated (e.g., finan-

cially) or forced by law enforcement to have access to or reveal users’ email

content.

3.3 Out-of-scope Threats

In the following, we briefly go through out-of-scope threats and several assumptions

required by FriendlyMail to function properly.

1. With regards to the email content, we assume that the email and OSN providers

are non-malicious but curious entities; i.e., they will provide their services in

the usual manner, but would prefer to learn the email content (e.g., for ad-

vertisements, building elaborate user profiles). Besides, the email and OSN
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providers must be separate, non-colluding entities, ideally residing in different

legal jurisdictions. Note that, for cloud storage/application services, defining

legal boundaries may be tricky; see e.g., Hoboken et al. [45], for how U.S. laws

(Patriot Act/FISA) can be used to access user data in EU countries. Either of

the service providers may cooperate with an adversary, but not both.

2. To prevent perpetual access to an email content, users can delete keys from the

OSN site after an encrypted message has been retrieved, or after a given time

period. However, OSN sites may not actually delete any posts for a long period

of time; see, e.g., Facebook policy on deleted content [28]. Thus, an encrypted

email is not guaranteed to remain confidential forever, assuming currently non-

cooperating email and OSN providers may collude at some point in the future.

Hence, message self-destruction is a non-goal (which is rather difficult to achieve,

cf. [88]).

3. We use the OSN provider for sender origin authentication, and assume that

OSN profiles and connections between users are largely genuine. For example,

Facebook actively attempts to control (prevent or detect) fake profiles by enforc-

ing a policy [26] (regarding, e.g., multiple account creation and providing false

personal information); or keeping track of its users actions and behaviours [70]

to detect fake accounts. However, such profiles are still a significant concern (see

e.g., [6, 9]). Detecting fake accounts is also an active research area (e.g., [11]).

Therefore, users are always advised to take precautions to distinguish between

fake accounts and genuine ones, when it comes to accepting a friend request on

OSNs [71]. We assume that users are aware of this threat and act cautiously

when adding friends.

4. FriendlyMail requires that OSNs enforce proper access control mechanisms to

maintain their site integrity and take several actions toward making the OSN

a secure environment. Access control mechanisms are designed to only allow

authorized users to add or delete content to their OSN account. Several security
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features are also introduced to detect and decrease account hijacking (e.g., two

factor authentication, remote log out, HTTPS support, social reporting in case

of Facebook) [25, 69]. Additionally, in our threat model, OSN providers are not

malicious in a sense that they do not add or delete any content on behalf of users.

Social networking service provider’s malicious behaviours have been discussed

in [32] and these attacks regarding OSN provider’s malicious behaviours are out

of FriendlyMail scope. These two assumptions are critical for considering an

OSN as a second (secure) channel for sharing keys/hash values and as a means

of asserting that the user is authenticated.

5. We require that the OSN providers can protect confidentiality and integrity of

user posts, e.g., not to expose privately posted keys/hashes to unauthorized

parties (but see [18]).

6. Both the sender and receiver-end machines are assumed to be malware-free;

otherwise, malware can simply expose or modify the email content when being

composed/read.

7. The user’s email and OSN account credentials must not be compromised. By

compromising the user’s OSN account, the adversary is in the control of the

content, stored on the OSN and can add, remove or change them. Also, if she

has access to both keys and encrypted emails it is trivial for her to get the

original content of the emails. We discuss consequences of such compromises in

Section 6.1.

8. The recipient of a confidential email is also trusted not to share the content

with unauthorized parties. We exclude such threats in FriendlyMail.

23



Chapter 4

FriendlyMail Design

In this chapter, we describe the overview of FriendlyMail. We present the different

modes of FriendlyMail operation and detail FriendlyMail and user steps for send-

ing/receiving confidential and integrity-protected emails. Parts of these steps are

explained through our prototype for Gmail and Facebook (detailed in Chapter 5).

We also elaborate in detail the reasons of certain choices we made.

4.1 Design Overview

In contrast to PKI-based approaches, FriendlyMail opts for a simple solution, using

symmetric encryption and integration with OSNs, to provide email confidentiality,

origin and content integrity verification. The design is related to the well-established

notion of using multiple channels for security (e.g., [89, 54]). FriendlyMail employs

OSN sites, as an additional channel, mainly to automate key management and in-

tegrity verification process; while secure emails are communicated over email providers

as the main channel. It leverages existing pre-authenticated connections among users

on the OSN, to address the challenge of exchanging secrets between email senders

and receivers. OSNs also serve as secure channels for sharing hash values of email

content to provide message integrity, where the hash value is stored on a known,

integrity-protected location. In its basic form, FriendlyMail secures email through
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IDA, IDB Unique user identifier for Alice (sender) and Bob (receiver) respectively.

Km Per-email, randomly generated symmetric key of adequate length (e.g.,

128 bits).

H(·) A cryptographically-secure hash function (e.g., SHA-256).

EKm
(·) An authenticated, symmetric-key based encryption function (e.g., AES

in the CCM mode) with key Km.

Cm Content of an email message as compiled by Alice (email body only,

excluding email headers).

Cfm Content of an email message after being processed by FriendlyMail.

Chm Selected parameters from the email header (e.g., receiver’s address,

email subject).

Nm Per-email, randomly generated nonce.

x||y x concatenated with y.

Mrks,

Mrke

Marks the start and end of an encrypted email, respectively.

Ftr Footer appended by FriendlyMail; includes URL to FriendlyMail addon.

Table 2: Notation used in FriendlyMail

the use of an OSN and email service provider as two separate channels. To get the

original content of an encrypted email, the adversary should have access or intercept

both communication channels. For proper functioning of FriendlyMail, we need both

channels/services to be available. However, both parties (email and OSN providers)

are untrusted with the plaintext email content, and the content will remain secure

assuming these parties do not collaborate. Moreover, FriendlyMail is designed as

a client-side solution. Therefore, its adoption requires that email applications are

extendable (e.g., via browser plugin, or application addon). We would like to avoid

introducing a new client for usability/deployment reasons.

The main idea is to store keys and/or hash values of encrypted/integrity-protected

emails on the OSN accounts of FriendlyMail senders in email communications. Both
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keys and hash values are then made immediately available to the intended receivers.

The retrieved keys and hash values can later be used to decrypt encrypted emails and

verify their origin and content, or just to validate emails (their origin and content)

when just email integrity is desired. Figure 2 provides a brief overview of FriendlyMail.

For confidentiality and integrity purposes, FriendlyMail requires the OSN to

present the following characteristics:

(a) The OSN should form connections among users, e.g., friendship connections or

following, in which users can authenticate each other’s identity before getting

connected.

(b) The OSN should authenticate users and provide them with an integrity protected

channel, e.g., user’s wall in Facebook or direct, private message in Twitter. There-

fore, OSNs can be used as a second (secure) channel to provide automatic key

authenticity and integrity verification. This authentication is required to prevent

from unauthorized access or modification to user’s OSN account.

(c) The OSN should enable the sharing of a message between multiple users through

a proper access control mechanism, e.g., to maintain the confidentiality of keys

posted as a message or wall posts shared between intended users through private

messaging or privacy settings.

(d) The OSN should be highly available to provide FriendlyMail with free and scalable

servers for storing keys and hashes and should not limit users to have access to

their old data residing on the OSN servers.

(e) The OSN should be pervasive, so that it can serve vast majority of senders and

receivers of FriendlyMail secure emails.

Any existing OSNs with the above mentioned characteristics could be used as

the second channel, and thus, making the FriendlyMail design flexible for greater

adoption.
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4.2 Modes of Operation

FriendlyMail has two primary modes of operation: Encryption and Origin and con-

tent verification. The FriendlyMail primary modes assume a direct trust relationship

and are described in Sections 4.2.1, 4.2.2. In Section 5.4, we consider other trust re-

lationships, and also discuss several variants that may address some limitations of the

primary mode. Both modes of operations are done on user demand; see Section 4.3.

FriendlyMail requires explicit user selection for confidentiality-protected messages,

before beginning the composition of such a message. Unlike a non-confidential email

(e.g., integrity-protected only), this selection cannot be done through a checkbox;

see under “Protecting emails during compose and read” in Section 5.2. Therefore,

FriendlyMail adds an additional button inside the email client’s interface; see, e.g.,

Secret COMPOSE in Figure 1. FriendlyMail also notifies the user about system

status through several visual cues along with security statements.

Figure 1: Secret compose button

Consider a scenario in which Alice is the sender and Bob is the receiver. Alice

installs FriendlyMail (in case of first time usage) and runs her email client. In the

following sections, we detail FriendlyMail and user steps for sending/receiving confi-

dential and integrity-protected emails; see Table 2 for notation used. We describe the

steps necessary for Alice to send a protected (confidential and/or integrity-protected)

email to Bob. Users are also assumed to be logged into their OSN account (for OSN
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related steps), otherwise they are asked to login by FriendlyMail. No registration or

additional setup is required by the user. Moreover, FriendlyMail does not require that

Bob has its plug-in already installed on his machine, so that Alice can send encrypted

emails to Bob using FriendlyMail.

Figure 2: Simplified FriendlyMail steps: (1) a per-message randomly generated key and

the calculated hash value of the encrypted email are shared with the recipient via an OSN

site; (2) the encrypted email message is sent via the regular email provider; (3) the recipient

receives the encrypted email; and (4) the email content is decrypted by the per-message

key retrieved from the OSN and the integrity of its content is verified by comparing the

retrieved hash value from the OSN and the locally calculated one.

4.2.1 Confidential Emails

Using the above mentioned scenario, FriendlyMail and users perform the following

steps in the encryption mode.
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Sending an encrypted email.

1. Alice initiates composing a confidential email by clicking on the added “Secret

COMPOSE” button in the main page. The familiar compose window is dis-

played with some visual cues (e.g., a green border), indicating that a secure

email is being composed.

2. Alice will be able to send an encrypted email to Bob, only if Bob is among

her OSN friends. FriendlyMail searches for IDB among Alice’s OSN friends’

list to check if they are friends; see Section 5.2 under “Local storage” for more

details on how FriendlyMail matches users’ email and OSN accounts. Otherwise,

Alice has no choice but to discard the email. FriendlyMail also notifies Alice

that Bob is not her friend on the OSN, thus no encrypted email can be sent

to Bob. During the message composition, FriendlyMail will block the email

client’s post/update events that are commonly used to auto-save email drafts.

Blocking these events is critical; otherwise, the plaintext content is exposed to

the email server. However, to support auto-save, local storage may be used.

3. When Alice indicates that she has finished the message composition (e.g., by

hitting the Secret Send button), FriendlyMail generates a nonce Nm and a

random symmetric key Km; both parameters are specific to the current email.

More details on key generation are discussed in Section 4.4 under “Automatic

key management”.

4. The plaintext email with the appended nonce, Nm , is then encrypted using

Km. Nm is used to make each email unique, even if the message content (Cm)

is the same for different emails. This also ensures uniqueness of the shared

hash value H(Cfm||Chm), which is used as an index during message retrieval on

the receiver’s side; see Section 4.4 under “Email integrity protection” for more

details on Nm.

5. After adding the markers and footer, the message body, Cfm, is set to
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Cfm = Mrks||EKm
(Cm||Nm)||Mrke||Ftr

For more information about the footer, start and end markers see Section 5

under “FriendlyMail message format”. We do not encrypt the email subject line

(Subject), similar to PGP, see e.g., Symantec PGP Desktop.1 Users may decide

on opening an email based on its Subject, or later search their emails using

keywords from Subject. However, we would like to integrity-protect Subject

and few other header items; we use Chm = Subject||IDB.

6. FriendlyMail computes the hash value of the message body and selected header

parameters, H(Cfm||Chm);

7. The key Km and hash value H(Cfm||Chm) are securely published to Alice’s OSN

account to be instantly accessible only to Bob (e.g., as a post on her Facebook

wall or a tweet on her Twitter account); see step 1 in Figure 2.

8. The processed email content (Cfm with all header parameters) is sent to Bob

via the email service provider; see step 2 in Figure 2. The user-to-OSN/email

channels must be protected by other means (e.g., via SSL). The user-to-OSN

channels must be protected for obvious reasons (i.e., to protect key and hash

values). If user-to-email service channels are not encrypted, the OSN site may

break email confidentiality if it can collect the encrypted content.

Decrypting a received email.

1. Bob first receives the encrypted version of the email (i.e., Cfm); see step 3 in

Figure 2. If the FriendlyMail addon is not installed, Bob can choose to install

it from the link provided in the footer; see Figure 4.

2. FriendlyMail installed on Bob’s system detects the encrypted email by finding

the start and end markers, (Mrks and Mrke), and automatically attempts to

verify the email and retrieve the encryption key to decrypt the email content.

1http://www.symantec.com/docs/HOWTO41924
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To avoid privacy breaches in public places due to automatic decryption, the

addon can be configured to ask for confirmation from Bob before initiating the

decryption process; see Figure 10.

3. For verification, if Alice is identified as Bob’s friend, the addon computes the

hash H(Cfm||Chm) of the received email.

4. It then searches for the calculated H(Cfm||Chm) on Alice’s account. If a match-

ing hash value is found on Alice’s OSN account, the message is decrypted by

Km as posted along with the hash value (step 4 in Figure. 2). A matching hash

value verifies Alice’s identity and the integrity of the received email.

5. The verification result is communicated to the receiver through multiple visual

cues: Alice’s name and picture are fetched from her OSN profile and presented

inside the mail client’s interface, along with a link to Alice’s OSN profile. If a

matching hash is not found, the email’s origin and content cannot be verified,

and Bob is notified through the email client user interface.

Replying to an encrypted email.

When replying to an encrypted email from Alice, Bob must encrypt his message.

To be on the safe side, we assume that Alice prefers a confidential response to her

encrypted email. To avoid replying to an encrypted email, containing sensitive in-

formation, accidentally in the clear by Bob the same steps are then followed as for

composing and sending an encrypted email.

Forwarding an encrypted email.

FriendlyMail disables forwarding a decrypted email to other recipients. When

Bob attempts to forward such an email, the original portion sent by Alice remains

encrypted under Alice’s key used for encrypting the email (Km). Content inserted by

Bob into the forwarded email can be encrypted or not, depending on Bob’s preference.

However, Bob may share Alice’s key with other recipients or simply decrypt the

encrypted email and resend it in plaintext, or encrypt it using his own key. We
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exclude these scenarios and assume that Bob is non-malicious; see Section 3.

4.2.2 Integrity-protected Emails

Below we elaborate the FriendlyMail and user steps to make the alteration to the

origin and/or content of a sent email detectable to the receiver. When Alice believes

that she is not sending any confidential information to Bob, she may decide to inform

Bob about any alteration made to her email.

Sending an email with verifiable origin and content integrity.

1. Alice enables origin and content verification, e.g., through a checkbox; see Fig-

ure 6 and 7.

2. When Alice indicates that she has completed the message composition, as in

the encryption mode, FriendlyMail searches for Bob in Alice’s friend list on the

OSN. If Bob is found, it continues to the next step, otherwise it notifies Alice

through visual cues and security statements that Bob is not her friend on the

OSN and no integrity verifiable email can be sent to Bob. Therefore the email

should be discarded.

3. FriendlyMail grabs the message body, generates a nonce Nm, and sets the mes-

sage body to Cfm = Cm||Nm||Ftr. Note that, unlike for confidential messages,

we do not interfere with the auto-save option here. In this case, we are simply

interested to provide integrity protection for the email content.

4. For integrity protection of header parameters, we use Chm = Subject||IDB;

then the message hash is calculated as H(Cfm||Chm). Bob’s address is included

in the hash calculation to prevent replay attacks as discussed in Section 6.1,

item 5.

5. The hash value is shared on Alice’s retrieved OSN account (e.g., Facebook wall),

accessible only to Bob (e.g., in case of Facebook, through the use of privacy

settings).
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6. The email content (Cfm) remains unencrypted and is sent to Bob through reg-

ular email services.

7. FriendlyMail communicates to Alice about the success/failure of the operations

through visual cues integrated in the user interface and appropriate security

statements.

Verifying an email’s origin and content integrity.

1. When Bob opens Alice’s email, a footer indicates that it has been sent through

FriendlyMail, and allows Bob to install the FriendlyMail addon (if not already

installed).

2. FriendlyMail grabs the message body and calculates the hash of the body con-

tent and the selected headers, H(Cfm||Chm) .

3. It then searches Alice’s OSN account for: H(Cfm||Chm) (in case Alice is already

found as Bob’s friend on the OSN); if found, the message content is verified.

The message origin (i.e., Alice’s identity) is also verified as Alice is identified as

Bob’s OSN friend. If Alice is not found as Bob’s friend, FriendlyMail notifies

Bob that Alice is not his friend on the OSN, therefore the origin is not verified.

Finally if the matching hash cannot be found on Alice’s OSN account, the

content integrity of the email is not verified. The verification result is presented

to Bob through the email UI and through appropriate security statements.

Replying to/forwarding a regular or verifiable email.

A regular or FriendlyMail integrity-protected email can be replied or forwarded,

in either confidential or integrity-protected mode, based on the user’s preference.

4.3 Transparency and User Consent

There is a trade-off between security and usability. Users do not generally have an

accurate mental model of security concepts and threats. Educating users is not also
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very reliable and generally does not result in a desired level of security. [43]. Users

also may not be interested in fairly complex security configurations that are put in

place to prevent attackers. Moreover, users’ interaction with security systems often

degrades the security of the system and therefore, user intervention with security

related tasks should be avoided [14]. In order to maintain the expected security level

of a system, instead of relying on educating users, developers should design their

systems with minimal user involvements especially when it comes to make critical

security decisions [43, 14]. Therefore, in FriendlyMail we avoid unnecessary user

involvements by making most operations automatic by FriendlyMail.

On the other hand, user consent in performing critical actions like encrypting sen-

sitive emails should be taken into account. Email encryption by default might not

be always possible especially for client-based email. Compatibility issues of different

email encryption approaches as used by different users, prevent from having trans-

parent encryption for all emails. Encryption by default would require a universal

standard. Additionally, there is a trade-off between security and convenience in auto-

matic secure systems. Although automation prevents users from accidentally sending

sensitive content in the clear leading to sensitive information’s disclosure, sending all

the emails encrypted, may be annoying to the user. Encrypting all mundane emails

can impose usability burden on the receiver [39]. Moreover, providing users with

selective email protection, helps them to gradually accustom to, learn and be more

conscious of securing their emails. Therefore, we believe users should have the ability

to decide which email to encrypt.

Although security tasks should be performed as transparently as possible, still

users should be aware of the success or failure of their desired tasks [76, 39]. Friend-

lyMail notifies users about system states using visual aids along with security state-

ments. Displaying visual cues may not need direct attention of the user and can be

easily comprehended (see e.g., Gutmann [43]). Therefore, they are more effective,

faster and user-friendly than just security statements. Displaying information and

photo of the sender to the receiver may also make the comprehension of security
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statements easier [52, 50]. Moreover, displaying OSN personal information and photo

of the sender of an email, may be counted as an intuitive proof to the receiver that

the user identity is actually verified. We believe that the integration of senders’ OSN

personal information could be beneficial, specially in cases where weaker authenti-

cation is acceptable (e.g., indirect connections). We also believe that using different

colors to make secure composition windows stand out, helps users to be more vigi-

lant and avoid accidentally composing sensitive emails in unprotected windows; e.g.,

users gradually understand that if a green border does not show up in a composition

window, their email content would not be protected. Therefore, we employ different

border colors conveying the state of the system, and integrate the sender’s OSN in-

formation with email message viewer in the case of successful email encryption and

verification.

4.4 Integration with OSNs

The idea of leveraging OSNs stems from the fact that it eliminates the need of further

user authentication by FriendlyMail and it simplifies key management. Most email

privacy-enhanced tools, lack a simple and intuitive approach for user authentication

and key management; for example, there is still no user-friendly approach for binding

user identities and certificates in PGP and S/MIME. As discussed in Section 2.1.1,

PGP trust model is still rather complex. On the other hand, symmetric key ap-

proaches also require users to authenticate each other and share their key in a secure

manner. Symmetric key service-based approaches that automate key management

(e.g., [29]), are limited to the registered users and cannot easily serve a large popula-

tion of users. The scalability of such a service in terms of number of connections to

the server per encryption/decryption and key storage could also be challenging.

We believe our approach is more feasible as it does not introduce any deployment

complexity and future maintenance; OSNs bring the advantage of free, highly avail-

able and scalable servers for storing keys and/or hash values; see Section 6.2.1 item
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(3). Moreover we believe it has more acceptance among users, as OSNs are already

accepted and trusted by a large group of people. According to the global web analyt-

ics company, comScore [13, 12], OSNs are getting more widespread among Internet

users. Finally as our approach does not require any special characteristic of a specific

OSN, several existing OSNs may meet FriendlyMail design requirements and can be

used as a second (secure) channel.

User authentication. Generally two forms of authentication exist on OSNs. The

first authentication is done between the OSN service provider and the user. The

OSN service provider checks if the registering user is “human” and not using multiple

persona. OSNs also enforce access control mechanisms on the user’s account to protect

its integrity.

The second authentication is performed in the circle of friends on OSNs. A user re-

ceiving a friend request, may verify the identity of the requester by checking available

information on his/her OSN account, e.g., profile information, email address, com-

mon friends, then confirms his/her identity upon accepting the friendship request.

Moreover, there is more chance that users, establishing a friendship connection, have

a pre-knowledge about each other or some history together that can help identity ver-

ification. This identity verification can also be continuously checked after accepting

the friendship request, based on further visible personal information and user activity

on the OSN over time.

Additionally, as trust in the OSNs is transitive, the circle of trust and authenti-

cated connections can be extended to the friend-of-friends in a lower trust level. A

user may recommend one or more of his/her friends to other friends. Also, receiving

a friend request from a person with common friends, is more likely to be accepted

due to the trust in friends’ judgements.

Based on the above discussion, we define three authentication levels in OSNs. The

strongest authentication level is defined among OSNs friends. A weaker authentica-

tion exists among friends-of-friends. While the weakest one is among all OSNs users

with no direct connection at all.
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Automatic key management. Secure exchange of secret keys, has always been

a deployment barrier for symmetric encryption schemes. Usability issues associated

with key distribution in such schemes also force the use of long-term keys. Long-term

keys raise a security concern; if the shared secret key is compromised, the original

content of all the previously encrypted emails would be revealed.

To address the above mentioned issues, our approach instead, generates a 128-bit

random key per message; then automatically distributes the key through an OSN

to make it instantly available to the specified receiver. Thus, we avoid the use of

long-term keys while taking away the burden of exchanging secret keys from users.

Therefore, if a key shared on the OSN is compromised, it only discloses the original

content of its corresponding encrypted email while other emails would still remain

confidential.

However, in the case where both the OSN and email accounts are compromised,

the original content of all previously encrypted emails are exposed to the attackers.

One way to mitigate this risk is to delete the keys from the OSN as soon as the

sender makes sure the receiver has retrieved the key or after a certain period of time.

However, such deletion cannot always guarantee that the key and its corresponding

encrypted email are safe, as the adversary can always attack before the key is deleted

from the OSN. Also, it may take a long time for keys to be completely deleted from

OSNs’ servers; see Section 3.3 item 2.

Email integrity protection. There are times that users may not need message

confidentiality. For the purpose of gradual adoption and flexibility, our approach

provides users with selective capabilities: encryption, message authentication and

content integrity verification. We use SHA-256 as a hash function to provide mes-

sage modification and detection. Alternatively, Message Authentication Code (MAC)

could also provide integrity and authenticity for emails using a shared secret key. We

do not need MAC, since benefiting from the OSNs, we already have a second (secure)

channel (the user’s OSN account) to distribute the hash values of emails. Moreover,

unlike MAC which is sent along with the email content and thus is visible to users,

37



the process of origin and content integrity verification of our approach is completely

transparent to users.

We believe when senders and receivers have no prior contact or direct connection

as friends in the OSNs, integrity of their email content is more important than their

confidentiality. While hash values can be published through other means, such as a

corporate website, FriendlyMail offers some advantages. If the sender publishes the

hash values of her emails on a personal/corporate website, the receiver must know

the URL beforehand, must trust the website’s integrity and the verification process

may require careful user-involvement (cf. [84]). In contrast, FriendlyMail automates

the verification process, and relies on the existing trust relationship (albeit weak) as

established through the Like feature.

To have unique hashes for emails with similar content, a random nonce is added

to the content of each email before computing the hash. There are several reasons

to have unique hash values. First, if the same email is sent multiple times by the

same user, each of them should be verified individually. As we only search among

hashes, published during a certain period of time; and OSNs may remove redundant

similar posts on the users’ wall, similar hash values would not be made visible on

the wall and the process of verification may fail. Moreover, as these hash values are

also used as the index of encrypted emails to retrieve their corresponding decryption

keys, unique hashes (unique indices) are necessary to locate the corresponding key

(in cases where customized keys are used and the same key is used for encrypting

similar emails). Finally, in the case when hash values are publicly available, nonce

can be used as a counter measure to an attack, in which the attacker can compute the

hash of several messages and compare them to the one posted on the sender’s wall.

If a matching hash is found, the attacker could get the content of the communicated

emails. In order to prevent this attack, the length of the nonce should be of adequate

length (e.g., 128 bits).

38



Chapter 5

Implementation and Variants

To validate the viability of our design, we implement a prototype, called Friendly-

Mail. Transparent user authentication, key management, encryption/decryption and

integrity verification are handled at the client side. It also provides a seamless integra-

tion with the email user interface to preserve the existing user experience. However,

due to the absence of a secure email standard, an inevitable challenge to client side

approaches is to implement the approach for each particular email client. In the fol-

lowing sections we first elaborate our certain implementation choices and challenges.

We then discuss our implementation in detail; and finally we outline some variants

to FriendlyMail.

5.1 Implementation Choices and Challenges

To satisfy our design and implementation goals and requirements, we choose our im-

plementation components accordingly. Since a significant part of the implementation

requires changes to the email client user interface and HTML manipulation, Friend-

lyMail is implemented as a browser extension. Installation of browser extensions is

fairly easy. Moreover, a browser addon works on top of any operating system, pro-

viding availability and portability to a significant portion of nowadays email users.

Although FriendlyMail has been currently implemented for webmails, our design can
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be implemented on regular email clients as well (e.g., desktop and mobile clients).

To benefit a large number of email users, the prototype is built for the web-based

Gmail application [44], using Facebook as the OSN service [44]. For OSN support,

we use Facebook APIs, which are relatively stable and easy to use, but sometimes

limited in terms of features that would have simplified our implementation; see Sec-

tion 5.3. Our implementation for the desktop environment includes a Firefox addon

and a Facebook app. Our implementation is not restricted to a specific browser and

porting FriendlyMail to other browsers should be straight-forward.

The prototype highlights challenges of implementing a rather simple design on top

of existing email/OSN services. These challenges also show why real-world implemen-

tation is non-trivial, compared to a stand-alone, proof-of-concept implementation. A

stand-alone prototype with a specific email client and a custom OSN (e.g., managed

by a service run by us) could have reduced our efforts. However, we believe that

there is little to no chance of such proof-of- concept implementations being used in

practice. Our implementation is complicated by the intricacies of Gmail’s client-side

implementation, which was subject to few substantial changes during our development

and testing over the last 12 months. One major change was due to the introduction

of a new user interface for composing an email which forced us to add support for the

new UI. No official working JavaScript Gmail API is available, specially for modify-

ing the Gmail user interface. A few years ago Google team provided a Greasemonkey

script for Gmail called Gmail-greasemonkey [67], which is currently broken due to

the major changes made to Gmail UI and is no longer maintained. There are few

other unofficial or user created APIs, which are complex or fragile, due to their de-

pendency on the Gmail client application. Therefore, we prefer to implement Gmail

UI and related functionality, rather than relying on unofficial APIs which may not be

maintained on time or at all.

40



5.2 Firefox Addon

FriendlyMail is developed as an extension to Firefox browser in JavaScript and XUL

(XML User Interface Language) [58]. Its main task is to modify the Gmail user inter-

face, providing the interaction between the user and FriendlyMail. It employs Firefox

XPCOM (Cross-platform Component Object Model) interfaces [57] to perform some

browser related functionality provided by Firefox browser. For cryptographic sup-

port (e.g., encryption, hash calculation, random key generation), we use the Stanford

JavaScript Crypto Library (SJCL [81]). Crypto support through JavaScript APIs is

still a work-in-progress; see the current working draft of W3C web crypto API at:

www.w3.org/TR/WebCryptoAPI/. For authenticated encryption, we use AES-128

in the CCM mode [19], and for hash calculation, we use SHA-256. In addition to

integrity verification purposes, these hash values are used as index of keys/hashes

stored on Facebook. To convert the binary output of encryption, we use the Base64

encoding function. The output from SHA-256 is also formatted into hex before being

posted to OSN accounts.

As discussed in Chapter 4, FriendlyMail provides users with two main security

features: a) Users may decide to protect their sensitive email content while ensuring

the receiver about the originality of the email. b) The content of the email is not of

great importance or sensitive, hence only enabling integrity verification would suffice.

In the following, we discuss the FriendlyMail message format and changes we made

to the Gmail UI. Later we explain the details of implementation of the two mentioned

security modes, followed with the challenges we faced during the course of deployment.

FriendlyMail message format. Our prototype currently supports emails

containing both plaintext and HTML. To make a secure FriendlyMail email

(confidential/integrity-protected) distinguishable from other emails, a footer is ap-

pended to all emails processed by FriendlyMail. It also makes the receiver aware of

the use of FriendlyMail and provides a download link to the FriendlyMail addon. We

embed the download link into every FriendlyMail email, in case when the receiver

41



receives a secure email from a FriendlyMail user for the first time, or the receiver

was already a FriendlyMail user but at some point has removed FriendlyMail. In

addition to the footer, the start and end markers are appended to the beginning

and the end of the ciphertext of an encrypted email and allow the addon to detect

encrypted content, and process it accordingly. Figure 9 illustrates the confidential

and integrity-protected email format respectively. Figure 4 is the screenshot of a

confidential email.

Starting marker Encrypted email Ending marker Footer

(a) Confidential email

Verifiable email content Footer

(b) Integrity-protected email

Figure 3: FriendlyMail message format

Figure 4: FriendlyMail confidential email and footer

Consistent user interface. To make FriendlyMail’s use simple and effective, we

focus on keeping the Gmail UI close to the default interface. We integrate Friendly-

Mail’s functionality into the existing Gmail interface and keep visual modifications
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to a minimum. Our few changes to the Gmail UI include adding a few buttons and

a check box, e.g., the only addition to the main page of the Gmail’s UI is a Secret

Compose button; see Figure 1.

(a) Sender side changes. To make the process of sending an encrypted email

automatic, we modify the Gmail UI, by adding our specific Secret send but-

ton (replaced with the original Gmail Send button). As visual aids, we change

the color of the added button, the border around the composition area of the

composition window to green. We also change the label of the added button to

Secret send. These changes are intuitive security indicators, by which users can

figure out that the current composition window and button are specialized for

composing and sending sensitive emails; see Figure 5.

Figure 5: Composing an encrypted email

When the user finishes writing her email and clicks on the Secret send button to

send her email, our prototype immediately grabs the email content, and performs

all the steps discussed in Section 4.2.1 to secure the email content in encryption
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mode. It then simulates a click on the Gmail original Send button to trigger the

attached event listener, so that the encrypted email could be automatically sent

through Gmail as normal emails. Directly calling Gmail functions, called from the

event listener attached to the original send button, or implementing the SMTP

protocol to send the encrypted data directly to Gmail servers, are alternatives to

the click simulation on the Send button.

To enable integrity verification for an email, the user can tick a checkbox, added

right next to the Gmail Send button in the composition window; see Figure 6.

The checkbox is placed close to the send button to be noticeable by the user. To

take user consent into consideration, we disable the checkbox by default, as it is

the regular work flow of email. Therefore, the user decides when to enable the

integrity-protection mode. When the user enables the checkbox, similar to the

encryption mode, we change the color of the composition area to green to notify

users that integrity verification mode is enabled; see Figure 7. We attach an event

listener to the Gmail send button. The event listener is triggered upon clicking

the send button by the user. If the integrity mode is enabled, FriendlyMail grabs

the email content and carry on all the steps discussed in Section 4.2.2.

(b) Receiver side changes. As the user opens and views an email, FriendlyMail

checks for encrypted/integrity-protected email by FriendlyMail. If an encrypted

email is detected, the sender’s identity is verified and the email content is de-

crypted automatically according to the steps presented in Section 4.2.1. However,

if the user enables the option of do not automatically decrypt, a security state-

ment in a green border and background along with a decryption button would

be shown outside of the message body. The security statement indicates that the

email content is encrypted and the user can see the original content by clicking on

the decryption button; see Figure 10. If an integrity-protected email is detected,

FriendlyMail automatically grabs the content and verifies the sender’s identity

and integrity of the content.
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Figure 6: Before enabling email verification

Figure 7: After enabling email verification

(c) Visual cues and notifications. To notify users about the successful completion

or failure of an operation, we integrate several visual cues and security statements
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into the Gmail UI. For example, FriendlyMail notifies senders whether or not their

email can be protected (in terms of confidentiality and/or origin and content

verification). The receiver is also notified if the encrypted email can be decrypted

and/or the integrity of email can be verified. We use green color border and

background for security statements in case of success and red color border and

background in case of failure. Yellow color is used in situations where the current

task requires user attention or action; see Figure 9a. As discussed in Section 4.3,

after verifying the identity of the sender, we integrate the sender’s OSN name,

photo and a link to his OSN profile into the Gmail UI; see Figure 9b.

Modifications to the UI, e.g., adding buttons, visual cues and notifications, are

also carefully performed to prevent any user confusion or possible attacks (see

Chapter 6.1). In the course of development, we designed and implemented sev-

eral UIs and performed several laboratory user tests among our research group.

We consistently changed the UI, according to our tests’ results to achieve more

effective and usable UI.

Figure 8: Disabled composition UI
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(a) The modified Gmail UI message composition window with notifications and visual cues

(b) The modified Gmail UI message viewer with all integrated receiver’s OSN account

information and other visual cues.

Figure 9: Notifications and visual cues
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Figure 10: Decryption confirmation

Protecting emails during compose and read. The webmail interface is con-

trolled by webmail providers. Email providers in general scan, index and save user

emails during composition and opening/reading, for reasons including: automatic

save, targeted advertising, spam filtering, virus detection, spell checking and search

indexing. These operations are performed on the server and/or client ends. Email

encryption prevents email providers from having control over email content to some

extent; by encrypting emails, email providers can no longer scan email content on the

server side. Emails residing on backup servers are also encrypted.

In Gmail’s case, emails can be scanned on the client side when a user opens an

email (targeted ad) and during composition (saving drafts and spell checks). We

display the content of a received FriendlyMail-protected email inside a specialized

HTML element, seamlessly overlaid on top of Gmail’s email content display area.

Thus, decrypted emails are displayed within the locally-trusted browser environment,

inaccessible to the Gmail UI. Email content is protected during the composition of

a confidential email as follows. We register an observer for HTTP requests (http-

on-modify-request notification) using XPCOM’s nsIObserverService [59] to intercept

HTTP requests and discard requests regarding, e.g., auto saving, that post email

content to Gmail servers. This allows the user to benefit from Gmail’s rich text editor

and formatting options, without leaking any content. FriendlyMail notifies users when

drafts are discarded; see Figure 5 at the bottom of the composition window next to the
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composition toolbar (save failed). However, this approach has two limitations that

may adversely affect usability of email systems to some extent. First, users cannot

switch between protected and unprotected modes during composition, as otherwise

protected content may become accessible to Gmail in the unprotected mode. Thus,

users must decide before composition if an email will be confidential or not. Second,

some useful features as offered by Gmail become unavailable, e.g., automatic draft

savings and spell checks. Note that, the built-in Firefox spell checker still remains

accessible.

Integrity checks for HTML emails. Before rendering an HTML email, webmail

clients may parse the HTML code through several filters, strip attributes and white

spaces, and add new HTML elements. For example, Gmail only supports inline

CSS, strips ID and CLASS attributes, and eliminates other attributes for security

reasons. Some attribute might also be added by Gmail . Thus, the HTML email being

displayed at the receiver side may be slightly different from the original one, and may

result in different hash values. To overcome this issue, we strip HTML tags, attributes

and white spaces which are not shown at both sides from both the sender/receiver

ends before computing the hash. We strip elements that do not interfere with the

integrity of the email but are mainly used for rendering HTML, leaving the original

content intact. For example, we did not strip href attribute, containing the URL of a

link included in an email. The integrity of this URL is important, especially because

the URL itself may not be shown to the user and be used to mount phishing attacks.

Alternatively, the unmodified content could be fetched from Gmail’s Show original

link.

Local storage. Binding an email address to the corresponding Facebook account is

not always straightforward, even when the same email address is used as the Facebook

user ID or has been added to the user’s account. Facebook currently does not allow

applications search user’s friends by their email addresses. Facebook applications,

that request users’ email address permission by the current user access token, can

only get the email address of the current user, who is currently logged into Facebook.
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However, searching among the current user’s friends by their email address, is not

allowed.

We gradually build a mapping between email and OSN IDs, and store this mapping

locally in a SQLite database under browser’s profile folder of the user who is currently

using FriendlyMail. For a given email address, this local storage is first searched for

the corresponding OSN ID. For the first protected email from Alice to Bob, Bob’s

OSN ID will not be found in the local storage. The addon will query Alice’s Facebook

friends’ list for Bob, using Bob’s name (as found in the email client). If multiple names

are found, Alice is shown the profiles of all matching users, and asked to select the

intended recipient. When no matching names are found, Alice’s entire friends’ list is

displayed. Alice is also asked for confirming Bob’s profile, even when a single match

is found; see Figure 11. This local storage also improve the usability of our system, as

prompting users to choose the corresponding OSN account, each time they want to

send/read a FriendlyMail email, degrades the usability of our system. After Alice’s

selection, Bob’s email address and OSN ID are locally stored and used for future

FriendlyMail exchanges. We do not require that each user uses its own browser

profile so FriendlyMail can also be used on a shared or public system. Users’ email

address and Facebook ID are not considered to be sensitive, and the local storage can

be deleted after removing FriendlyMail addon from browser. Moreover, in the case

that an email address and Facebook ID, found on the database, do not belong to a

friend of the current user, FriendlyMail could detect by searching the Facebook id

among the current user’s OSN friend. However, the addon verifies if a locally stored

Facebook ID is currently a friend of the sender, before publishing keys/hashes.
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Figure 11: Selection/confirmation of friends’ Facebook profile
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5.3 Facebook Application

To interact with Facebook and perform Facebook related functionality on behalf of

the user, our Firefox addon uses our registered Facebook application (to leverage

Facebook API, an app ID is required). We use Facebook login API [27] to authenti-

cate the sending/receiving FriendlyMail users and get their access token (to retrieve

some non-public user information a valid user access token is required). We use the

client side version of the login API, in which FriendlyMail requests a login dialog

from Facebook to be displayed to the user. The familiar login page assures users that

they are providing credentials directly to Facebook; see Figure 12. The login request

contains parameters such as FriendlyMail client id and a redirect URI where the ac-

cess token will be returned to. Another parameter is scope, in which all permissions

required by the application should be listed. The app requests the following per-

missions: read stream, user likes and publish stream. During the app’s installation,

we inform the user about these permissions, and the data that FriendlyMail will be

accessing from the user’s Facebook profile; see also Section 6.1, item 12.

Figure 12: Login page
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When the FriendlyMail addon is launched for the first time, the Facebook app

is also installed (with user permission) and the user is prompted to grant the above

mentioned permissions. An access token is received as a part of the redirect-URI in

the Facebook response after a successful login. The token provides secure access to

Facebook APIs (albeit time-limited). As client side’s user access tokens are short-

lived, FriendlyMail prompts users to login whenever the access token is expired. The

token is used to, e.g., to publish/fetch keys and hash values. Most API calls regarding

searching e.g., among friends or hashes/keys are done through Facebook Query Lan-

guage (FQL)[21], and publishing hashes/keys as feeds to the user’s Facebook wall is

done through Graph API[24]. All connections between the user client (FriendlyMail

Firefox extension) and Facebook servers are also secured using SSL.

Optimization of searching the keys/hashes of the emails. To search

keys/hashes of FriendlyMail emails through Facebook API, the FriendlyMail addon

finds the sender’s Facebook account, and searches for the computed hash using the

Facebook query language (FQL) API. FQL calls are quite fast, but as more hashes

are added to a user’s profile, the search time may be noticeable. As an optimization,

we currently limit the API query to a specific time interval (e.g., 24 hours), based

on when an email is received; the FriendlyMail will retrieve the date and time that

a FriendlyMail email is delivered to the receiver and converts it to the UNIX time.

It then searches among hashes/keys posted on the sender’s wall after the calculated

UNIX time. This optimization also restricts replays of old emails from a compromised

email account; see Section 6.1, item 7.

5.4 Variants to FriendlyMail

We outline several variants below. We have also implemented variants (a) and (b) as

customizable options; see Figure 13.

(a) Custom keys. One obvious risk for our key transport via OSN sites is that

the email and OSN providers may collude to decrypt a confidential email (see
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Figure 13: FriendlyMail options

Section 6.1, item 1). As a mitigation, advanced users can generate their own

encryption keys and share them via a secure channel, such as in-person meeting

or over the phone.

(b) Integrity and origin checks through OSN organizational pages. Exist-

ing impersonal relationships can also be leveraged to provide message and origin

authentication. For example, many real-world and Internet-based organizations

currently maintain an OSN presence, e.g., via Facebook Pages.1 Example orga-

nizations include: TD Bank, Harvard University, USENIX Association. Many

users are connected to these pages through the “Like” relationship. Currently,

these organizations cannot send emails with integrity or origin authentication;

1https://www.facebook.com/about/pages
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in contrast, spam and phishing emails are often sent by impersonating such or-

ganizations. An integrity-protected email can be sent as follows: the email is

sent as usual, and the hash value is posted on the organization’s Facebook Page

(publicly accessible). Assuming the recipient has already “Liked” the Page, the

email is verified as follows: FriendlyMail checks the hash value of the received

email on the organization’s Page. The verification result and the corresponding

page are displayed to the recipient. The organization’s Page ID is included in the

email (as an additional footer), so that receivers can easily locate the Page; see

Figure 14. However, the Like relationship is still checked for verification. Note

that, as Facebook pages are public and visible even without having any OSN ac-

count, unlike the user profile, Facebook pages can be searched using their email

address or their website associated with the page through the API. Therefore, to

find a page, if the sender’s email address has been added as the Facebook page’s

admin, it can be directly searched by the email address, eliminating the need for

including its ID in the email content.

Figure 14: Page footer

(c) Message confidentiality and integrity through indirect OSN relation-

ships. If two users are connected by mutual friends (e.g., Facebook friends-of-

friends), FriendlyMail can provide confidentiality and integrity protections. The
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sender can post key/hash values visible only to the receiver. However, this would

require that the sender can access her friends’ friend lists. The current Facebook

Graph API disallows access to friends-of-friends lists by Facebook apps (but can

be implemented by JavaScript addons). Direct authentication is not achieved for

these indirect trust relationships, as both the sender and receiver must rely on

their mutual friend’s verification.

(d) Integrity checks for unconnected users. If Alice and Bob have no OSN

relationships, they can still achieve content integrity protection, but no identity

verification. Alice can publicly post the hash of an email, and Bob (or anyone

with access to the email content) can verify the content. Alice should include

her OSN ID in the email content, so that Bob can easily locate her profile and

check the hash value. FriendlyMail notifies both Alice and Bob that only content

verification is provided. Bob is also asked to manually verify Alice’s identity by

reviewing her OSN profile.

(e) Sharing keys through other channels. OSN provides an easy way for sharing

per-email keys; however, other channels can be used instead. If a user’s contact

list with phone numbers is available to a FriendlyMail addon (e.g., when used

from a smartphone), the keys can be sent via SMSes to the recipient. Contact

lists from instant messaging applications may also be used for key transport. The

FriendlyMail addon must be able to automate the key extraction from these sec-

ondary channels; i.e., users cannot be expected to manually input key materials.

(f) Group emails. A group email address can comprise an unlimited number of

email users. Group emails may be supported for integrity and origin authenti-

cation, if the email group is also represented as an OSN entity (e.g., Facebook

Groups). Each group member is connected to the OSN group whose posts are

only made available to its members and are not pushed to any user’s OSN page;

e.g., Facebook Groups with the “Secret” privacy option.2

2https://www.facebook.com/help/220336891328465
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(g) Multiple recipients. For confidentiality protection, all recipients must be

directly connected to the sender. The OSN provider must support private message

posts to a custom set of users. For integrity-only protection, when all recipients

are not OSN friends of the sender, the hash can be posted publicly.
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Chapter 6

FriendlyMail Analysis

In this chapter, we discuss several attacks on FriendlyMail and provide an analytical

usability and deployment analysis of FriendlyMail.

6.1 Threat Analysis

We consider different attacks on the FriendlyMail proposal under the threat model

outlined in Chapter 3.

1. Collusion attacks. Our assumption of non-colluding email and OSN

providers may be difficult to satisfy in practice. Beyond usual information shar-

ing between businesses, and company acquisitions, the email and OSN providers’

data may be subpoenaed if they are under the same legal jurisdiction (as is the

case for Google and Facebook). Note that, the recent incident [5] leaked the

fact that the PRISM program used by the National Security Agency (NSA),

gets users’ private online communications and data, through nine prominent

Internet companies, e.g., Microsoft, Yahoo, Facebook, Google, Apple, etc.

FriendlyMail can of course be extended to support multiple channels for sharing

a per-email key or the encrypted email (by dividing them into pieces; cf. [10]).

For example, Km may be divided into two parts (e.g., Km = K1 ⊕ K2), each
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part being shared with the recipient through independent channels; e.g., K1 via

Facebook and K2 via VK.1 However, we believe that such a design can only be

useful for a small fraction of users due to usability/maintainability issues (e.g.,

requiring two OSN accounts with two different services).

Another apparent defence against colluding parties is to share a password be-

tween two users, and then post the per-email key to OSN after being encrypted

by the password. The OSN provider may try to launch a dictionary attack on

the encrypted key, assuming the password is relatively weak. To verify a key,

the OSN service would require access to the encrypted email. Thus, colluding

parties can still compromise encrypted emails, unless the shared password is

strong (e.g., with more than 80 bits of entropy).

2. Information leakage. With FriendlyMail, the OSN service receives hash/key

values for every protected email, including identities of the communicating par-

ties. The OSN provider also learns every time a protected email is accessed

(unless the retrieved key/hash values are stored locally). Although the email

content remains protected, the OSN provider now has access to the communi-

cation patterns of protected emails between two users. To restrict such leakage,

the sender’s addon may post bogus key/hash values; on the receiver side, the

addon may retrieve multiple key/hash values, and then use/ignore these values

as appropriate.

3. Email as account recovery. Usually, OSN providers rely on the user’s email

account for password recovery. Thus, if a user’s email account is compromised,

it is trivial to also compromise the OSN account. Therefore, we recommend

that FriendlyMail users be careful with their email accounts (e.g., logging in

only from user-owned devices), and use alternative password recovery options

(e.g., via SMS).

4. OSN notifications. OSN providers might send email notifications for events

1A Russian language OSN: vk.com.
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such as a new post, e.g., Facebook notifications [23]. Notifications for Friend-

lyMail messages must be disabled; otherwise, keys and hashes are sent to the

user’s email address, allowing the email provider access to confidential content.

5. Impersonation attacks. Assume that the hash of an integrity-protected

email is publicly posted (e.g., for unconnected users). If an attacker can in-

tercept the email, he can resend it to a different recipient, impersonating the

real sender. To detect this attack, the receiver’s address is also hashed, so that

the replayed email has a different hash value. As a result, the FriendlyMail ad-

don on the receiver’s side will fail to find a corresponding hash on the original

sender’s OSN account. The receiver is then notified about the hash mismatch.

6. Impersonation to a friend on OSNs. The adversary is familiar with

FriendlyMail design or is a FriendlyMail user. She intends to abuse FriendlyMail

to send malicious emails which look protected and trusted to the targeted user.

To do so, she needs to be friend with the receiver on the OSN. Therefore she

creates a fake account in the OSN impersonating a friend of the targeted user

and tricks the targeted user to accept her friend request. As FriendlyMail

relies on existing authenticated connections on the OSN, attack regarding fake

accounts cannot be detected.

7. Compromised email accounts. If a sender’s email account is compromised,

but not the OSN account, several attacks can be considered (besides item 3). An

attacker will be unable to decrypt encrypted messages without access to the vic-

tim’s OSN account; note that, we do not consider brute-forcing a random AES

128-bit key. The attacker also cannot send any new protected emails from the

compromised account (requires the OSN account access). However, as hashes

of previously sent protected emails are available on the sender’s OSN account,

the attacker could try to resend an old email to the original recipient. Note

that, sending such an email to new recipients will not be verified as discussed in

item 5. The attacker can also resend a captured FriendlyMail-processed email
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without even compromising the sender’s email account; the email can be sent

from any account by changing the FROM field to the intended sender’s address.

As the corresponding hash value would already be available on the victim’s OSN

account, on the receiver’s side, FriendlyMail would identify the replayed email

as authentic.

This attack could be mitigated by calculating the difference between the time

when the email was sent/received, and the time when the corresponding hash

value was published. If the difference is above a certain threshold, the receiver

is notified. Another detection mechanism would be to verify whether the order

in which emails are received corresponds to the order in which the hashes are

published.

8. Exposure of key and hash values. For obvious reason, the per-email key

Km must be made available only to the receiver. Any other relaxed restriction

on Km may break confidentiality. For example, if the key is published as visible

only to the sender’s friends’ list, any of those friends can access the email content

if they have access to the encrypted email. Similarly, for the integrity-only

protection, the hash values should preferably be available only to the recipient.

Otherwise, the communication patterns of a sender would be exposed, e.g., to

OSN friends/non-friends; see also item 2. Note that, only the OSN provider

may learn who the recipients are of a protected email, but the sender’s OSN

friends/non-friends cannot know the receivers’ identities.

9. Compromised OSN accounts. An attacker who has compromised the vic-

tim’s (Alice) OSN account has access to all stored key and hash values. The

attacker can also monitor the OSN account for new keys as they are posted. If

he has access to encrypted emails, the attacker can now read confidential emails.

He can also launch impersonation attacks as follows. The attacker creates an

email for Bob, impersonating Alice (i.e., FROM = IDA), and publishes the

hash on Alice’s OSN account (encryption keys can also be posted accordingly).
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When Bob checks the email for integrity and origin authentication, the verifica-

tion process succeeds (Bob is also able to decrypt an encrypted message). The

attacker can also delete all stored hash values and keys. This will not affect the

decryption and validation of past emails, if local copies of all keys and hashes

are kept.

10. Malicious email content. An attacker can send malicious URLs (including

links to adulterated FriendlyMail addons), and attachments within a protected

email. We do not address such attacks, as they are similar to existing phishing

emails. Only confidentiality and integrity of the content (malicious or benign),

and sender-authentication can be expected from FriendlyMail.

11. Visual cues and security statements. All security indicators are placed

outside of the email content area, to prevent the forgery of FriendlyMail indi-

cators within the content of a malicious email. The attacker can simply forge a

FriendlyMail protected email, add a FriendlyMail security statement conveying

a successfully decrypted/verified email in the beginning of the email. She then

sends it to another FriendlyMail user, tricking the user that it is a legitimate

and verified FriendlyMail email. As the user expects FriendlyMail to be secure

by default and everything is automatically controlled by FriendlyMail, if secu-

rity of FriendlyMail depends on the user’s attention, FriendlyMail might fail.

Also in the case that an email cannot be protected by FriendlyMail (e.g., the

receiver cannot be found among the sender’s OSN friends), FriendlyMail dis-

ables the composition UI, removes the send button to avoid any sensitive email

content to be accidentally sent by the user. It also notifies users through a red

border color and a security statement; see Figure 8.

12. No trusted third-parties. We introduce no third parties in our design; users

are also not required to trust the FriendlyMail developers. Both the Friendly-

Mail Firefox addon and Facebook app are open-source. We do not run any

service for users, or collect any information from users. Such a design choice
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may help user-acceptance, as a user’s email and OSN accounts could be ex-

tremely privacy-sensitive. Even though a trusted third party could simplify the

design and increase ease-of-use, we strongly discourage such practices, especially

from a privacy-enhancing tool.2

6.2 Usability and Deployment

Below we discuss FriendlyMail deployment and usability issues with email and OSN

providers. We have tested the current implementation within our research group,

mainly to check functionality and UI issues. The addon worked as expected. However,

no formal user studies have been performed yet.

6.2.1 Deployment Analysis

1. Email providers lose access to confidential messages, and thus, cannot directly

benefit from content-aware advertising. However, generic ads can still be served.

As only selected messages will be confidentiality-protected, revenues for ad-

supported email services are unlikely to suffer.

2. OSN providers may observe only minor changes to the number of posted mes-

sages, even if FriendlyMail is largely adopted. Each protected email will result

in additional content posted to OSNs; however, the size of each post is relatively

small (e.g., tens of bytes). Although the global email volume per day is large,

FriendlyMail may be used only for a small fraction of selected messages.

3. OSN providers will also receive more search queries due to FriendlyMail searches

for friends (and other supported relationships) and post messages. Queries are

2Cf. a statement from the popular Enlocked email security service (https://www.enlocked.com/

Works.html): “...the only one able to read your secured messages is you!...The systems at Enlocked

only have access to your messages for the short time we are encrypting or decrypting them, and

then our software instantly removes any copies.”
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issued when sending and opening each protected email. Server-side costs for

these queries would be non-trivial; the average number of friends is expected

to be moderate (e.g., 190 in Facebook as of Nov. 21, 2011 [4]); however, the

number of posted messages from FriendlyMail and regular OSN usage would

likely grow over time (hundreds or thousands, unless old posts are gradually

deleted). Note that modern OSN providers are apparently well-equipped to

handle such loads, as evident from their support for thousands of OSN-specific

apps that make extensive use of such queries.

6.2.2 Usability Analysis

1. Assume that a sender, Alice, is already logged into her OSN account; she also

identified Bob’s OSN profile (the receiver) to the FriendlyMail addon, when she

first sent a protected email to Bob. Subsequently, Alice only needs to select

Secret Compose for confidential emails, and tick a checkbox for integrity-only

protection. Bob can open an email as usual; sender authentication, message

verification, and decryption are performed automatically. However, to benefit

from FriendlyMail protections, Bob must check the UI notification messages as

provided by the addon.

2. Users must explicitly select integrity/confidentiality protections for their mes-

sages. This allows users to control how their messages are protected. However,

users may mistakenly send out sensitive information unprotected. This risk is

unavoidable as long as we cannot encrypt all emails by default, which may break

email communications in many scenarios (e.g., emails sent to OSN-unconnected

receivers).

3. Searching for email content is a useful feature for many users, and could be

even more efficient than organizing emails through complex rules (see e.g., [86]).

However, keyword search within server-stored encrypted emails is not supported

for now (but cf. [79]). Searches on locally-stored decrypted emails can be easily
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supported (e.g., by saving the decrypted versions, or the keys).

4. One challenge in our design could be the hash verification race issue, where

there is a delay in the stored hash on the OSN to be available to the receiver.

However, this should not be a concern now, as OSNs (e.g., Facebook) are very

fast. In the presence of such a delay, the receiver may open the received email

and try to verify or decrypt it, while the stored hash is not still available on

the sender’s OSN account. Therefore, the locally computed hash value does not

match any hashes on the sender’s OSN account and the email cannot be verified

or the decryption key cannot be found. To address this issue, one solution could

be to check the presence of the stored hash on the sender’s OSN account by

FriendlyMail, before sending the email to the receiver. As another solution, if

FriendlyMail at the sender side could not find the exact matching hash value

in the first attempt, it should ask the receiver to check the email again later to

make sure if it is not a false alarm due to the latency. However, both solutions

adversely affect usability of FriendlyMail to some extent; in the first solution,

the sender should wait until the hash is available, then the email can be sent.

In the second solution, the receiver needs to check the received email several

times.

5. Message posts from FriendlyMail on the OSN site may clutter the sender’s

message page. However, as is the case for Facebook, the OSN site may support

hiding messages from selected apps/users. One limitation of Facebook API is

also that Facebook apps cannot automatically publish hidden posts to users’

wall. However if users hide them, Facebook apps can search among hidden

posts.

6. We depend on the OSN’s availability to be able to provide email Confiden-

tiality and email integrity. When the OSN servers are down, users cannot

publish/retrieve keys/hash values and encrypt/decrypt/verify their emails. A

workaround is to have a locally backup of all keys and hash values on the user’s
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machine. Also in case of Facebook, using the post method3 limits Facebook

applications to only 25 posts per day to the user’s wall post on behalf of the

user. Therefore, FriendlyMail users cannot send more than 25 emails per day.

The number of posts per day is also subject to change.

3www.fbdevwiki.com/wiki/graph:post
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Chapter 7

Conclusions and Future Work

Few corporations (e.g., Google, Microsoft) are becoming de-facto global communica-

tion middlemen, as more users are signing up for web-based email services. Besides

these corporations, governments are also trying to access the cloud stored email data

(see e.g., [77, 40]), ignoring privacy rights of global citizens. Providing crypto support

for email is apparently easy (e.g., several crypto primitives exist to enable authenti-

cation, confidentiality and integrity); however, key management is significantly more

challenging. We propose and implement FriendlyMail, focusing on key management

issues. We automate key generation and transport, by leveraging widely-used OSN

services and existing trust-relations among OSN users. Beyond email encryption,

such a key transport mechanism may enable privacy protection for additional user-to-

user data communication services (e.g., encrypted IMs, file sharing via public cloud).

FriendlyMail does not require any server-side modifications, and thus can be imme-

diately deployed. Although it enables secure email communications mainly between

OSN-connected users. In contrast, most other solutions target generic adoption, i.e.,

can support any sender and receiver. The collusion between OSN and email providers

could be real a concern. Our current implementation supports the web-based Gmail

service for users who are also connected via Facebook (as friends, or through the Like

relationship on a Facebook Page). FriendlyMail Firefox addon is available at http://

users.encs.concordia.ca/~mmannan/software.html.
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7.1 Future Work

Several points, specially regarding users’ perspective, may be considered in the future.

1. Collusion attacks between email and secondary channel providers are still a real

problem which requires further investigations.

2. FriendlyMail currently is limited to the basic email features. Further improve-

ments to the implementation are required to add the support for file attachment,

searching and archiving emails and key backup for better user acceptance.

3. Another future direction should be toward addressing the fact that how we can

make everyday users aware of email privacy issues and influence them using a

privacy-friendly solution. What benefits or desired features users would gain

(expect to have) by using these solutions, so that they consider using such a

privacy-friendly tool.

4. On the trust issue, further studies need to be done to figure out how to convince

users to build trust in privacy-enhanced systems; and make them understand

that their privacy is maintained and no personal information would leak through

the use of such tools. Despite the fact that FriendlyMail is developed as a fully

open-sourced tool, still average users do not have enough understanding of the

underlying code to verify it by themselves.

68



Bibliography

[1] J. Callas and L. Donnerhacke and H. Finney and D. Shaw and R. Thayer.

OpenPGP Message Format, November 2007. RFC 4880.

[2] B. Adida, D. Chauand, S. Hohenberger, and R. L. Rivest. Lightweight email sig-

natures (extended abstract). In Fifth Conference on Security and Cryptography

for Networks (SCN’06), pages 288–302. Springer Verlag, 2006.

[3] B. Adida, S. Hohenberger, and R. L. Rivest. Lightweight encryption for

email. In USENIX steps to reducing unwanted traffic on the internet workshop

(SRUTI’05), pages 13–13, Cambridge, MA, jul 2005.

[4] L. Backstrom. Facebook data science. Online article (Novem-

ber 21, 2011). https://www.facebook.com/notes/facebook-data-team/

anatomy-of-facebook/10150388519243859.

[5] BBC News. Edward Snowden was NSA Prism leak source -

Guardian. News article (June 10, 2013). http://www.bbc.co.uk/news/

world-us-canada-22836378.

[6] BBC News. Facebook has more than 83 million illegitimate accounts. News

article (Aug. 2, 2012). http://www.bbc.co.uk/news/technology-19093078.

[7] D. Boneh and M. K. Franklin. Identity-based encryption from the weil pairing.

In CRYPTO’01, pages 213–229, Santa Barbara, California, USA, 2001.

69

https://www.facebook.com/notes/facebook-data-team/anatomy-of-facebook/10150388519243859
https://www.facebook.com/notes/facebook-data-team/anatomy-of-facebook/10150388519243859
http://www.bbc.co.uk/news/world-us-canada-22836378
http://www.bbc.co.uk/news/world-us-canada-22836378
http://www.bbc.co.uk/news/technology-19093078


[8] J. Bonneau, C. Herley, P. C. van Oorschot, and F. Stajano. The quest to re-

place passwords: A framework for comparative evaluation of web authentication

schemes. In IEEE Symp. on Security and Privacy, May 2012.

[9] Y. Boshmaf, I. Muslukhov, K. Beznosov, and M. Ripeanu. The socialbot network:

when bots socialize for fame and money. In ACSAC’11, Orlando, FL, USA, 2011.

[10] K. Butler, P. Trayno, W. Enck, J. Plasterr, and P. McDaniel. Privacy preserv-

ing web-based email. In 2nd International Conference on Information Systems

Security (ICISS’06), Kolkata, India, Dec. 2006.

[11] Q. Cao, M. Sirivianos, X. Yang, and T. Pregueiro. Aiding the detection of fake

accounts in large scale social online services. In USENIX NSDI’12, San Jose,

CA, USA, 2012.

[12] ComScore. It’s a social world: Top 10 need-to-knows about social networking

and where its headed. Online article (December 21, 2011). http://www.

comscore.com/Insights/Presentations_and_Whitepapers/2011/it_is_a_

social_world_top_10_need-to-knows_about_social_networking.

[13] Comscoredatamine.com. People spent 6.7 billion hours

on social networks in October. Online article (Jan-

uary 4, 2012). http://www.comscoredatamine.com/2012/01/

people-spent-6-7-billion-hours-on-social-networks-in-october.

[14] L. F. Cranor and S. Garfinkel. Guest editors’ introduction: Secure or usable?

IEEE Security and Privacy, 2(5):16–18, Sept. 2004.

[15] S. Crocker, N. Freed, J. Galvin, and S. Murphy. MIME Object Security Services,

October 1995. RFC 1848.

[16] D. Crocker and T. Hansen and M. Kucherawy. DomainKeys Identified Mail

(DKIM) Signatures, September 2011. RFC 6376.

70

http://www.comscore.com/Insights/Presentations_and_Whitepapers/2011/it_is_a_social_world_top_10_need-to-knows_about_social_networking
http://www.comscore.com/Insights/Presentations_and_Whitepapers/2011/it_is_a_social_world_top_10_need-to-knows_about_social_networking
http://www.comscore.com/Insights/Presentations_and_Whitepapers/2011/it_is_a_social_world_top_10_need-to-knows_about_social_networking
http://www.comscoredatamine.com/2012/01/people-spent-6-7-billion-hours-on-social-networks-in-october 
http://www.comscoredatamine.com/2012/01/people-spent-6-7-billion-hours-on-social-networks-in-october 


[17] D. Dolev and A. C. Yao. On the security of public key protocols. IEEE Trans-

actions on Information Theory, 29(2):198–208, Mar. 1983.

[18] N. Doshi. Facebook applications accidentally leaking ac-

cess to third parties - updated. Symantec official blog

(May 10, 2011. http://www.symantec.com/connect/blogs/

facebook-applications-accidentally-leaking-access-third-parties.

[19] M. Dworkin. Recommendation for block cipher modes of operation: The CCM

mode for authentication and confidentiality (NIST SP 800-38C), May 2004.

[20] Enlocked. A plugin for Firefox, iPhone, Android and Outlook. http://www.

enlocked.com/.

[21] Facebook. Facebook Query Language (FQL) reference. https://developers.

facebook.com/docs/reference/fql.

[22] Facebook. Facebook reports first quarter 2013 results. Online article (May 1,

2013). http://investor.fb.com/releasedetail.cfm?ReleaseID=761090.

[23] Facebook. Notifications. https://www.facebook.com/help/notifications.

[24] Facebook. Publishing. https://developers.facebook.com/docs/reference/

api/publishing/.

[25] Facebook. Safety center, tools. Online document. http://www.facebook.com/

safety/tools.

[26] Facebook. Statement of rights and responsibilities. http://www.facebook.com/

legal/terms.

[27] Facebook. The login flow for web (without JavaScript

SDK). https://developers.facebook.com/docs/facebook-login/

login-flow-for-web-no-jssdk/#confirm.

71

http://www.symantec.com/connect/blogs/facebook-applications-accidentally-leaking-access-third-parties
http://www.symantec.com/connect/blogs/facebook-applications-accidentally-leaking-access-third-parties
http://www.enlocked.com/
http://www.enlocked.com/
https://developers.facebook.com/docs/reference/fql
https://developers.facebook.com/docs/reference/fql
http://investor.fb.com/releasedetail.cfm?ReleaseID=761090
https://www.facebook.com/help/notifications
https://developers.facebook.com/docs/reference/api/publishing/
https://developers.facebook.com/docs/reference/api/publishing/
http://www.facebook.com/safety/tools
http://www.facebook.com/safety/tools
http://www.facebook.com/legal/terms
http://www.facebook.com/legal/terms
https://developers.facebook.com/docs/facebook-login/login-flow-for-web-no-jssdk/#confirm
https://developers.facebook.com/docs/facebook-login/login-flow-for-web-no-jssdk/#confirm


[28] Facebook. What happens to content (posts, pictures, etc) that I delete from

Facebook? http://www.facebook.com/help/356107851084108/.

[29] S. Fahl, M. Harbach, T. Muders, and M. Smith. Confidentiality as a service -

usable security for the cloud. In TRUSTCOM’12, Liverpool, UK, June 2012.

[30] S. Fahl, M. Harbach, T. Muders, and M. Smith. TrustSplit: Usable confidential-

ity for social network messaging. In (Hypertext’12), Milwaukee, WI, USA, June

2012.

[31] S. Fahl, M. Harbach, T. Muders, M. Smith, and U. Sander. Helping Johnny 2.0

to encrypt his Facebook conversations. In Symposium on Usable Privacy and

Security (SOUPS’12), pages 11:1–11:17, Washington, D.C., 2012.

[32] A. J. Feldman, A. Blankstein, M. J. Freedman, and E. W. Felten. Social net-

working with frientegrity: privacy and integrity with an untrusted provider. In

Security’12, Bellevue, WA, 2012.

[33] Felix. GPG4Browsers. Open source project. http://gpg4browsers.recurity.

com/.

[34] Fortinet. Fortimail identity based encryption. White paper.

http://www.fortinet.com/sites/default/files/whitepapers/

fortimail-identity-based-encryption.pdf.

[35] A. Fry, S. Chiasson, and A. Somayaji. Not sealed but delivered: The (un)usability

of s/mime today. In Annual Symposium on Information Assurance and Secure

Knowledge Management (ASIA’12), Albany, NY, June 2012.

[36] S. L. Garfinkel. Enabling email confidentiality through the use of opportunistic

encryption. In Conference on Digital Government Research (dg.o’03), Boston,

USA, may 2003.

72

http://www.facebook.com/help/356107851084108/ 
http://gpg4browsers.recurity.com/
http://gpg4browsers.recurity.com/
http://www.fortinet.com/sites/default/files/whitepapers/fortimail-identity-based-encryption.pdf
http://www.fortinet.com/sites/default/files/whitepapers/fortimail-identity-based-encryption.pdf


[37] S. L. Garfinkel. Design principles and patterns for computer systems that are

simultaneously secure and usable. PhD thesis, Massachusetts Institute of Tech-

nology, Cambridge, MA, USA, 2005.

[38] S. L. Garfinkel, D. Margrave, J. I. Schiller, E. Nordlander, and R. C. Miller.

How to make secure email easier to use. In Conference on Human Factors in

Computing Systems (CHI’05), pages 701–710, Portland, Oregon, USA, 2005.

[39] S. Gaw, E. W. Felten, and P. Fernandez-Kelly. Secrecy, flagging, and para-

noia: adoption criteria in encrypted email. In Conference on Human Factors in

Computing Systems (CHI’06), pages 591–600, Montreal, Quebec, Canada, 2006.

[40] Google. Transparency report: What it takes for governments to access per-

sonal information. Google official blog (January 23, 2013). http://googleblog.

blogspot.co.uk/2013/01/transparency-report-what-it-takes-for.html.

[41] Greasemonkey. The weblog about Greasemonkey. http://www.greasespot.

net/.

[42] P. Gutmann. Why isn’t the internet secure yet, dammit. In Asia Pacific Infor-

mation Technology Security Conference (AusCERT’04), Gold Coast, Australia,

May 2004.

[43] P. Gutmann, editor. Engineering security. Book draft, Apr. 2013. http://www.

cs.auckland.ac.nz/~pgut001/pubs/book.pdf.

[44] K. Hampton, L. S. Goulet, L. Rainie, and K. Purcell. Social networking sites

and our lives. Online report (June 16, 2011). http://www.pewinternet.org/

Reports/2011/Technology-and-social-networks/Summary.aspx.

[45] J. V. Hoboken, A. Arnbak, and N. V. Eijk. Cloud computing in higher education

and research institutions and the USA Patriot Act, Nov. 2012. http://ssrn.

com/abstract=2181534.

73

http://googleblog.blogspot.co.uk/2013/01/transparency-report-what-it-takes-for.html
http://googleblog.blogspot.co.uk/2013/01/transparency-report-what-it-takes-for.html
http://www.greasespot.net/
http://www.greasespot.net/
http://www.cs.auckland.ac.nz/~pgut001/pubs/book.pdf
http://www.cs.auckland.ac.nz/~pgut001/pubs/book.pdf
http://www.pewinternet.org/Reports/2011/Technology-and-social-networks/Summary.aspx
http://www.pewinternet.org/Reports/2011/Technology-and-social-networks/Summary.aspx
http://ssrn.com/abstract=2181534
http://ssrn.com/abstract=2181534


[46] ITWorld.com. Facebook’s ‘man in the middle’ attack on our data. News ar-

ticle (February 5, 2012). http://www.itworld.com/it-managementstrategy/

247344/facebooks-man-middle-attack-our-data.

[47] R. Kainda, I. Flechais, and A. Roscoe. Security and usability: Analysis and

evaluation. In International Conference on Availability, Reliability, and Security

(ARES’10 ), pages 275–282, 2010.

[48] W. Koch and M. Brinkmann. STEED – usable end-to-end encryption, Oct. 2011.

Whitepaper and open-source project: http://g10code.com/steed.html.

[49] A. Lambert and S. Bezek. Waterhouse: secure e-mail for human beings.

Online document. http://social.cs.uiuc.edu/class/cs465/assignments/

evaluation%20and%20walkthrough/lambert-bezek.pdf.

[50] A. P. Lambert, S. M. Bezek, and K. G. Karahalios. Waterhouse: enabling secure

e-mail with social networking. In CHI’09, Boston, MA, USA, Apr. 2009.
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Appendix A

Evaluation

To provide a more concrete understanding of tools and proposals discussed in Chap-

ter 2 and a comparative analysis, we adapt the recently-proposed UDS (Usability,

Deployability, Security) framework by Bonneau et al. [8]. We redefine each UDS fea-

tures of the framework, to fit it into our case of email security. We opt for usability

inspection methods of Nielsen’s heuristic evaluations [62, 64, 61], mostly because this

form of informal evaluation is useful in situations where conducting real user studies

is time consuming and costly. We extend this evaluation to deployability and security

aspects of secure email systems, based on the defined sets of heuristics, to form our

UDS framework. Note that, the framework and comparison, is still a work in progress.

It does not cover the evaluation and comparison of all previously mentioned tools and

proposals. Also, as evaluation of each tool is a time consuming process which requires

several careful tests, our evaluations might not be completely accurate. Additionally,

some proposals do not have an available tool for test. In these cases, we perform

analytical comparison instead.

A.1 Evaluation Framework

We define three sets of features: usability, deployability and security. Our usabil-

ity features are mostly based on five properties of security, presented by Whitten
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et al. [87], and the design and user interface usability principals of Gutmann [43],

Nielsen [62, 63] and Kainda et al. [47]. We define security features mostly based

on email security threat model and some properties of Whitten et al. and Kainda

et al. Our deployability features are more concerned about obtaining, installation,

and configuration of the software, which are mostly based on the two properties of:

unmotivated property and barn door property as stated by Whitten et al. Our us-

ability features are more related to the user interaction and communication with the

software, more specifically its user interface and the user’s tasks. These features and

their definitions are as follows.

A.1.1 Usability Features

U1 Matching-Users’-Mental-Model

Users’ security-related tasks and the UI presenting those tasks should be easily

conceivable, without requiring any knowledge or training about the security

concepts. Thus, the user can intuitively find out what task should be done to

achieve a specific goal.

Also, these tasks and their related UI, should not be complex to cause users

abandon the scheme. Using familiar metaphors, matching users’ mental model,

to represent the tasks along with familiar words/expressions, greatly helps users

to follow them.

As an example, based on the user test result by Whitten et al. [87], PGP 5.0 as

a PKI-based approach, does not match users’ mental model, as it is not obvious

to all users that to send an encrypted email to another party, the public key of

the recipient should be obtained in advance, or why they must have two keys,

instead of one, to have their emails protected.

U2 Transparent-Security-Tasks

As security of email is not the primary goal of email users, security tasks should

be as transparent as possible, and users should not be exposed to details of
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security tasks (e.g., like the use of SSL in browsers). Thus, most security-

related tasks should be done automatically, without involving the user into the

technical details.

U3 User-Control

Email encryption may not be always necessary, convenient or possible. This

feature has both usability and security effect and is considered as a both us-

ability and security-related feature. In order to avoid making users completely

abandon the scheme, or accidentally disclose their email content, users should

decide when to secure their emails and should be informed about the success

and failure of the security related tasks.

U4 Effortless-Key-Management

The scheme should employ an appropriate mechanism to reduce key manage-

ment efforts. Symmetric key encryption mechanisms and PGP, e.g., require

initial key establishment using a secure channel like phone or meeting in per-

son; therefore these schemes that do not offer this feature.

The scheme should also impose no burden on users to store, verify, and re-

voke keys. Schemes, not providing this benefit include: PKI-based ones, which

have no satisfactory solution to manage private keys, or any other scheme that

requires users to verify their keys manually.

We define a scheme as Partial-Effortless-Key-Management, in case that it fails

to provide one or more of automatic key generation, distribution, storage, veri-

fication, and revocation.

U5 Easy-Recovery-From-Loss

Users should be able to easily access their past encrypted emails, in case of key

loss/disclosure. This can be achieved through automatic email or key backup

through the scheme.
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U6 Efficient-To-Use

The security-related tasks, should be completed in an acceptable amount of

time and effort. The number of button clicks or the time needed to complete

the whole task, should be minimal. These tasks should also be reliable to avoid

user frustration.

U7 Consistent-User-Experience

The scheme should be well integrated with the existing email work flow. The

scheme should not prevent users from performing their regular tasks e.g., reply-

ing, forwarding emails, multiple recipients or attachments. All required tasks

should be performed through familiar existing email client rather than a partic-

ular user interface provided by the scheme or external website/service. More-

over, the scheme should be designed and deployed for most platforms (e.g., web,

desktop, mobile client) supported by any email provider.

A scheme offering Quasi-Consistent-User-Experience benefit, preserves user ex-

perience of regular email work flow, but might not support some of the existing

email system features, such as searching by content. Moreover its design is not

restricted to a specific client or provider, yet has not been implemented for all

clients.

U8 Effective-Feedback-To-User

The scheme should notify users about its status, and the failure or the success of

any action it takes on the user’s behalf, using appropriate feedback in a timely

fashion. Error feedback should also explain both the cause of the problem

and possible solutions to users. Moreover, scheme status or error feedback

should be presented to users using simple yet effective messages. The scheme

should communicate with users through familiar words/expressions, including

less technically-heavy terms. These expressions should be consistent across the

whole system to avoid user confusion. Metaphors, symbols and visual cues can
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also be used to make it easier for users to figure out the system states or error

feedback.

A.1.2 Deployability Features

D1 No-Server-Side-Changes

The scheme should not expect any cooperation or support from email service

providers. It should not require any changes to be made into email infrastruc-

ture, email providers’ MUAs (Mail User Agents) and policies or implementation

of new security systems by email providers. Email providers, especially free

services, have no incentives to make any changes or implement new security

mechanisms in their systems. The scheme also may not introduce additional

server-side components or employ any server, as server maintenance requires

some efforts while the scalability of these servers could be problematic which

can affect the availability of the scheme.

D2 Portable

Users are not limited to their primary computer and can use the scheme from

any other machines. Schemes that require special software to be installed with

administrative rights, or store keys or other sensitive information required in

their work flow on users’ machine, do not support mobility.

D3 Flexible

The scheme should be designed and implemented in a way that can satisfy

both technical and non-technical users. It should provide some options to more

experienced users to be able to customize the scheme to fit into their needs.

These options should also be configured to their safe default modes, to let

inexperienced users utilize the scheme, without making any confusion or security

issue for users.

D4 No-Prior-Setup-For-Users
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Any prior setup that causes burden or inconvenience to the sender or receiver, or

act as an obstacle to email encryption, degrades the deployability. For example,

secret keys or public keys that must be shared with the receiver, prevents the

sender from sending encrypted emails before the sharing of keys is done. Users

do not also need to install, configure, setup or register for additional software

or services, to get the scheme to work.

D5 Free-And-Open-Sourced

The details of the scheme and its source code are freely available to be used

for any purposes or adapted by anyone. Its source code should also be well-

documented, distributable and modifiable or derivable to be used in other

projects.

D6 Available-Implementation

The scheme has been implemented and used by people as an actual email secu-

rity solution rather than a simple research prototype or proposal. The imple-

mentation should also be reliable and up-to-date.

A.1.3 Security Features

S1 Confidentiality

The scheme employs appropriate methods such as encryption or steganography

to make the email entirely or partially (e.g., body, subject-line and attachments)

confidential. This protection should also be end-to-end; i.e., it is done at the

user client than the email server, gateway or a trusted third party, to remain

encrypted in transit and deliver encrypted, directly to the user’s email client.

For example, a trusted third party who automatically generates and maintains

keys while is in the possession of encrypted emails, has the ability to decrypt

and read or even modify emails at any time without users’ notice or consent.

It should also avoid content leakage to the email provider, e.g., while being
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written, or kept in user inbox.

A scheme rated as Partial-Confidentiality, does not provide end-to-end protec-

tion at the message level such as using SSL in webmail, opportunistic encryption

through gateways, etc. We also rate schemes that rely on non-colluding third

parties as Quasi-Confidentiality.

S2 Authentication

There should be a possible and intuitive method to verify keys and authenticate

an email sender and receiver mutually, to prevent attackers from impersonating

the sender or receiver of an email.

S3 Content-Modification-Detection

The scheme employs a method to verify email content integrity, with or without

confidentiality.

S4 Non-Repudiation

A scheme offers Non-Repudiation if there is a cryptographic proof to verify that

an email is sent from the one who claims to be the sender. In another word, in

the presence of such a proof, the sender cannot deny that a particular email has

been sent by her. Non-repudiation is generally achieved by digital signatures,

when, e.g., a certificate issued by a CA can be counted as a proof, as it binds

the identity of the sender to the key.

S5 Critical-Error-Prevention

The user interface should be carefully designed and implemented in a way that

initially prevents users from making any dangerous errors leading to critical

security exposures. This can be done by leaving no choice to make decision

by users in critical conditions and making all critical processes automatic. It

should not also rely on the direct user attention to the details of each task, to

achieve the security goals of the system. Moreover, if any error occurs during
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the process, an appropriate and non-confusing feedback, describing the current

process status, should be presented to the user. A problematic case regarding

this feature could be any scheme not informing users properly about encryption

failure and sends it anyways with no feedback, or a scheme that decrypts an

email automatically before reaching to the receiver’s inbox, leaving the scheme

vulnerable to the phishing attacks.

S6 Robust-Against-Secret-Key-Exposure

Compromised secret keys, used for encryption, should have limited effects on

the security of the system. In other words, disclosure of a key may limit the

exposure of future or previous past email communications . For example, in the

case of disclosure of a key with per-message keys, the confidentiality of all email

content are protected, other than the one encrypted by the compromised key.

This feature makes the process of interception of all emails difficult and costly

for attackers.

A.2 Evaluation and Comparison

In this section, we evaluate FriendlyMail and some previously discussed proposals/

tools in Chapter 2, using the UDS features presented in Section A.1. The summary

of evaluations and comparisons are presented in Figure 3.

We modify the original UDS framework, by defining five levels of rating: Full-

benefit, Quasi-benefit, Partial-benefit, Not-Applicable-benefit and No-benefit. A

scheme is rated to provide partial-benefit, if it offers the feature partially, between

no-benefit and full-benefit. Quasi, refers to the case that a scheme almost offers the

feature, e.g., in case where no scheme can completely satisfy a particular feature.

Finally, we rate a scheme as Not-Applicable (N/A) if a feature is not discussed, im-

plemented or cannot be tested. As our user interface usability ratings are not based

on usability studies on everyday email users, we rely on our own tests through the use

of the tools (if available), and on our understanding of the schemes and the provided
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specifications.

A.2.1 UDS Evaluation of FriendlyMail

FriendlyMail apparently offers Matching-Users’-Mental-Model, Transparent-Security-

Tasks, and Efficient-To-Use. The underlying concept of symmetric encryption is

quite easy to understand compared to PKI. Steps to be followed by a FriendlyMail

user includes: logging into OSN accounts, selecting the sender/receiver’s OSN ac-

count from a provided list of OSN friends, and deciding when to send a secure email

(different modes of operation, e.g., confidentiality vs. integrity-only). It also inte-

grates the receiver’s OSN photo and basic information, as an intuitive way of identity

verification. All security-related tasks are represented via a minimal and intuitive

user interface, implemented and explained through the use of visual cues and famil-

iar expressions, while technical security tasks are completely transparent to users.

Moreover, automatic encryption/decryption, integrity check and loading email con-

tent are reasonably fast and imperceptible, which would not frustrate the user; see

Section 5.2. Providing users with different options for securing email and several feed-

back on the state of the performed tasks also satisfies the benefit of User-Control. It

is Key-Management-Effortless ; see Section 4.4 under “Automatic key management”.

Key revocation is not applicable. Keys/hash values are optionally and automatically

backed up locally, in the case when a key/hash value is deleted from the OSN, satis-

fying Easy-Recovery-From-Loss. FriendlyMail secures regular email tasks e.g., reply,

forward and multiple recipients. Also the transparency of technical tasks, minimal

UI and user involvement, preserve the same user experience as with the regular email

work flow. Yet, it provides Quasi-Consistent-User-Experience, as still no promising

solution has been designed or implemented for email content searching, backup, etc.

It also provides Effective-Feedback-To-User ; see Section 5.2 under “Visual cues and

security statements”.

The deployment of FriendlyMail is fairly easy. It satisfies No-Prior-Setup-For-

User, since it requires no prior setup or installation of additional software except
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the plug-in. The sender can also send an encrypted email, even if the receiver does

not have the shared key or the plug-in installed on his system in advance. However,

FriendlyMail requires both the sender and receiver to be connected in a common

OSN, we believe it does not prevent users from using our tool, as we are leveraging

existing services rather than asking users to register for a completely new one. In

addition, our integrity check mechanism does not require such existing OSN relation-

ships. Moreover, no specific or complex configuration is needed for a normal user. It

is Flexible, as it provides more technical users with an advanced option of using their

own keys. It is Free-And-Open-Sourced and offers Partial-Available-Implementation,

as it is still an academic prototype, but publicly available. FriendlyMail satisfies

Quasi-No-Server-Side-Changes, as it depends on the OSN services, but does not need

additional components. Current implementation of FriendlyMail through Facebook

also limits its availability in countries where accessing Facebook is blocked. However,

this limitation can be addressed to some extent by extending the implementation via

several OSNs.

FriendlyMail offers security features of Quasi-Confidentiality, as in certain cases

collusion attack cannot be avoided. Non repudiation is not a goal for Friendly-

Mail. Therefore, we rate it as Not-Applicable-Non-Repudiation. It offers Content-

Modification-Detection, Critical-Error-Prevention. However, it provides Quasi-

authentication, as it relies on the existing pre-authenticated connections among friends

on Facebook. This still leaves FriendlyMail vulnerable to impersonation attack, due

to the existence of fake accounts. Per-message key approach offers Robust-To-Secret-

Key-Exposure. See Section 6.1 for details.

A.2.2 UDS Evaluation of Other Proposals/Tools

1. Enigmail

Enigmail uses OpenPGP, therefore is rated as not offering Matching-Users’-

Mental-Model, Transparent-Security-Tasks ; as it is already discussed in Sec-

tion 2.1.1, the perception of the public/private key concept is difficult for users.
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Trust in Web of Trust is another issue, which is not intuitive for average users,

specially when it comes to decide about the trustworthiness of others, who are

not in the user’s close circle. Users should generate a pair of public/private

key, a revocation certificate and a passphrase. Users also should manually store

their revocation certificate and passphrase in a safe place and distribute their

public keys and verify other users’ public keys. Moreover, as most key man-

agement tasks are on users, it does not offer Effortless-Key-Management. It

satisfies User-Control, as users can choose when to sign or encrypt their emails

and will be notified about the failure or success of the task. It does not offer

Easy-Recovery-From-Loss, as users should create a revocation certificate, store

it in a secure place to be later used to revoke their public key, in case when

their secret key is lost or compromised. Moreover, if the keys are lost, past

encrypted email cannot be decrypted anymore. However, it is Efficient-To-Use;

signing and encryption/decryption are completely automatic and users should

just send their email as sending a regular email and pay attention to some se-

curity notifications. Although it keeps asking users to enter their secret key for

several times to decrypt and verify an email, even if it is configured to remember

the secret key for that session, which could be annoying to users. It also offers

Quasi-Consistent-User-Experience; it is completely integrated into the UI and

supports all the basic email tasks, except searching email content. Finally it

provides Effective-Feedback-To-User, using different colors, several visual cues,

along with security statements.

Enigmail is rated as No-Server-Side-Changes, as Enigmail by itself does not re-

quire additional servers, although for key distribution in large scale, key servers

are largely used. It is not also Portable, as users should carry their private key

from one machine to another. It is Flexible, as advanced options are presented

to expert users and the default settings are all configured to the safe options.

However, it does not offer No-Prior-Setup-For-Users, as users need to have

PGP installed on their machine in addition to the Enigmail extension and also
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obtain the recipient’s public key before encrypting an email for that recipient.

They also have to perform several initial configurations that may not be easy

or convenient for all users, e.g., key generation may take few minutes and users

should backup their key, create revocation certificates and passphrases, etc. It

is Free-And-Open-Sourced and has Available-Implementation.

It provides Confidentiality using OpenPGP, Authentication through certifi-

cates and Web of Trust, Content-Modification-Detection and Non-Repudiation

through digital signatures. Visual cues representing encryption may not be suf-

ficient, as the icon enabling encryption is not quite noticeable, and no other

cues such as color have been used, to make sure that users will notice when

their email will be encrypted. Thus, it might make users to send a sensitive

email without noticing that encryption is not enabled, and cannot be rated as

Critical-Error-Prevention. Moreover, disclosure of the private key exposes all

previously encrypted emails; however, timely key revocation prevents the dis-

closure of future encrypted emails. Thus, it is rated as Partial-Robust-Against-

Secret-Key-Exposure.

2. Waterhouse

As the tool is not available for test, we rate the scheme’s usability features

based on their presented mock up and cognitive walkthrough methods [49, 50].

It is Partial-Matching-Users’-Mental-Model, by avoiding technical terms, and

simplifying trust model. Trust is formed among pre-authenticated friend con-

nections on Facebook and displaying Facebook pictures of sender/receiver acts

as a proof of trust to users. Yet, it uses the same notion of public/private

keys which is not familiar to average users. It provides Partial-Transparent-

Security-Tasks, as all security tasks, e.g., signing, encryption/decryption and

public key distribution are automatic and hidden from users, except private key

storage and backup. Therefore it also gives Partial-Effortless-Key-Management,

but not Easy-Recovery-From-Loss, same as PGP. It secures emails by default
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among Facebook friends. However, users have the option to cancel any protec-

tion for their emails. Therefore, it gives User-Control. Since encryption and

decryption are transparent and its user interface is minimal and tasks are com-

pletely integrated with email client, it is considered to be Efficient-To-Use and

it is rated as Quasi-Consistent-User-Experience, mainly due to the searching

email content issue. Also as we have not tested the tool we suppose they have

secured other basic email tasks as well. It also gives Effective-Feedback-To-Users

through several visual cues and security statements.

Same as FriendlyMail it is rated as Quasi-No-Server-Changes and Portable, as

it depends on the availability of Facebook service and, users should carry their

private keys to be able to switch between different machines. It is not rated

as Not-Applicable-Flexible, as no customization is discussed. It does not offer

No-Prior-Setup-For-User, as the tool should be installed on both sides to share

public keys before having any secure communication. Its tool and source code

are not available, not to the public or for test, making it non-Free-And-Open-

Sourced and non-Available-Implementation.

From security perspective, it resembles PGP security to some extent. It provides

Confidentiality, Content-Modification-Detection and Non-Repudiation, through

encryption and signing using PGP. As FriendlyMail, their approach provides

Quasi-Authentication, as it trusts users’ pre-authenticated connections. Based

on their own heuristic evaluation [49], again as tool is not available for the

test, we rate it as Critical-Error-Prevention. It is Partial-Robust-To-Secret-Key-

Exposure, as if a private key is compromised, it is revoked and new key pairs

are generated and distributed to limit the damage. Although the process is not

automatic, and it is on users to revoke their compromised key. This may lead

to the exposure of larger number of encrypted emails, where the compromised

key is not revoked immediately after disclosure.

3. TrustSplit
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TrustSplit’s simple design (using symmetric key), incorporation of different col-

ors as visual cues, and familiar users’ tasks including: an initial registration for

an online service and entering a password for user authentication (see [31]) sat-

isfies Matching-Users’-Mental-Model. It is rated as Transparent-Security-Tasks ;

it encrypts all emails by default (if possible), and asks users to decide whether

to send it in plaintext or do not send it at all, in case where encryption is

not possible. Thus, it offers User-Control. It provides Partial-Effortless-Key-

Management, as encryption/decryption and key management are transparently

handled. However, the scheme still requires users to create, remember or store

an extra password of their CaaS account (which should also be different than

their email account’s password). It offers Easy-Recovery-From-Loss using their

CaaS service. It is Efficient-To-Use and Quasi-Consistent-User-Experience, as

it is well integrated into the email client UI and main security tasks are trans-

parent; users should just enter their password few times (each session), click a

button for sending secure emails and notice security indicators, while the whole

encryption/decryption are done in a relatively acceptable time [30]. However,

searching email content is not addressed. It offers Effective-Feedback-To-Users

using red/green message borders to inform users about the success/failure of

the tasks or locks as the symbol of a secure email.

It is not No-Server-Side-Changes, as it employs CaaS service. It is not Flexible

but Portable assuming the user can memorize the CaaS password and use it

from any machine. It does not offer No-Priory-Setup-For-User, as it requires

the sender and receiver to register to the CaaS service before using the tool. It

is Free-And-Open-Sourced, but not Available-Implementation for email client.

It provides Quasi-Confidentiality and Content-Modification-Detection of email

body and attachments. It does not offer Authentication, as verification through

email (Email-Based Authentication and Identification) is not authentication of

real identity. As its tool is not available for testing (for email client), we rate

it as Non-Applicable-Critical-Error-Prevention. Although if an email cannot
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be encrypted, it asks user if they prefer to send it unencrypted, which may

accidentally lead to disclosure of sensitive content by the user. It also satisfies

Robust-To-Secret-Key-Exposure, because of using random keys per message. Fi-

nally, it does not offer Non-Repudiation, as it does not use digital signatures.

4. Aquinas

Steganography and secret sharing concepts are quite simple. The security-

related user’s tasks, e.g., providing email accounts information and exchang-

ing a secret are also somewhat intuitive. However, due to the requirement of

multiple accounts, Aquinas offers Partial-Matching-Users’-Mental-Model. How-

ever, it is rated as non-Transparent-Security-Task and Partial-Effortless-Key-

Management, as users should decide which covertext to use for steganography;

the sender should choose and share a secret with the receiver through a secure

channel and store it securely. These tasks are non-trivial specially for non-

technical users. It offers User-Control, as encryption is not done automatically.

It is non-Easy-Recovery-From-Loss, as there is no automatic key recovery. It is

not Efficient-To-Use; users should do several additional tasks other that just

composing an email; they should choose a covertext and input email accounts

used for key and email transmission. The initial configuration is also non-

trivial, if users want to use the scheme on different machines. It does not offer

Consistent-User-Experience; it is not integrated into an existing email client.

We also rate it as Not-Applicable-Efficient-Feedback-To-User.

Aquinas is No-Server-Side-Changes and Portable; it is a standalone Java ap-

plet that can be accessed through the Internet and possibly be used on every

machine. It is Flexible as users can set the number of email accounts they want

to use to secure their email. Basic Aquinas does not offer No-Prior-Setup-For-

Users ; if bogus accounts are used, initial secret sharing is necessary. Also users

should add their email accounts into a public database to make them available

to the other users. It is Free-And-Open-Sourced and Available-Implementation.
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It offers Confidentiality and Content-Modification-Detection using (Message Au-

thentication Code) MAC. It does not offer Authentication as it is on users to

authenticate each other, specially when they add their email accounts to a public

database to make it available to other users, there is no way to authenticate and

bind email addresses with users identity. It does not also offer Non-Repudiation

as it does not employ digital signatures and the secret is shared between both

sender and receiver, thus a particular email can be sent by both of them. It

does not offer Critical-Error-Prevention as some security-related tasks rely on

users’ choice and knowledge, e.g., covertexts should be carefully chosen. It is

Robust-Against-Secret-Key-Exposure; as per-message keys are used for encryp-

tion, and different subset of email accounts can be used for key or email shares

transmission.

5. SPEmail

The main motivations of this approach are eliminating the need for any en-

cryption and key management through secret sharing. We rate SPEmail as

Partial-Matching-Users’-Mental-Model and Transparent-Security-Task, mainly

because the concept of secret sharing and hiding data through stegonagraphy

is relatively intuitive; however it requires multiple accounts. No security tasks

are also on users. There is no key management, thus it is both Effortless-Key-

Management and Easy-Recovery-From-Loss. It satisfies User-Control ; users can

secure their email when it is desired and they are notified in case of failure. It

is not considered as Efficient-To-Use, as all the steps of sending a secure email

are automatically performed by the tool. However, the user should provide two

email addresses and their corresponding passwords into the FROM field and two

email addresses into the TO field. Moreover, the second email address of every

recipient could not be trivially obtained or known. SPEmail is well integrated

into the email UI; but does not support searching email content, attachments

or multiple recipients. Thus, it offers Partial-Consistent-User-Experience. We
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also rate it as Not-Applicable-Efficient-Feedback-To-User, as we could not test

the tool.

It is No-Server-Side-Changes and Portable; but not Flexible; as no customiza-

tion is provided. Its current implementation for Gmail, requires several initial

setups, such as installing Greasemonkey Firefox addon, Java Virtual Machine

(JVM), accessing a webmail account specifically dedicated to work with the tool.

Therefore, it is not No-Prior-Setup-For-User. It is Free-And-Open-Sourced,

while currently there is no reliable working Available-Implementation.

It offers Quasi-Confidentiality except for the attachments (although auto sav-

ings drafts does not seem to work properly), and it requires non-colluding email

providers; but does not provide Content-Modification-Detection. However, au-

thors suggest an approach, by sending a hashed random number, bound to

each secured communication along with a timestamp, to provide integrity ver-

ification. It does not offer Authentication and Non-Repudiation as well. It is

rated as Not-Applicable-Critical-Error-Prevention, as the tool is not available

for test. Finally as no secret key is needed, it is considered as Robust-To-Secret-

Key-Exposure.
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FriendlyMail       G#  G#     # G# G#  �   

Enigmail [56]   G#          #

Waterhouse [50] # #  #  G#  G# �  G#    #

TrustSplit [30, 31]    #   G#    G#  �  

Aquinas [10] #  # �         

SPEmail [66, 80] #     G# �    G# �  

Table 3: UDS evaluation of schemes. Key:  (offers the benefit); G# (almost offers the

benefit);# (offers partial benefit); – (benefit is not applicable); blank (benefit is not offered).

Note that, this table is an approximate analytical comparison. For more details, refer to

the detailed discussion and analysis of each scheme, provided in Section A.2.
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