10 research outputs found

    Maximum likelihood estimation-assisted ASVSF through state covariance-based 2D SLAM algorithm

    Get PDF
    The smooth variable structure filter (ASVSF) has been relatively considered as a new robust predictor-corrector method for estimating the state. In order to effectively utilize it, an SVSF requires the accurate system model, and exact prior knowledge includes both the process and measurement noise statistic. Unfortunately, the system model is always inaccurate because of some considerations avoided at the beginning. Moreover, the small addictive noises are partially known or even unknown. Of course, this limitation can degrade the performance of SVSF or also lead to divergence condition. For this reason, it is proposed through this paper an adaptive smooth variable structure filter (ASVSF) by conditioning the probability density function of a measurementto the unknown parameters at one iteration. This proposed method is assumed to accomplish the localization and direct point-based observation task of a wheeled mobile robot, TurtleBot2. Finally, by realistically simulating it and comparing to a conventional method, the proposed method has been showing a better accuracy and stability in term of root mean square error (RMSE) of the estimated map coordinate (EMC) and estimated path coordinate (EPC)

    A hybrid adaptive unscented Kalman filter algorithm

    Get PDF
    In order to overcome the limitation of the traditional adaptive Unscented Kalman Filtering (UKF) algorithm in noise covariance estimation for state and measurement, we propose a hybrid adaptive UKF algorithm based on combining Maximum a posteriori (MAP) criterion and Maximum likelihood (ML) criterion, in this paper. First, to prevent the actual noise covariance deviating from the true value which can lead to the state estimation error and arouse the filtering divergence, a real-time covariance matrices estimation algorithm based on hybrid MAP and ML is proposed for obtaining the statement and measurement noises covariance, respectively; and then, a balance equation the two kinds of covariance matrix is structured in this proposed to minimize the statement estimation error. Compared with the UKF based MAP and based ML, the proposed algorithm provides better convergence and stability

    Poboljšani FastSLAM2.0 algoritam korištenjem ANFIS-a i PSO-a

    Get PDF
    FastSLAM2.0 is a framework for simultaneous localization of robot using a Rao-Blackwellized particle filter (RBPF). One of the problems of FastSLAM2.0 relates to the design of RBPF. The performance and quality of the estimation of RBPF depends heavily on the correct a priori knowledge of the process and measurement noise covariance matrices that are in most real-life applications unknown. On the other hand, an incorrect a priori knowledge may seriously degrade their performance. This paper presents an intelligent RBPF to solve this problem. In this method, two adaptive Neuro-Fuzzy inference systems (ANFIS) are used for tuning the process and measurement noise covariance matrices and for increasing acuuracy and consistency. In addition, we use particle swarm optimization (PSO) to optimize the performance of sampling. Experimental results demonstrate that the proposed algorithm is effective.FastSLAM2.0 je algoritam za istodobnu lokalizaciju robota i kartiranje prostora koji koristi Rao-Blackwell verziju čestičnog filtra (RBPF). Jedan od problema FastSLAM2.0 algoritma je u dizajnu samog RBPF-a. Performanse i kvaliteta estimacije RBPF-a značajno ovisi o apriori poznavanju procesa i matrica kovarijanci mjernog šuma koje su za većinu procesa iz stvarnog svijeta nepoznate. S druge strane pogrešno pretpostavka može značajno narušiti performanse. Ovaj rad predstavlja inteligentnu verziju RBPF-a koja rješava ovaj problem. Predstavljena metoda koristi dva adaptivna neizrazito-neuronska sustava (ANFIS) za podešavanje matrica kovarijanci procesnog i mjernog šuma čime se povećava točnost i konzistencija RBPF algoritma. Također koristi se i optimizacija roja čestica (PSO) za optimiziranje performansi otipkavanja. Eksperimentalni rezultati pokazuju efikasnost predloženog algoritma

    A SLAM Algorithm Based on Adaptive Cubature Kalman Filter

    Get PDF
    We need to predict mathematical model of the system and a priori knowledge of the noise statistics when traditional simultaneous localization and mapping (SLAM) solutions are used. However, in many practical applications, prior statistics of the noise are unknown or time-varying, which will lead to large estimation errors or even cause divergence. In order to solve the above problem, an innovative cubature Kalman filter-based SLAM (CKF-SLAM) algorithm based on an adaptive cubature Kalman filter (ACKF) was established in this paper. The novel algorithm estimates the statistical parameters of the unknown system noise by introducing the Sage-Husa noise statistic estimator. Combining the advantages of the CKF-SLAM and the adaptive estimator, the new ACKF-SLAM algorithm can reduce the state estimated error significantly and improve the navigation accuracy of the SLAM system effectively. The performance of this new algorithm has been examined through numerical simulations in different scenarios. The results have shown that the position error can be effectively reduced with the new adaptive CKF-SLAM algorithm. Compared with other traditional SLAM methods, the accuracy of the nonlinear SLAM system is significantly improved. It verifies that the proposed ACKF-SLAM algorithm is valid and feasible

    Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research

    Get PDF
    Effective control of an exoskeleton robot (ER) using a human-robot interface is crucial for assessing the robot's movements and the force they produce to generate efficient control signals. Interestingly, certain surveys were done to show off cutting-edge exoskeleton robots. The review papers that were previously published have not thoroughly examined the control strategy, which is a crucial component of automating exoskeleton systems. As a result, this review focuses on examining the most recent developments and problems associated with exoskeleton control systems, particularly during the last few years (2017–2022). In addition, the trends and challenges of cooperative control, particularly multi-information fusion, are discussed

    A scalable, portable, FPGA-based implementation of the Unscented Kalman Filter

    Get PDF
    Sustained technological progress has come to a point where robotic/autonomous systems may well soon become ubiquitous. In order for these systems to actually be useful, an increase in autonomous capability is necessary for aerospace, as well as other, applications. Greater aerospace autonomous capability means there is a need for high performance state estimation. However, the desire to reduce costs through simplified development processes and compact form factors can limit performance. A hardware-based approach, such as using a Field Programmable Gate Array (FPGA), is common when high performance is required, but hardware approaches tend to have a more complicated development process when compared to traditional software approaches; greater development complexity, in turn, results in higher costs. Leveraging the advantages of both hardware-based and software-based approaches, a hardware/software (HW/SW) codesign of the Unscented Kalman Filter (UKF), based on an FPGA, is presented. The UKF is split into an application-specific part, implemented in software to retain portability, and a non-application-specific part, implemented in hardware as a parameterisable IP core to increase performance. The codesign is split into three versions (Serial, Parallel and Pipeline) to provide flexibility when choosing the balance between resources and performance, allowing system designers to simplify the development process. Simulation results demonstrating two possible implementations of the design, a nanosatellite application and a Simultaneous Localisation and Mapping (SLAM) application, are presented. These results validate the performance of the HW/SW UKF and demonstrate its portability, particularly in small aerospace systems. Implementation (synthesis, timing, power) details for a variety of situations are presented and analysed to demonstrate how the HW/SW codesign can be scaled for any application

    Online model estimation and haptic characterization for robotic-assisted minimally invasive surgery

    Get PDF
    Online soft tissue characterization is important for robotic-assisted minimally invasive surgery (RAMIS) to achieve a precise and stable robotic control with haptic feedback. The traditional linear regression method (i.e. the recursive least square (RLS) method) is inappropriate to handle nonlinear Hunt-Crossley (H-C) model since its linearization process involves unacceptable errors. This thesis presents a new nonlinear estimation method for online soft tissue characterization. To deal with nonlinear and dynamic conditions involved in soft tissue characterization, the approach expands the nonlinearity and dynamics of the H-C model by treating parameter p as an independent variable. Based on this, an unscented Kalman filter (UKF) was adapted for online nonlinear soft tissue characterization. A comparison analysis of the UKF and RLS methods was conducted to validate the performance of the UKF-based method. The UKF-based method suffers from two major problems. The first one is that it requires prior noise statistics of the corresponding system to be precisely known. However, due to uncertainties in the dynamic environment of RAMIS, it is difficult to accurately describe noise characteristics. This leads to biased or even divergent UKF solutions. Therefore, in order to attain accurate estimation results from the UKF-based approach, it is necessary to estimate noise statistics online to restrain the disturbance of noise uncertainty. Secondly, the UKF performance depends on the pre-defined system and measurement models. If the models involve stochastic errors, the UKF-based solution will be unstable. In fact, the measurement model’s accuracy can be guaranteed by using high-precision measurement equipment together with a high volume of available measurement data. On the other hand, the system model is more often involved with the inaccuracy problem. In RAMIS, the system model is a theoretical approximation of the physical contact between robotic tool and biological soft tissue. The approximation is intended to fulfil the requirement of real-time performance in RAMIS. Therefore, it is essential to improve the UKF performance in the presence of system model (the contact model) uncertainty. To address the UKF problem for inaccurate noise statistics, this thesis further presents a new recursive adaptive UKF (RAUKF) method for online nonlinear soft tissue characterization. It was developed, based on the H-C model, to estimate system noise statistics in real-time with windowing approximation. The method was developed under the condition that system noises are of small variation. In order to account for the inherent relationship between the current and previous states of soft tissue deformation involved in RAMIS, a recursive formulation was further constructed by introducing a fading scaling factor. This factor was further modified to accommodate noise statistics of a large variation, which may be caused by rupture events or geometric discontinuities in RAMIS. Simulations and comparison analyses verified the performance of the proposed RAUKF. The second UKF limitation regarding the requirement of the accurate system model was also addressed. A random weighting strong tracking unscented Kalman filter (RWSTUKF) was developed based on the Hunt-Crossley model for online nonlinear soft tissue characterization. This RWSTUKF overcomes the problem of performance degradation in the UKF due to system model errors. It adopts a scaling factor in the predicted state covariance to compensate the inaccuracy of the system model. This scaling factor was derived by combining the orthogonality principle with the random weighting concept to prevent the cumbersome computation from Jacobian matrix and offer the reliable estimation for innovation covariances. Simulation and comparison analyses demonstrated that the proposed RWSTUKF can characterise soft tissue parameters in the presence of system model error for RAMIS in on online mode. Using the proposed methods, a master-slave robotic system has been developed with a nonlinear state observer for soft tissue characterization. Robotic indentation and needle insertion tests conducted to evaluate performances of the proposed methods. Further, a rupture detection approach was established based on the RWSTUKF. It was also integrated into the master-slave robotic system to detect rupture events occurred during needle insertion. The experiment results demonstrated that the RWSTUKF outperforms RLS, UKF and RAUKF for soft tissue characterization

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    An Adaptive UKF Based SLAM Method for Unmanned Underwater Vehicle

    No full text
    This work proposes an improved unscented Kalman filter (UKF)-based simultaneous localization and mapping (SLAM) algorithm based on an adaptive unscented Kalman filter (AUKF) with a noise statistic estimator. The algorithm solves the issue that conventional UKF-SLAM algorithms have declining accuracy, with divergence occurring when the prior noise statistic is unknown and time-varying. The new SLAM algorithm performs an online estimation of the statistical parameters of unknown system noise by introducing a modified Sage-Husa noise statistic estimator. The algorithm also judges whether the filter is divergent and restrains potential filtering divergence using a covariance matching method. This approach reduces state estimation error, effectively improving navigation accuracy of the SLAM system. A line feature extraction is implemented through a Hough transform based on the ranging sonar model. Test results based on unmanned underwater vehicle (UUV) sea trial data indicate that the proposed AUKF-SLAM algorithm is valid and feasible and provides better accuracy than the standard UKF-SLAM system
    corecore