5 research outputs found

    Anti-Multipath Filter with Multiple Correlators in GNSS Receviers

    Get PDF

    GPS/Galileo Multipath Detection and Mitigation Using Closed-Form Solutions

    Get PDF
    We propose an efficient method for the detection of Line of Sight (LOS) and Multipath (MP) signals in global navigation satellite systems (GNSSs) which is based on the use of virtual MP mitigation (VMM) technique. By using the proposed method, the MP signals' delay and coefficient amplitudes can be efficiently estimated. According to the computer simulation results, it is obvious that our proposed method is a solution for obtaining high performance in the estimation and mitigation of MP signals and thus it results in a high accuracy in GNSS positioning

    GPS Receiver Simplification for Low cost Applications and Multipath Mitigation Analysis on SDR based Re configurable Software Receiver

    Get PDF
    Many modern position-based applications rely heavily on the Global Navigation Satellite System (GNSS). Most applications require precise position data obtained through sophisticated hardware with a high computational capacity in the receiver. Some cost-effective applications may not require precise position data and require less complex signal processing. The use of efficient hardware and signal processing techniques to reduce the overall cost of a GNSS receiver is an active research topic. This paper considers Global Positioning System (GPS) constellation and proposes two factors to reduce the receiver complexity: sampling frequency and the number of tracking channels. A Keysight GNSS signal generator to record GPS signals, a Software Defined Radio board and a software-based GPS receiver are used in the experimentation. The sampling frequencies are 40, 20, 10 and 5 MHz considered, and tracking channels are reduced from 12 to 6 and then 4. The increase of error in the receiver position with 6 and 4 satellites is considerably small, but the number of tracking channels and signal processing requirements are reduced considerably. The GPS signals are affected by many errors; one of the significant sources of error is multipath propagation. Three distinct GPS multipath scenarios are generated for four satellite signal combinations with the GNSS simulator for the receiver performance analysis. Three multipath mitigation techniques, namely Early Minus Late (EML), Narrow correlator (NC) and strobe correlator (SC) methods, are considered because of their simple structure and fewer signal processing requirements. The error reductions of three multipath scenarios are compared, and the SC method performs better in all three multipath scenarios

    GNSS Signals Acquisition and Tracking in Unfavorable Environment

    Get PDF
    In this paper, we propose a method based on applying specific transformations to the Global Navigation Satellite System (GNSS) signals received in unfavorable environment. As a result, one simple classical receiver including these adjustments becomes sensitive to several Multi-Constellation and Multi-Frequency (MC/MF) GNSS signals and achieves efficiently their collective acquisition. The proposed method consists of three variants each dedicated to a particular type of Binary Offset Carrier (BOC) family signals; the primary is based on undersampling process, the second is founded on time expansion and the last one permits the acquisition of more than five different GNSS signals by a single local Composite Binary Coded Symbols (CBCS) waveform replica. Hence, the proposed scheme, by avoiding the use of multiple demodulators in the baseband, allows less receiver complexity and accordingly better realization cost. The simulation results showed that the proposed method presents an effective solution for the reception of MC/MF signals in unfavorable environments

    An Adaptive Multipath Mitigation Filter for GNSS Applications

    No full text
    corecore