2,604 research outputs found

    Chunky and Equal-Spaced Polynomial Multiplication

    Get PDF
    Finding the product of two polynomials is an essential and basic problem in computer algebra. While most previous results have focused on the worst-case complexity, we instead employ the technique of adaptive analysis to give an improvement in many "easy" cases. We present two adaptive measures and methods for polynomial multiplication, and also show how to effectively combine them to gain both advantages. One useful feature of these algorithms is that they essentially provide a gradient between existing "sparse" and "dense" methods. We prove that these approaches provide significant improvements in many cases but in the worst case are still comparable to the fastest existing algorithms.Comment: 23 Pages, pdflatex, accepted to Journal of Symbolic Computation (JSC

    06271 Abstracts Collection -- Challenges in Symbolic Computation Software

    Get PDF
    From 02.07.06 to 07.07.06, the Dagstuhl Seminar 06271 ``Challenges in Symbolic Computation Software\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Simple Approximations of Semialgebraic Sets and their Applications to Control

    Full text link
    Many uncertainty sets encountered in control systems analysis and design can be expressed in terms of semialgebraic sets, that is as the intersection of sets described by means of polynomial inequalities. Important examples are for instance the solution set of linear matrix inequalities or the Schur/Hurwitz stability domains. These sets often have very complicated shapes (non-convex, and even non-connected), which renders very difficult their manipulation. It is therefore of considerable importance to find simple-enough approximations of these sets, able to capture their main characteristics while maintaining a low level of complexity. For these reasons, in the past years several convex approximations, based for instance on hyperrect-angles, polytopes, or ellipsoids have been proposed. In this work, we move a step further, and propose possibly non-convex approximations , based on a small volume polynomial superlevel set of a single positive polynomial of given degree. We show how these sets can be easily approximated by minimizing the L1 norm of the polynomial over the semialgebraic set, subject to positivity constraints. Intuitively, this corresponds to the trace minimization heuristic commonly encounter in minimum volume ellipsoid problems. From a computational viewpoint, we design a hierarchy of linear matrix inequality problems to generate these approximations, and we provide theoretically rigorous convergence results, in the sense that the hierarchy of outer approximations converges in volume (or, equivalently, almost everywhere and almost uniformly) to the original set. Two main applications of the proposed approach are considered. The first one aims at reconstruction/approximation of sets from a finite number of samples. In the second one, we show how the concept of polynomial superlevel set can be used to generate samples uniformly distributed on a given semialgebraic set. The efficiency of the proposed approach is demonstrated by different numerical examples

    A Comparison of Hybridized and Standard DG Methods for Target-Based hp-Adaptive Simulation of Compressible Flow

    Get PDF
    We present a comparison between hybridized and non-hybridized discontinuous Galerkin methods in the context of target-based hp-adaptation for compressible flow problems. The aim is to provide a critical assessment of the computational efficiency of hybridized DG methods. Hybridization of finite element discretizations has the main advantage, that the resulting set of algebraic equations has globally coupled degrees of freedom only on the skeleton of the computational mesh. Consequently, solving for these degrees of freedom involves the solution of a potentially much smaller system. This not only reduces storage requirements, but also allows for a faster solution with iterative solvers. Using a discrete-adjoint approach, sensitivities with respect to output functionals are computed to drive the adaptation. From the error distribution given by the adjoint-based error estimator, h- or p-refinement is chosen based on the smoothness of the solution which can be quantified by properly-chosen smoothness indicators. Numerical results are shown for subsonic, transonic, and supersonic flow around the NACA0012 airfoil. hp-adaptation proves to be superior to pure h-adaptation if discontinuous or singular flow features are involved. In all cases, a higher polynomial degree turns out to be beneficial. We show that for polynomial degree of approximation p=2 and higher, and for a broad range of test cases, HDG performs better than DG in terms of runtime and memory requirements
    • …
    corecore