157 research outputs found

    Moving-boundary problems solved by adaptive radial basis functions

    Get PDF
    The objective of this paper is to present an alternative approach to the conventional level set methods for solving two-dimensional moving-boundary problems known as the passive transport. Moving boundaries are associated with time-dependent problems and the position of the boundaries need to be determined as a function of time and space. The level set method has become an attractive design tool for tracking, modeling and simulating the motion of free boundaries in fluid mechanics, combustion, computer animation and image processing. Recent research on the numerical method has focused on the idea of using a meshless methodology for the numerical solution of partial differential equations. In the present approach, the moving interface is captured by the level set method at all time with the zero contour of a smooth function known as the level set function. A new approach is used to solve a convective transport equation for advancing the level set function in time. This new approach is based on the asymmetric meshless collocation method and the adaptive greedy algorithm for trial subspaces selection. Numerical simulations are performed to verify the accuracy and stability of the new numerical scheme which is then applied to simulate a bubble that is moving, stretching and circulating in an ambient flow to demonstrate the performance of the new meshless approach. (C) 2010 Elsevier Ltd. All rights reserved

    RBF-Based Partition of Unity Methods for Elliptic PDEs: Adaptivity and Stability Issues Via Variably Scaled Kernels

    Get PDF
    We investigate adaptivity issues for the approximation of Poisson equations via radial basis function-based partition of unity collocation. The adaptive residual subsampling approach is performed with quasi-uniform node sequences leading to a flexible tool which however might suffer from numerical instability due to ill-conditioning of the collocation matrices. We thus develop a hybrid method which makes use of the so-called variably scaled kernels. The proposed algorithm numerically ensures the convergence of the adaptive procedure

    Wavelet based Adaptive RBF Method for Nearly Singular Poisson-Type Problems on Irregular Domains

    Get PDF
    We present a wavelet based adaptive scheme and investigate the efficiency of this scheme for solving nearly singular potential PDEs over irregularly shaped domains. For a problem defined over Ω ∈ ℜd, the boundary of an irregularly shaped domain, Γ, is defined as a boundary curve that is a product of a Heaviside function along the normal direction and a piecewise continuous tangential curve. The link between the original wavelet based adaptive method presented in Libre, Emdadi, Kansa, Shekarchi, and Rahimian (2008, 2009) or LEKSR method and the generalized one is given through the use of simple Heaviside masking procedure. In addition level dependent thresholding were introduced to improve the efficiency and convergence rate of the solution. We will show how the generalized wavelet based adaptive method can be applied for detecting nearly singularities in Poisson type PDEs over irregular domains. The numerical examples have illustrated that the proposed method is powerful to analyze the Poisson type PDEs with rapid changes in gradients and nearly singularities

    Adaptive Meshfree Methods for Partial Differential Equations

    Get PDF
    There are many types of adaptive methods that have been developed with different algorithm schemes and definitions for solving Partial Differential Equations (PDE). Adaptive methods have been developed in mesh-based methods, and in recent years, they have been extended by using meshfree methods, such as the Radial Basis Function (RBF) collocation method and the Method of Fundamental Solutions (MFS). The purpose of this dissertation is to introduce an adaptive algorithm with a residual type of error estimator which has not been found in the literature for the adaptive MFS. Some modifications have been made in developing the algorithm schemes depending on the governing equations, the domains, and the boundary conditions. The MFS is used as the main meshfree method to solve the Laplace equation in this dissertation, and we propose adaptive algorithms in different versions based on the residual type of an error estimator in 2D and 3D domains. Popular techniques for handling parameters and different approaches are considered in each example to obtain satisfactory results. Dirichlet boundary conditions are carefully chosen to validate the efficiency of the adaptive method. The RBF collocation method and the Method of Approximate Particular Solutions (MAPS) are used for solving the Poisson equation. Due to the type of the PDE, different strategies for constructing the adaptive method had to be followed, and proper error estimators are considered for this part. This results in having a new point of view when observing the numerical results. Methodologies of meshfree methods that are employed in this dissertation are introduced, and numerical examples are presented with various boundary conditions to show how the adaptive method performs. We can observe the benefit of using the adaptive method and the improved error estimators provide better results in the experiments

    Adaptive Method of Approximate Particular Solution for One-Dimensional Differential Equations

    Get PDF
    An adaptive algorithm for the Method Approximate Particular Solution (MAPS) using radial basis functions for solving boundary value problems is discussed in this work. The goal of the adaptive algorithm is to construct an optimal collocation points distribution that gives the required accuracy with the smallest number of degrees of freedom. I proposed the formulation of the adaptive MAPS for second order boundary value problems in an arbitrary dimensional setting. Then I applied this method to three different boundary value problems in one-dimensional setting. The performance of the adaptive method has been demonstrated by numerical experiments

    A Fast Adaptive Wavelet Scheme in RBF Collocation for Nearly Singular Potential PDEs

    Get PDF
    We present a wavelet based adaptive scheme and investigate the efficiency of this scheme for solving nearly singular potential PDEs. Multiresolution wavelet analysis (MRWA) provides a firm mathematical foundation by projecting the solution of PDE onto a nested sequence of approximation spaces. The wavelet coefficients then were used as an estimation of the sensible regions for node adaptation. The proposed adaptation scheme requires negligible calculation time due to the existence of the fast DiscreteWavelet Transform (DWT). Certain aspects of the proposed adaptive scheme are discussed through numerical examples. It has been shown that the proposed adaptive scheme can detect the singularities both in the domain and near the boundaries. Moreover, the proposed adaptive scheme can be utilized for capturing the regions with high gradient both in the solution and its spatial derivatives. Due to the simplicity of the proposed method, it can be efficiently applied to large scale nearly singular engineering problems
    • …
    corecore