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ABSTRACT

ADAPTIVE METHOD OF APPROXIMATE PARTICULAR SOLUTION
FOR ONE-DIMENSIONAL DIFFERENTIAL EQUATIONS

by Yichuan Dong

May 2014

An adaptive algorithm for the method Approximate Particular Solution(MAPS) using
radial basis functions for solving boundary value problems is discussed in this work. The
goal of the adaptive algorithm is to construct an optimal collocation points distribution that
gives the required accuracy with the smallest number of degrees of freedom. I proposed the
formulation of the adaptive MAPS for second order boundary value problems in an arbitrary
dimensional setting. Then I applied this method to three different boundary value problems
in one-dimensional setting. The performance of the adaptive method has been demonstrated
by numerical experiments.
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NOTATION AND GLOSSARY

General Usage and Terminology

The notation used in this text represents fairly standard mathematical and computational
usage. In many cases these fields tend to use different preferred notation to indicate the same
concept, and these have been reconciled to the extent possible, given the interdisciplinary
nature of the material. In particular, the notation for partial derivatives varies extensively,
and the notation used is chosen for stylistic convenience based on the application. While it
would be convenient to utilize a standard nomenclature for this important symbol, the many
alternatives currently in the published literature will continue to be utilized.

The blackboard fonts are used to denote standard sets of numbers: R for the field of real
numbers, C for the complex field, Z for the integers, and Q for the rationals. The capital
letters, A,B, · · · are used to denote matrices, including capital greek letters, e.g., Λ for a
diagnonal matrix. Functions which are denoted in boldface type typically represent vector
valued functions, and real valued functions usually are set in lower case roman or greek
letters. Caligraphic letters, e.g., V, are used to denote spaces such as V denoting a vector
space, H denoting a Hilbert space, or F denoting a general function space. Lower case
letters such as i, j,k, l,m,n and sometimes p and d are used to denote indices.

Vectors are typset in square brackets, e.g., [·], and matrices are typeset in parenthesese,
e.g., (·). In general the norms are typeset using double pairs of lines, e.g., || · ||, and the
abolute value of numbers is denoted using a single pairs of lines, e.g., | · |. Single pairs of
lines around matrices indicates the determinant of the matrix.
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Chapter 1

BACKGROUND

1.1 Introduction

Differential equations play a prominent role in many disciplines including engineering,

economics, physics, and biology. It is always preferable to obtain a precise analytical

solution for a given differential equation. However, many of them cannot be solved exactly

by using analytical methods, which motivates us to develop some numerical algorithms to

solve differential equations that analytical solutions cannot derive.

Radial Basis Function(RBF) has been praised for its ease of implementation and sim-

plicity in data approximation [1], and it becomes the choice as a method used for the

numerical solution of differential equations[2]. Meshless methods using RBF have drawn

great attention for numerically solving partial differential equations during the past decade.

Although meshless methods are relatively new numerical algorithms developed in recent

years, these methods have been applied to problems in fluid dynamics, solid mechanics, and

other fields. Various meshless methods have been developed and successfully applied to

solving some challenging problems in different areas of science and engineering. Recently,

the method of approximate particular solutions (MAPS) and a localized scheme for the

method of approximate particular solutions (LMAPS) have been introduced to evaluate the

partial solution of the given differential equations.

The first meshless method appears to be the smooth particle hydrodynamics (SPH)

method introduced in 1977, which was initially developed for solving astrophysical prob-

lems. This method was further discussed by Gingold and Monaghan by using kernel
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approximations. Since then, many variations and advancements have been extensively

studied. Kansa proposed the radial basis function (RBF) collocation method for solving el-

liptical, hyperbolic, and parabolic differential equations[12]. Kansa’s method was extended

to various differential equations, including nonlinear differential equations.

MAPS that was proposed by Chen et. al[3] originally stems from the Method of Particular

Solutions. However, the global matrices formed by the radial basis function approximations

are plagued by ill-conditioning, especially when a large number of collocation points are

used. It seems that if certain RBFs are used, the most important technique to obtain the

numerical approximation is to increase the number of collocation points. In this situation,

localized methods will be more desirable because the matrices will be sparse, instead of

dense. In this way, the issues that present in other methods can be avoided by using localized

domains. For more details about localized meshless methods using RBFs, the author refer

the reader to[3, 24, 25].

1.2 One-dimensional differential equations

This thesis focuses on the numerical solution of one-dimensional differential equations

by using adaptive MAPS/LMAPS. The author consider the singularly perturbed linear

two-point boundary value problem (BVP):

− εu′′+ p(x)u′+q(x)u = f in (a,b),

u(a) = α u(b) = β .

where ε > 0 denotes a fixed constant, a, b, α and β , are given constants. The function p(x),

q(x) and f are sufficiently smooth on (a,b).

For the above problem, if the author set p(x) = 0, q(x) = 0,when ε = 1, it becomes

the Poisson equation. The Poisson equation is a differential equation of elliptic type with

broad application in electrostatics, mechanical engineering, and theoretical physics. It is
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commonly used to model diffusion and to study physical problems involving differential

equations, for example, electromagnetic wave propagation and acoustics. The Poisson

equation, that represents the time-independent form of the original equation, is obtained by

applying the technique of separation of variables to reduce the complexity of analysis.

It is well-known that when the parameter ε is very small, the solution’s derivatives

change dramatically within a very narrow interval, which is the so-called boundary layer

(if happens near the boundary) or interior layer (if happens away from the boundary). This

type of problems is called a singularly perturbed problem in the literature; it is a practically

important but still difficult subject in applications such as fluid dynamics, electromagnetism,

semiconductor research, genetics, chemotaxis, and computational biology. The presence

of boundary layers in fluid dynamics was verified by Prandtl who gave his seminal paper

to the Third International Congress of Mathematicians in Heidelberg in 1904. With the

development of science and technology, researchers found that singular perturbation, the

term which was first used by Friedrichs and Wasow, is widespread in nature.

The existence of boundary layers or interior layers usually incurs nonphysical exces-

sive numerical oscillations in the standard finite element (FEM) approximation and finite

difference approximation. To overcome this difficulty, many stabilization techniques have

been proposed to improve the numerical solutions, such as upwind method, Petrov-Galerkin

method, streamline diffusion FEM, discontinuous Galerkin method, and graded mesh

method, to name a few. In the past decade, the most popular strategies is to construct a

piecewise uniform meshes so that the numerical results are uniformly convergent. A direct

drawback of these methods is the choice of problem-dependent parameters that need to be

wisely selected based on the a priori knowledge of the layers, which is not available for

most complex problems.

Another popular approach is the use of adaptive method, which will be briefly reviewed

in the next section.
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1.3 A brief review of adaptive algorithm

The goal of an adaptive algorithm is to construct an optimal point distribution that gives the

required accuracy with the smallest number of degrees of freedom. In an adaptive scheme,

more nodes are added on those parts of the domain with more detail, and simultaneously,

enough nodes are kept in smooth regions. It is a fundamental task to construct such

distributions for the solution of the problems while having nearly singularities or singular

perturbations, which generate non-uniform data center distributions adapt to the changes in

the sharp transition region.

A considerable effort has gone into the development and implementation of adaptive

methods using mesh-based methods for various types of differential equations arisen in

the physical world, like shock wave formation, crack front stress intensity, concentration,

etc. In recent years, some researchers have used numerical methods with RBFs in adaptive

schemes. Hon [9] used adaptive MQ scheme and showed that it can achieve superior

accuracy for problems with one layer and relatively smooth solutions. This paper proposes

an adaptive MQ-RBF technique using a posteriori indicator based on the weak formulation

of the governing equation to add collocation points [9, 10].

An adaptive scheme based on greedy algorithm was developed by Schaback and

Wendland[21] and Hon et al. [9]. They obtained a linear convergence in interpolation

and collocation problems. Hon [9, 10] proposed an adaptive RBF collocation method using

MQ-RBFs where a posterior indicator uses a weak formulation of the governing equation.

This indicator detects a sharp transition and adds new collocation points according to the

feedback from the error indicator. Later on, Ling and Trummer [14] modified Hon’s indica-

tor to fit transformed boundary value problems.Likewise Sarra [19] introduced an adaptive

RBF collocation method based on the simple equidistribution of an arc length algorithm.

It has been successfully applied for the solution of the nearly singular time-dependent

diffusion-advection and Burger’s equations in a one-dimensional setting. Meanwhile, a
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dynamic adaptive scheme was proposed by Wu[22, 23] for time-dependent PDEs. In the

literature, many of these methods that are formulated are one-dimensional, and the authors

discussed how to extend their schemes to higher dimensions.
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Chapter 2

Adaptive Technique for MAPS and LMAPS

Over the past two decades Radial Basis Functions (RBFs) have played an important role

in the development of meshless methods. Since they can be applied to various partial

Differential Equations (PDEs), RBFs become an important tool in these meshless methods.

The RBF is especially suitable for problems in high-dimensions or problems on complex

domains. In 1991, Kansa [12] first applied collocation methods using RBFs to PDEs in

fluid dynamics problems. Since then, a lot of approximate methods employing RBFs were

proposed including the meshless local petrov-Galerkin Method (MLPGM)[5], the method

of fundamental solutions(MFS), the method of particular solutions (MPS)[24], the method

of approximate particular solutions (MAPS)[24], the Boundary Knot Method (BKM), and

the differential quadrature method (DQ).

This study will discuss MAPS in solving second order PDEs in one-dimensional domain

first and then introduce an adaptive scheme upon these two methods.

2.1 Radial basis functions (RBFs)

The concept of radial basis functions (RBFs) was proposed in the 1980s when they were first

investigated by Powell [23] and Micchelli [19]. Since then, extensive studies have been done

in this research field [?]. According to the definition provided recently in Yao’s dissertation

[24], the function φ(r) is a RBF in n-dimensional space for any positive integer n. Here,

r := ‖xxx− ppp‖ denotes the Euclidean norm of two arbitrary points xxx, ppp ∈ Rn. Usually, ppp

denotes the center of the RBF φ . For the remainder of this study, the radial basis function
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will be indicated as φ(r). Table 2.1 gives a number of examples of RBFs which constant

c > 0 is the shape parameter of RBFs.

Table 2.1: Examples of Radial Basis Functions
RBF Names Formula

linear r
cubic r3

Gaussian exp(−cr2)

Multiquadrics
√

r2 + c2

Inverse Multiquadrics 1/
√

r2 + c2

Thin-plate spline r2ln(r)

To generate an approximation of a function u(xxx) using a RBF, the first step is to identify

a finite set of distinct points {ppp j}N
j=1 in Rn. Based on the definition of a RBF, each one of

the points in this set is a center. Collectively, these centers can be used to define an RBF

approximation as follows:

ũ(xxx) :=
N

∑
j=1

α jφ(‖xxx− ppp j‖), (2.1.1)

for any xxx ∈ Rn.

Then, the coefficients α j can be found from a linear system once the function values

of u are given at a finite set of points. For instance, if u(xi), i = 1,2, · · · ,N, are known,

finding a would require the solution of an N ×N linear system Aααα = UUU , where A =(
φ(‖xxxi− ppp j‖)

)
N×N , ααα =

(
α j
)

N×1, UUU =
(
U j
)

N×1.

In this study, the author particularly interested in the Multiquadrics RBF (MQ). As a

class of monotonically functions of distance r, MQ is proven to be conditionally positive

definite, so that the matrix for the interpolation problem is invertible. The MQ is one of the

most popular RBFs used in applications for its high-order rate of convergence.

2.2 Method of approximated particular solutions (MAPS)

The author will introduce the MAPS for problem (1.2) in this section. It is worth pointing out

that the problem we consider here involves a diffusion-convection-reaction equation. Since
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MAPS using radial basis functions actually can be applied to any dimensional problems, the

author give a general introduction based on a n-dimensional model problem

− ε∆u+ ppp(xxx)∇u+q(xxx)u = f (xxx) in Ω,

u = g(xxx) on ∂Ω,

(2.2.1)

where ppp(xxx), q(xxx), f (xxx), and g(xxx) will become p(x), q(x), f (x), and g(x); ∇u and ∆u will

become u′ and u′′ when n = 1.

There are actually two ways to implement the MAPS. The first method is to directly find

a particular solution for the differential equation (2.2.1), which may not be possible in many

circumstances. Readers are referred to some recent publications [15]. Another method is

to use the particular solution of Poisson’s equation for the diffusion-convection-reaction

equation given in problem (2.2.1).

The author will only use the second method in this study. To be more specific, the author

first define the set of collocation points {ppp j}N
1 = {xxx j}N

1 that locate both in the domain and

on the boundary. The interior points are recorded as {xxx j}Ni
1 , and the collocation points on the

boundary will be denoted as {xxx j}Ni+Nb
Ni+1 . We set N = Ni +Nb. The whole set of collocation

points will be used to approximate the solution u(xxx) of problem (2.2.1). Consequently, the

author define an RBF approximation ũ to the solution of problem (2.2.1) as be ∑α jΦ j,

where Φ j is a particular solution of ∆v = φ j, which means that Φ j and φ j satisfy

∆Φ j = φ j.

Here φ j denotes φ(‖xxx− ppp j‖) for any xxx inside the domain.

As a consequence, it follows that

∆ũ =
N

∑
j=1

α jφ j.
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Substituting u in (2.2.1) with ũ and setting the equation to the set of collocation points, one

has

N

∑
j=1

α j
[
φ j(xxxi)+ ppp(xxxi) ·∇Φ j(xi)+q(xxxi)Φ j(xxxi)

]
= f (xxxi) ∀ i = 1, · · · ,Ni,

N

∑
j=1

α jΦ j(xxxi) = g(xxxi) ∀ i = Ni +1, · · · ,N,

(2.2.2)

where Φ j(xxxi) := Φ j(‖xxxi− ppp j‖). The above system of equations can be written as a linear

system with variable ααα , i.e.,

Aααα = F, (2.2.3)

where

A =

 B

C

 , B = [φ j(xxxi)+ ppp(xxxi) ·∇Φ j(xi)+q(xxxi)Φ j(xxxi)]NI×N , C = [Φ j(xxxi)]Nb×N .

Meanwhile, the right hand side term is defined as follows:

F =
[

f (xxx1), · · · , f (xxxNi),g(xxxNi+1), · · · ,g(xxxN)
]T

.

If the author let φ be the MQ-RBF, then the author is going to solve the matrix by using the

following expressions for φ and Φ:

• when n = 1,

Φ(r) =
1
6
(−3c2

√
r2 + c2 +(r2 + c2)(3/2)+3c2r ln(

√
(c2 + r2)+ r),

φ(r) =
√

r2 + c2.

(2.2.4)
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• when n = 2,

Φ(r) =
1
9
(4c2 + r2)

√
r2 + c2− c3

3
ln(
√
(c2 + r2)+ c),

φ(r) =
√

r2 + c2.

(2.2.5)

• when n = 3,

Φ(r) =


2r2 +5c2

24

√
r2 + c2 +

c4 ln(
√

(c2 + r2)+ r)
8r

− c3

3
− c4 lnc

8r
, when r 6= 0,

0 when r = 0,

φ(r) =
√

r2 + c2.

(2.2.6)

2.3 Adaptive schemes for the MAPS

As mentioned in Chapter 1, the purpose of adding adaptive algorithms to MAPS is to increase

nodes only on those parts of the computational domain where the numerical approximation

requires to be more accurate. This is obviously different from uniformly increasing nodes on

the whole computational domain. Therefore this strategy is especially suitable for singularly

perturbed problems since only a narrow subinterval needs to be treated specially.

In this work, the author apply the adaptive MAPS to the problem (1.2). It is numerically

verified in Chapter 3 that this refinement method efficiently increases the spatial density

distribution of nodes in regions where the solution presents sharp gradients and simultane-

ously keeps enough data points in smooth regions. Moreover, it is verified that the number

of nodes required to meet a prescribed error value is considerably reduced when using the

proposed node refinement algorithm, compared with respect to the uniform grid refinement

method applied under the same conditions.

Next, the author is going to present the process of the adaptive MAPS method, which

will be used in the numerical experiments. The author start from setting up initial collo-
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cation points, which is usually a uniformly distributed set of points Ξ =
{

x j
}N

j=0 in the

computational domain [a,b]. Also, denote by x j+ 1
2
=
(
x j + x j+1

)
/2 the middle point of x j

and x j+1, and by Ξ∗ =
{

x j+ 1
2

}N−1

j=0
the set of all middle points. Before the author list all

steps of the adaptive method, the author define the error indicator δ , which can define the

rule to flag the new nodes to be added.

Marking Rule: Let δmax = maxδ (x) be for all x belonging to the set of all middle

points Ξ∗, and let λ > 0 be a threshold value. The author says that a node x ∈ Ξ∗ is flagged

to be refined i f δ (x)> λδmax.

The implementation of the MAPS can be formulated into the following three-steps

procedure:

• Step 1: Compute the numerical solution ũ on the given set of collocation points, which

is denoted by x0,x1, · · · ,xN , with x0 = a and xN = b;

• Step 2: Compute the value of the error indicator δ at each midpoints for any j =

0, · · · ,N−1. Use the Marking Rule to flag new nodes;

• Step 3: Add new nodes to Ξ and update Ξ∗. Then return to Step 1 and repeat this

process till the stopping criterion is satisfied.

There are different ways to define the stopping criterion. For example, in[2] the author

used a stopping criterion that the maximum of the difference of the numerical solution and

its interpolation at test points should be smaller than a given small number. In this study, we

just simply use a fixed number of refinements as stopping criterion.

The author define δ (x j+ 1
2
) = |x j+1−x j|. It is one of the simplest ways to define an error

indicator. The meaning of this definition is to use the difference of two adjacent approximate

values of solution as a measurement to the derivative. There are many different kinds of

error indicators developed to fit different types of methods and problems in the literature.
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Chapter 3

Numerical Experiments

This chapter presents the results of numerical experiments using the adaptive MAPS in a

one-dimensional setting. Comparisons with non-adaptive MAPS and non-adaptive Kansa’s

method on uniformly distributed collocation points are provided. The author also try to

compare the adaptive MAPS method with adaptive Kansa method in the examples. The

error that appears in this chapter is the maximum of absolute values of exact solution and

numerical solution at 1000 test points randomly chosen from the computational domain

[a,b].

In all examples, the author define the shape parameter as follows

c(x j) = cp(x j+1− x j−1),

for any j = 1, · · · ,N − 1. When j = 0, we let c = cp(x2 − x0). When j = N, we let

c = cp(xN− xN−2).

3.1 Examples of Adaptive MAPS

First of all, the author use an example to show that the adaptive algorithm works for

Poisson’s equation. Starting from a uniformly distributed set of collocation points, more

new collocation points will be added to positions where the solution of the problem has

large derivative.

Example 1: For the BVP problem (1.2), the author first set ε equals to 1; p(x), q(x) are
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equal to zero:

−u′′ = f in (0,1),

u(0) = 0 u(1) = 0.

The exact solution is selected to be

u(x) = sin(2πx), (3.1.1)

which is plotted in Figure 3.1.
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Figure 3.1: (Example 1) Graph of the exact solution.

The author set λ = 0.3 and the parameter cp to be 5. The initial set of collocations are

distributed uniformly with 11 points in total. The adaptive algorithm generates a series

of non-uniform set of collocation points with total number of points N = 11,21,37 which

is shown in Figure 3.2 (Left). It takes three steps to satisfy the stop criterion. Figure 3.2

(Right) plots sets of uniformly distributed collocation points with total number of points

N = 11,21,31,41,51.

It may be interesting to take a look at errors at 1000 test points on the domain [0,1] when

adaptive algorithm is used (see Figure 3.3(Left)). The error of the adaptive MAPS decreases

rapidly. But in Figure 3.3 (Right), the decreasing rate of the errors of non-adaptive MAPS
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Figure 3.2: (Example 1) Sets of adaptive collocation points (Left); and sets of uniformly
distributed collocation points (Right).
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Figure 3.3: (Example 1) Errors of adaptive MAPS at each step of the adaptive algorithm
(Left); and errors of MAPS using different sets of uniformly distributed collocation points
(Right).

becomes slow.

The Figure 3.4 shows the maximal error of adaptive MAPS approximation versus non-

adaptive MAPS approximation using a uniformly distributed set of collocation points. It can

be seen that the error of adaptive MAPS approximation decreases faster than non-adaptive

MAPS approximation when more collocation points are used. This verifies that adaptive

method yields more accurate results than the method in which computational unknowns are
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Figure 3.4: (Example 1) Error of adaptive MAPS method versus non-adaptive MAPS
method(left);Error of adaptive Kansa’s method versus non-adaptive Kansa’s method(right).

uniformly increased. To compare with Kansa’s method, the author also present in Figure

3.5 the maximal error of adaptive Kansa’s approximation versus non-adaptive Kansa’s

approximation using uniform distributed set of collocation points. It seems that the error of

Kansa’s method is comparable with that of non-adaptive Kansa’s method, which is possible

since the exact solution is quite smooth, so the adaptive methods refine the set of collocation

points in a similar way to uniform refinement.

To show the computational results more clearly, the author put data from Figure 3.4 and

Figure 3.5 into Table 3.1.



16

10
1.1

10
1.2

10
1.3

10
1.4

10
1.5

10
1.6

10
1.7

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

The comparison of Kansa’s method and adaptive Kansa’s method

 

 
Kansa, Adaptive, cp=5

Kansa, Uniform, cp=5

Figure 3.5: (Example 1) Error of adaptive MAPS method versus non-adaptive MAPS
method(left); Error of adaptive Kansa’s method versus non-adaptive Kansa’s method(right).

Table 3.1: (Example 1) A comparison of four methods
adaptive MAPS adaptive Kansa’s method MAPS Kansa’s method

Step N error N error N error N error
1 11 1.0753e-4 11 1.7909e-4 11 1.0753e-4 11 1.7909e-4
2 21 1.1680e-5 21 5.6146e-5 21 5.7480e-6 21 4.0664e-5
3 37 1.1752e-7 37 2.5449e-6 31 3.3801e-6 31 8.2115e-6
4 41 1.9032e-6 41 8.0922e-8
5 51 1.1522e-6 51 2.5887e-6

Example 2: The author consider Problem (3.1) again with another right-hand side term

f (x) =−2ηu(x)(η−ηu(x)2).
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The exact solution is

u(x) = tanh(η(x−0.5)),

which is plotted in Figure 3.6 when η = 10 and 200.
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Figure 3.6: (Example 2) Exact solutions when η = 10 (Left), and when η = 200 (Right).

Note that there is an interior layer inside the domain at x = 0.5 when η becomes large

so that it turns out to be very difficult to capture the rapid change of the function values

using MAPS or Kansa’s method on uniformly distributed collocation points (see the upper

two curves in Figure 3.9). Therefore, the author set initial set of collocation points with

N = 11 and λ = 0.3 when η = 10, but N = 101 and λ = 0.1 when η = 200. The adaption

of collocation points are presented in Figure 3.7.

Next, let us take a look at the convergence behaviors of adaptive MAPS and non-adaptive

MAPS. When η = 10, the plot the errors of adaptive MAPS at each step of the adaptive

algorithm and errors of MAPS using different sets of uniformly distributed collocation

points in Figure 3.10. It is observed that the non-adaptive MAPS produced better results

than adaptive MAPS when roughly the same number of collocation points were used. The

reason is that the solution does not really have a rapid change at the midpoint of the domain

when η = 10. In this situation, non-adaptive MAPS using uniformly distributed collocation
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Figure 3.7: (Example 2) Collocation points using adaptive MAPS when η = 10 (Left), and
when η = 200 (Right).
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Figure 3.8: (Example 2) Errors of adaptive MAPS at each step of the adaptive algorithm
(Left); and errors of MAPS using different sets of uniformly distributed collocation points
(Right) when η = 10.

points may achieve better results because its results should be affected much less by the

choice of the shape parameter.

The errors of adaptive MAPS, non-adaptive MAPS, Kansa’s method, and nonadaptive

Kansa’s method are presented in Table 3.2 and in Figure 3.9. Here, non-adaptive methods
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Figure 3.9: (Example 2) Error curves of four methods when η = 10.

are implemented on uniform distributed points.

Table 3.2: (Example 2) A comparison of four methods when η = 10
adaptive MAPS adaptive Kansa’s method MAPS Kansa’s method

Step N error N error N error N error
1 11 9.3362e-2 11 3.9850e-2 11 9.3370e-2 11 3.9849e-2
2 17 4.0108e-2 15 3.4263e-2 26 4.5736e-5 26 1.8921e-5
3 27 2.2996e-4 23 1.9800e-4 41 5.4340e-7 41 3.9379e-6
4 41 2.4849e-4 39 4.4475e-4 56 2.1047e-7 56 2.0141e-6
5 71 2.3801e-4 71 5.2438e-4 71 9.7733e-8 71 1.1585e-6
6 139 4.6047e-5 137 5.8974e-4 86 5.0831e-8 86 7.2583e-7

Now, the author consider the problem when η = 200 which incurs a rapid change to the

solution. In this case, it is extremely important to know where new nodes should be added.

From Figure 3.7 (Right), it can be seen that the new nodes were concentrated on a very
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Figure 3.10: (Example 2) Errors of adaptive MAPS at each step of the adaptive algorithm
(Left); and errors of MAPS using different sets of uniformly distributed collocation points
(Right) when η = 200.

narrow subdomain near the interior layer. As a consequence, the error curves of adaptive

MAPS in Table 3.3 and in Figure 3.11 show that the error decreases rapidly as new nodes

are added to the set of collocation points.

Table 3.3: (Example 2) A comparison of four methods when η = 200
adaptive MAPS adaptive Kansa’s method MAPS Kansa’s method

Step N error N error N error N error
1 101 4.7919e-1 101 4.7937e-1 101 4.7887e-1 101 4.7896e-1
2 105 1.1801e-0 105 4.6086e-1 116 3.7525e-1 116 3.7453e-1
3 111 4.2167e-1 111 1.3673e-1 131 2.3831e-1 131 2.3813e-1
4 121 8.6705e-5 121 1.3622e-4 146 1.6860e-1 146 1.6909e-1
5 135 1.2915e-3 135 8.9990e-3 161 1.0581e-1 161 1.0548e-1
6 165 9.1958e-4 167 1.2936e-2 176 6.8635e-2 176 6.8337e-2
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Figure 3.11: (Example 2) Error curves of four methods when η = 200.

Example 3: In this example, the author set p(x) equals to zero, q(x) equals to one:

− εu′′+u = 0 in (0,1),

u(0) = 0 u(1) = 1.

the exact solution is selected to be

u(x) =
1− e−x/

√
ε

1− e−1/
√

ε
. (3.1.2)

First, let us consider the numerical methods when ε = 10−2. The exact solution is plotted

in Figure3.12 (Left).

The author set λ = 0.5, and cp = 10 for adaptive MAPS, and other methods appeared in
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comparison 3.14. Figure3.12 (Right) shows the distribution of collocation points in each

step.
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Figure 3.12: (Example 3) Exact solution (Left) and the adaption of nodes using MAPS
(Right) when ε = 10−2.
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Figure 3.13: (Example 3) Errors of adaptive MAPS at each step of the adaptive algorithm
(Left); Errors of MAPS when uniformly increasing the number of collocation points (Right)
when ε = 10−2.

Figure 3.13 (Left) shows the errors of adaptive MAPS on [0,1] at each step of the
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Figure 3.14: (Example 3) Error curves of four methods when ε = 10−2.

Table 3.4: (Example 3) A comparison of four methods when ε = 10−2

adaptive MAPS adaptive Kansa’s method MAPS Kansa’s method
Step N error N error N error N error

1 11 4.3459e-3 11 7.3556e-3 11 4.3459e-3 11 7.3484e-3
2 12 7.6332e-3 12 7.8780e-4 26 9.1573e-5 26 3.6138e-4
3 15 1.6966e-2 15 8.9648e-3 41 1.6058e-5 41 1.0244e-4
4 19 1.6390e-3 19 1.0883e-2 56 5.6531e-6 56 4.8830e-5
5 30 3.8851e-4 30 5.0847e-4 71 2.6818e-6 71 2.9680e-5
5 52 2.6486e-7 52 3.0549e-5 86 1.7489e-6 86 2.0374e-5

adaptive algorithm. Similarly, the errors of MAPS using a different uniform distributed set

of collocation points on [0,1] are plotted in Figure3.13 (Right). The maximums of these

curves are taken to plot Figure3.14. Convergent curves show that the error of adaptive

MAPS can be smaller than 10−7, while

Another observation is that the adaptive MAPS uses less collocation points than non-
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adaptive MAPS. A similar conclusion can be drawn for adaptive Kansa’s method and

non-adaptive Kansa’s method.
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Figure 3.15: (Example 3) Exact solution (Left) and the adaption of nodes using MAPS
(Right) when ε = 10−6.
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Figure 3.16: (Example 3) Errors of adaptive MAPS at each step of the adaptive algorithm
(Left); Errors of MAPS when uniformly increasing the number of collocation points (Right)
when ε = 10−6.

Secondly, let us consider ε = 10−6, which means that the problem has strong singularity
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Figure 3.17: (Example 3) Error curves of four methods when ε = 10−6.

Table 3.5: (Example 3) A comparison of four methods when ε = 10−6

adaptive MAPS adaptive Kansa’s method MAPS Kansa’s method
Step N error N error N error N error

1 101 4.3102e-1 101 5.0214e-1 101 4.8730e-1 101 5.2102e-1
2 102 7.5386e-1 102 2.3092e-1 121 4.3810e-1 121 4.6912e-1
3 103 7.3954e-1 103 4.3215e-2 141 3.9391e-1 141 4.2140e-1
4 105 1.4122e-2 105 4.5064e-3 161 3.5337e-1 161 3.7757e-1
5 107 3.8752e-2 107 2.5710e-3 181 3.1635e-1 181 3.3750e-1
5 112 5.8615e-4 112 1.8998e-3 201 2.8269e-1 201 3.0104e-1

at x = 0. The exact solution is plotted in Figure 3.15 (Left). Other figures are arranged in the

same way as for the case when ε = 10−2. The author set λ = 0.1, and cp = 8 for adaptive

MAPS, and cp = 5 other methods appeared in comparison Figure 3.17.

Figure 3.17 illustrates that MAPS and Kansa’s method using uniformly distributed

collocation points cannot produce an accurate approximation unless they use a very large
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member of collocation points to resolve the boundary layer. On the other hand, the adaptive

MAPS and the adaptive Kansa’s method can generate good approximations with error

∼ 10−3 only using about 110 collocation points.
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Chapter 4

Conclusions and Remarks

We introduced an adaptive MAPS in this work. Based on the numerical results we obtained

in chapter 3, we have the following conclusions:

1. Adaptive MAPS has been formulated for second order boundary value problems.

This method can actually be extended to higher order differential equations and time-

dependent problems. In this work, we only consider most simplest error indicator

and stop criterion. There are also many other choices for the error indicator and stop

criterion.

2. It has been numerically verified that adaptive MAPS and adaptive Kansa can both

be used for computing numerical approximations to the solution of the differential

equations. It has been found that if the solution has a boundary layer or interior layer,

adaptive methods are more accurate than non-adaptive method when the same number

of collocation points are used.

3. The performance of the adaptive methods depends on the number of collocation

points in a initial set, the parameter cp, and the parameter λ in error indicator. The

choice of an optimal shape parameter for adaptive RBF collocation method is another

interesting research topic that has already been extensively discussed for non-adaptive

RBF collocation method.

4. The investigation of adaptive localized MAPS method will be a future research project.

It will be be more convincible to study the adaptive localized MAPS in a domain with

higher dimension and complex boundary.
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[15] Charles A. Micchelli, Interpolation of Scattered Data: Distance Matrices and Conditionally

Positive Definite Functions, Constructive Approximation, 2: 11–22, 1986.

[16] J.J.H. Miller, E.O’Riordan, G.I. Shinshkin, On piecewise uniform meshes for upwind and

central difference operators for solving singularly perturbed problems , IMA J. Numer. Anal.,

15:89–99, 1995.

[17] Rodrigo B. Platte, Accuracy and Stability of Global Radial Basis Function Methods for the

Numerical Solution of Partial Differential Equations, Dissertation. University of Delaware,

2005.

[18] M.J.D. Powell, Radial basis functions for multivariable interpolation: A review. IMA con-

ference on "Algorithms for the Approximation of Functions and Data." RMCS Shrivenham,

1985.

[19] S.A. Sarra, Adaptive radial basis function methods for time dependent partial differential

equations, Appl. Numer. Math., 54(1):79Ű-94, 2005.
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