320 research outputs found

    An algorithm for controlling packet size in IEEE 802.16e networks

    Get PDF
    This paper proposes an algorithm to be used in IEEE 802.16e networks for adapting MAC PDU size to wireless channel behavior when ARQ is adopted at MAC layer. The algorithm is based on an analytical approach for dynamically evaluating the optimal packet size. The latter is derived from an expression of the ARQ protocol efficiency, obtained by exploiting a finite-state Markov error model which also takes into account Adaptive Modulation/Coding. The effectiveness of the designed algorithm in improving TCP performance has been evaluated

    Performance Analysis of ARQ Mechanism in WiMAX Networks

    Get PDF
    WiMAX (Worldwide Interoperability for MicrowaveAccess) is the IEEE 802.16 standards-based wireless technology, provides Broadband Wireless Access (BWA) for Metropolitan Area Networks (MAN). The Automatic Repeat reQuest (ARQ) mechanism in WiMAX uses a feedback channel for the confirmation of error-free packet delivery or for packet retransmission request. This method can increase network throughput when radio channel condition is worse. In this paper attempt has been made to study the effect of implementation of ARQ on the performance of WiMAX network through simulation. Simulation study has been carried out for WiMAX network with and without enabling ARQ. The performance is been compared by considering the performance metrics like throughput, delay and jitter

    Handover analysis over mobile WiMAX technology.

    Get PDF
    As new mobile devices and mobile applications continue to growth, so does the data traffic demand for broadband services access and the user needs toward mobility, thereby, wireless application became today the fastest solution and lowest cost implementation unlike traditional wired deployment such as optical fibers and digital lines. WiMAX technology satisfies this gap through its high network performance over the air interface and high data rates based on the IEEE 802.16-2004 standards, this original specification does not support mobility. Therefore, the IEEE introduces a new standard that enables mobility profiles under 802.16e-2005, from which three different types of handovers process are introduced as hard handover (HHO), macro diversity handover (MDHO) and fast base station switching (FBSS) handover. The objective of this master thesis is to analyze how the handover process affects network performance. The analysis propose three scenarios, built over OPNET simulator to measure the most critical wireless parameter and performance indicator such as throughput, handover success rate, packet drop, delay and network usage.fi=OpinnÀytetyö kokotekstinÀ PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=LÀrdomsprov tillgÀngligt som fulltext i PDF-format

    The Impact of Channel Feedback on Opportunistic Relay Selection for Hybrid-ARQ in Wireless Networks

    Full text link
    This paper presents a decentralized relay selection protocol for a dense wireless network and describes channel feedback strategies that improve its performance. The proposed selection protocol supports hybrid automatic-repeat-request transmission where relays forward parity information to the destination in the event of a decoding error. Channel feedback is employed for refining the relay selection process and for selecting an appropriate transmission mode in a proposed adaptive modulation transmission framework. An approximation of the throughput of the proposed adaptive modulation strategy is presented, and the dependence of the throughput on system parameters such as the relay contention probability and the adaptive modulation switching point is illustrated via maximization of this approximation. Simulations show that the throughput of the proposed selection strategy is comparable to that yielded by a centralized selection approach that relies on geographic information.Comment: 30 pages, 9 figures, submitted to the IEEE Transactions on Vehicular Technology, revised March 200

    Subcarrier and Power Allocation in WiMAX

    Get PDF
    Worldwide Interoperability for Microwave Access (WiMAX) is one of the latest technologies for providing Broadband Wireless Access (BWA) in a metropolitan area. The use of orthogonal frequency division multiplexing (OFDM) transmissions has been proposed in WiMAX to mitigate the complications which are associated with frequency selective channels. In addition, the multiple access is achieved by using orthogonal frequency division multiple access (OFDMA) scheme which has several advantages such as flexible resource allocation, relatively simple transceivers, and high spectrum efficient. In OFDMA the controllable resources are the subcarriers and the allocated power per subband. Moreover, adaptive subcarrier and power allocation techniques have been selected to exploit the natural multiuser diversity. This leads to an improvement of the performance by assigning the proper subcarriers to the user according to their channel quality and the power is allocated based on water-filling algorithm. One simple method is to allocate subcarriers and powers equally likely between all users. It is well known that this method reduces the spectral efficiency of the system, hence, it is not preferred unless in some applications. In order to handle the spectral efficiency problem, in this thesis we discuss three novel resources allocation algorithms for the downlink of a multiuser OFDM system and analyze the algorithm performances based on capacity and fairness measurement. Our intensive simulations validate the algorithm performances.fi=OpinnÀytetyö kokotekstinÀ PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=LÀrdomsprov tillgÀngligt som fulltext i PDF-format

    Quality of service and resource management in IP and wireless networks

    Get PDF
    A common theme in the publications included in this thesis is the quality of service and resource management in IP and wireless networks. This thesis presents novel algorithms and implementations for admission control in IP and IEEE 802.16e networks, active queue management in EGPRS, WCDMA, and IEEE 802.16e networks, and scheduling in IEEE 802.16e networks. The performance of different algorithms and mechanisms is compared with the prior art through extensive ns-2 simulations. We show that similar active queue management mechanisms, such as TTLRED, can be successfully used to reduce the downlink delay (and in some cases even improve the TCP goodput) in different bottlenecks of IP, EGPRS, WCDMA, and IEEE 802.16e access networks. Moreover, almost identical connection admission control algorithms can be applied both in IP access networks and at IEEE 802.16e base stations. In the former case, one just has to first gather the link load information from the IP routers. We also note that DiffServ can be used to avoid costly overprovisioning of the backhaul in IEEE 802.16e networks. We present a simple mapping between IEEE 802.16e data delivery services and DiffServ traffic classes, and we propose that IEEE 802.16e base stations should take the backhaul traffic load into account in their admission control decisions. Moreover, different IEEE 802.16e base station scheduling algorithms and uplink channel access mechanisms are studied. In the former study, we show that proportional fair scheduling offers superior spectral efficiency when compared to deficit round-robin, though in some cases at the cost of increased delay. Additionally, we introduce a variant of deficit round-robin (WDRR), where the quantum value depends on the modulation and coding scheme. We also show that there are several ways to implement ertPS in an efficient manner, so that during the silence periods of a VoIP call no uplink slots are granted. The problem here, however, is how to implement the resumption after the silence period while introducing as little delay as possible

    Simulation of Relay modes in IEEE 802.16j Mobile Multi-hop Relay (MMR) WIMAX Networks

    Get PDF
    Two different relay modes are defined in IEEE 802.16j WIMAX standard: transparent mode and non-transparent mode. The non transparent mode is used to extend the coverage area of base stations, where low cost relay station of equal capacity as that of base station is placed at suitable position. Time taken to accept mobile stations and Bandwidth allocation are main problems in non transparent mode. In this we have studied the IEEE 802.16j standard multi hop relay WIMAX networks. We have used relay stations to extend the coverage of base stations. We have also analyzed the throughput between mobile stations with in the coverage area and outside coverage area of base stations. We have simulated the IEEE 802.16j transparent and non transparent mode multi hop WIMAX relay networks using NCTUns Too
    • 

    corecore