70,038 research outputs found

    Collaborative Deep Reinforcement Learning for Joint Object Search

    Full text link
    We examine the problem of joint top-down active search of multiple objects under interaction, e.g., person riding a bicycle, cups held by the table, etc.. Such objects under interaction often can provide contextual cues to each other to facilitate more efficient search. By treating each detector as an agent, we present the first collaborative multi-agent deep reinforcement learning algorithm to learn the optimal policy for joint active object localization, which effectively exploits such beneficial contextual information. We learn inter-agent communication through cross connections with gates between the Q-networks, which is facilitated by a novel multi-agent deep Q-learning algorithm with joint exploitation sampling. We verify our proposed method on multiple object detection benchmarks. Not only does our model help to improve the performance of state-of-the-art active localization models, it also reveals interesting co-detection patterns that are intuitively interpretable

    Learning Intelligent Dialogs for Bounding Box Annotation

    Get PDF
    We introduce Intelligent Annotation Dialogs for bounding box annotation. We train an agent to automatically choose a sequence of actions for a human annotator to produce a bounding box in a minimal amount of time. Specifically, we consider two actions: box verification, where the annotator verifies a box generated by an object detector, and manual box drawing. We explore two kinds of agents, one based on predicting the probability that a box will be positively verified, and the other based on reinforcement learning. We demonstrate that (1) our agents are able to learn efficient annotation strategies in several scenarios, automatically adapting to the image difficulty, the desired quality of the boxes, and the detector strength; (2) in all scenarios the resulting annotation dialogs speed up annotation compared to manual box drawing alone and box verification alone, while also outperforming any fixed combination of verification and drawing in most scenarios; (3) in a realistic scenario where the detector is iteratively re-trained, our agents evolve a series of strategies that reflect the shifting trade-off between verification and drawing as the detector grows stronger.Comment: This paper appeared at CVPR 201

    Hierarchical object detection with deep reinforcement learning

    Get PDF
    We present a method for performing hierarchical object detection in images guided by a deep reinforcement learning agent. The key idea is to focus on those parts of the image that contain richer information and zoom on them. We train an intelligent agent that, given an image window, is capable of deciding where to focus the attention among five different predefined region candidates (smaller windows). This procedure is iterated providing a hierarchical image analysis. We compare two different candidate proposal strategies to guide the object search: with and without overlap. Moreover, our work compares two different strategies to extract features from a convolutional neural network for each region proposal: a first one that computes new feature maps for each region proposal, and a second one that computes the feature maps for the whole image to later generate crops for each region proposal. Experiments indicate better results for the overlapping candidate proposal strategy and a loss of performance for the cropped image features due to the loss of spatial resolution. We argue that, while this loss seems unavoidable when working with large amounts of object candidates, the much more reduced amount of region proposals generated by our reinforcement learning agent allows considering to extract features for each location without sharing convolutional computation among regions.Postprint (published version

    Deep Object-Centric Representations for Generalizable Robot Learning

    Full text link
    Robotic manipulation in complex open-world scenarios requires both reliable physical manipulation skills and effective and generalizable perception. In this paper, we propose a method where general purpose pretrained visual models serve as an object-centric prior for the perception system of a learned policy. We devise an object-level attentional mechanism that can be used to determine relevant objects from a few trajectories or demonstrations, and then immediately incorporate those objects into a learned policy. A task-independent meta-attention locates possible objects in the scene, and a task-specific attention identifies which objects are predictive of the trajectories. The scope of the task-specific attention is easily adjusted by showing demonstrations with distractor objects or with diverse relevant objects. Our results indicate that this approach exhibits good generalization across object instances using very few samples, and can be used to learn a variety of manipulation tasks using reinforcement learning

    Active Object Localization in Visual Situations

    Get PDF
    We describe a method for performing active localization of objects in instances of visual situations. A visual situation is an abstract concept---e.g., "a boxing match", "a birthday party", "walking the dog", "waiting for a bus"---whose image instantiations are linked more by their common spatial and semantic structure than by low-level visual similarity. Our system combines given and learned knowledge of the structure of a particular situation, and adapts that knowledge to a new situation instance as it actively searches for objects. More specifically, the system learns a set of probability distributions describing spatial and other relationships among relevant objects. The system uses those distributions to iteratively sample object proposals on a test image, but also continually uses information from those object proposals to adaptively modify the distributions based on what the system has detected. We test our approach's ability to efficiently localize objects, using a situation-specific image dataset created by our group. We compare the results with several baselines and variations on our method, and demonstrate the strong benefit of using situation knowledge and active context-driven localization. Finally, we contrast our method with several other approaches that use context as well as active search for object localization in images.Comment: 14 page
    • …
    corecore