
Learning Intelligent Dialogs for Bounding Box Annotation

Ksenia Konyushkova
CVLab, EPFL

ksenia.konyushkova@epfl.ch
∗

Jasper Uijlings
Google AI Perception

jrru@google.com

Christoph H. Lampert
IST Austria

chl@ist.ac.at

Vittorio Ferrari
Google AI Perception

vittoferrari@google.com

Abstract

We introduce Intelligent Annotation Dialogs for bounding
box annotation. We train an agent to automatically choose
a sequence of actions for a human annotator to produce
a bounding box in a minimal amount of time. Specifically,
we consider two actions: box verification [34], where the
annotator verifies a box generated by an object detector, and
manual box drawing. We explore two kinds of agents, one
based on predicting the probability that a box will be posi-
tively verified, and the other based on reinforcement learning.
We demonstrate that (1) our agents are able to learn efficient
annotation strategies in several scenarios, automatically
adapting to the image difficulty, the desired quality of the
boxes, and the detector strength; (2) in all scenarios the re-
sulting annotation dialogs speed up annotation compared to
manual box drawing alone and box verification alone, while
also outperforming any fixed combination of verification and
drawing in most scenarios; (3) in a realistic scenario where
the detector is iteratively re-trained, our agents evolve a
series of strategies that reflect the shifting trade-off between
verification and drawing as the detector grows stronger.

1. Introduction

Many recent advances in computer vision rely on super-
vised machine learning techniques that are known to crave
for huge amounts of training data. Object detection is no
exception as state-of-the-art methods require a large number
of images with annotated bounding boxes around objects.
However, drawing high quality bounding boxes is expensive:
The official protocol used to annotate ILSVRC [38] takes
about 30 seconds per box [43]. To reduce this cost, recent
works explore cheaper forms of human supervision such as
image-level labels [6, 21, 53], box verification series [34],
point annotations [27, 33], and eye-tracking [31].

Among these forms, the recent work on box verification
series [34] stands out as it demonstrated to deliver high
quality detectors at low cost. The scheme starts from a given

∗This work was done during an internship at Google AI Perception

Figure 1: Left: an image with a target class cat. The weak
detector identified two box proposals with high scores. The
best strategy in this case is to do a series of box verifications.
Right: an image with a target class potted plant. The weak
detector identified many box proposals with low scores. The
best strategy is to draw a box.

weak detector, typically trained on image labels only, and
uses it to localize objects in the images. For each image, the
annotator is asked to verify whether the box produced by
the algorithm covers an object tightly enough. If not, the
process iterates: the algorithm proposes another box and the
annotator verifies it.

The success of box verification series depends on a variety
of factors. For example, large objects on homogeneous back-
grounds are likely to be found early in the series, and hence
require little annotation time (Fig. 1, left). However, small
objects in crowded scenes might require many iterations, or
could even not be found at all (Fig. 1, right). Furthermore,
the stronger the detector is, the more likely it is to correctly
localize new objects, and to do so early in the series. Finally,
the higher the desired box quality (i.e. how tight they should
be), the lower the rate of positively verified boxes. This
causes longer series, costing more annotation time. There-
fore, in some situations manual box drawing [32, 43] is
preferable. While more expensive than one verification, it
always produces a box annotation. When an annotation
episode consists of many verifications, its duration can be
longer than the time to draw a box, depending on the relative
costs of the two actions. Thus, different forms of annotation
are more efficient in different situations.

In this paper we introduce Intelligent Annotation Dialogs
(IAD) for bounding box annotation. Given an image, detec-
tor, and target class to be annotated, the aim of IAD is to
automatically choose the sequence of annotation actions that

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/211982405?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

results in producing a bounding box in the least amount of
time. We train an IAD agent to select the type of action based
on previous experience in annotating images. Our method au-
tomatically adapts to the difficulty of the image, the strength
of the detector, the desired quality of the boxes, and other fac-
tors. This is achieved by modeling the episode duration as a
function of problem properties. We consider two alternative
ways to do this, either a) by predicting whether a proposed
box will be positively or negatively verified (Sec. 4.1), or
b) by directly predicting the episode duration (Sec. 4.2).

We evaluate IAD by annotating bounding boxes in the
PASCAL VOC 2007 dataset [15] in several scenarios:
a) with various desired quality levels; b) with detectors of
varying strength; and c) with two ways to draw bounding
boxes, including a recent method which only takes 7s per
box [32]. In all scenarios our experiments demonstrate that
thanks to its adaptive behavior IAD speeds up box annotation
compared to manual box drawing alone, or box verification
series alone. Moreover, it outperforms any fixed combina-
tion of them in most scenarios. Finally, we demonstrate
that IAD learns useful strategies in a complex realistic sce-
nario where the detector is continuously improved with the
growing amount of the training data. Our IAD code is made
publicly available1.

2. Related work
Drawing bounding boxes Fully supervised object detec-
tors are trained on data with manually annotated bounding
boxes, which is costly. The reference box drawing inter-
face [43] used to annotate ILSVRC [38] requires 25.5s for
drawing one box. Recently, a more efficient interface re-
duces costs to 7.0s without compromising on quality [32].
We consider both interfaces in this paper.

Training object detectors from image-level labels
Weakly Supervised Object Localization (WSOL) [6, 13, 14,
16, 21, 53] methods train object detectors from images la-
beled only as containing certain object classes, but without
bounding boxes. This avoids the cost of box annotation,
but leads to considerably weaker detectors than their fully
supervised counterparts [6, 16, 21, 53]. To produce better
object detectors, extra human annotation is required.

Other forms of weak supervision Several works aim to
reduce annotation cost of manual drawing by using ap-
proximate forms of annotation. Eye-tracking is used for
training object detectors [31] and for action recognition in
videos [26]. Point-clicks are used to derive bounding box
annotations in images [33] and video [27], and to train se-
mantic segmentation models [2, 3, 50]. Other works train
semantic segmentation models using scribbles [25, 51].

In this paper we build on box verification series [34],
where boxes are iteratively proposed by an object detector

1https://github.com/google/intelligent_annotation_dialogs

and verified by a human annotator. Experiments show that
humans can perform box verification reliably (Fig. 6 of [34]).
Besides, the Open Images dataset [23] contains 2.5 Million
boxes annotated in this manner, demonstrating it can be done
at scale.

Interactive annotation Several works use human-
machine collaboration to efficiently produce anno-
tations. These works address interactive segmenta-
tion [8, 37, 12, 18, 17, 30], attribute-based fine-grained
image classification [10, 35, 7, 49], and interactive video
annotation [48]. Branson et al. [9] transform different
types of location information (e.g. parts, bounding boxes,
segmentations) into each other with corrections from an
annotator. These works follow a predefined annotation pro-
tocol, whereas we explore algorithms that can automatically
select questions, adapting to the input image, the desired
quality of the annotation, and other factors.

The closest work [39] to ours proposes human-machine
collaboration for bounding box annotation. Given a reper-
toire of questions, the problem is modeled with a Markov
decision process. Our work differs in several respects.
(1) While Russakovsky et al. [39] optimizes the expected
precision of annotations over the whole dataset, our method
delivers quality guarantees on each individual box. (2) Our
approach of Sec 4.1 is mediated by predicting the probability
of a box to be accepted by an annotator. Based on this, we
provide a provably optimal strategy which minimizes the
expected annotation time. (3) Our reinforcement learning
approach of Sec. 4.2 learns a direct mapping from from
measurable properties to annotation time, while avoiding
any explicit modelling of the task. (4) Finally, we address a
scenario where the detector is iteratively updated (Sec. 5.3),
as opposed to keeping it fixed.

Active learning (AL) In active learning the goal is to train
a model while asking human annotations for unlabeled ex-
amples which are expected to improve the model accuracy
the most. It is used in computer vision to train whole-image
classifiers [20, 22], object class detectors [47, 52], and se-
mantic segmentation [41, 45, 46]. While the goal of AL is
to select a subset of the data to be annotated, this paper aims
at minimizing the time to annotate each of the examples.

Reinforcement learning Reinforcement learning (RL)
traditionally aims at learning policies that allow autonomous
agents to act in interactive environments. Reinforcement
learning has a long tradition e.g. in robotics [1, 28, 24]. In
computer vision, it has mainly been used for active vision
tasks [11, 4, 19], such as learning a policy for the spatial
exploration of large images or panoramic images. Our use
of RL differs from this, as we learn a policy for image anno-
tation, not for image analysis. The learned policy enables
the system to dynamically choose the annotation mechanism
by which to interact with the user.

https://github.com/google/intelligent_annotation_dialogs

3. Problem definition and motivation
3.1. Why use intelligent annotation dialogs?

In this paper we tackle the problem of producing bound-
ing box annotations for a set of images with image-level
labels indicating which object classes they contain. Consider
annotating a cat in Fig. 1 (left). The figure shows two bound-
ing boxes found by the detector. We notice that: a) the image
is relatively simple with only one distinct object; b) there are
only few high-scored cat detections; c) they are big; d) we
might know a-priori that the detector is strong for the class
cat and thus detections for it are often correct. As box verifi-
cation is much faster than drawing, the most efficient way
to annotate a box in this situation is with a box verification
series.

Now consider instead annotating a potted plant in Fig. 1
(right). We notice that: a) the image is cluttered with many
details; b) there are many low-scored potted plant detections;
c) they are small; d) we might know a-priori that the detec-
tor is weak for this class and thus the detections for it are
often wrong. In this situation, it is unlikely that the correct
bounding box comes early in the series. Thus, manual box
drawing is likely to be the fastest annotation strategy.

Even during annotation of one image-class pair, the best
strategy may combine both annotation types: Given only
one high-scored box for cat, the best expected strategy is to
verify one box, and, if rejected, ask manual box drawing.

These examples illustrate that every image, class and
detector output requires a separate treatment for designing
the best annotation strategy. Thus, there is need for a method
that can take advantage of this information to select the
most time efficient sequence of annotation actions. In this
paper, we propose two methods to achieve this with the help
of Intelligent Annotation Dialog (IAD) agents. In our first
approach (Sec. 4.1) we explicitly model the expected episode
duration by taking into consideration the probability for each
proposed box to be accepted. Our second approach (Sec. 4.2)
casts the problem in terms of reinforcement learning and
leans a strategy from trial-and-error interactions without an
intermediate modeling step.

3.2. Problem definition

We are given an image with image-level labels that in-
dicate which object classes it contains. We treat each class
independently, and we want to produce one bounding box
given a single image-class pair. In particular, given that the
image contains a set B? of object instances of the target class,
we want to produce a bounding box b̂ of sufficient quality
around one such object b?. We measure the quality in terms
of Intersection-over-Union (IoU) and we want to find b̂ such
that there exists b? ∈ B? : IoU(b̂, b?) ≥ α. More specif-
ically, we want to automatically construct a sequence of
actions which produces b̂ while minimizing annotation time,

image

class:
boat

Detector

box proposals

IAD
agent

Correct box? Correct box?

END

Draw a box

yes
yes

no no

Figure 2: Intelligent Annotation Dialog agent in action. For
a given image and class boat the detector identifies a set of
box proposals. IAD agent produces a planned dialog V 2D
that means that the first two box proposals are verified and if
none of them is accepted, manual box drawing is done. In
reality, the annotation terminates after two box verifications.

choosing from two annotation actions: manual bounding box
drawing D [32, 43] that takes tD seconds and bounding box
verification V [34] that takes tV seconds.

We design the annotation dialog to end with a success-
fully annotated bounding box. Logically, the only possible
planned sequence of actions which does this has the form
V mD. No sequence of verification V is guaranteed to pro-
duce a bounding box, so if m verifications fail to produce
one, manual drawing is required. Conversely, manual draw-
ing always produces a box and the dialog ends. Fig 2 il-
lustrates how IAD agent produces a planned sequence of
V 2D for the task of detecting a boat in the image with sev-
eral detections. In reality, only a sequence of actions V 2 is
executed because a boat is found at the second verification.

Verification questions are generated using an object de-
tector. Papadopoulos et al. [34] present the highest scored
detection to the annotator. Upon rejection, they remove
boxes which highly overlap with the rejected one (this pro-
cedure is called search space reduction), after which they
present the next box with the highest score. In this paper we
assume the detector stays constant during a single annota-
tion dialog, which means we can do search space reduction
by non-maximum suppression (NMS). Let us denote by B0

the sequence of detections followed by NMS. Because of
NMS, we can assume boxes in B0 to be independent for
verification. Let S be the set of all possible sequences of dis-
tinct elements in B0. Now our goal is to plan a sequence of
actions π = V mD on a sequence Sm = (s1, . . . , sm) ∈ S.

We can now formally define the optimization criterion
for the IAD agent. Let t(V mD,Sm) be the duration of the
episode when strategy V mD is applied to a sequence Sm

and let us denote its expected duration as T (V mD,Sm).
The task of IAD is to choose 1) the maximum number of
verifications m = k that will define a sequence of actions
V kD, and 2) a sequence of boxes Ak = (a1, . . . , ak) ∈
S such that the duration of the episode is minimized in
expectation:

T (V kD,Ak) ≤ T (V mD,Sm),

m ∈ {0, . . . , n},∀Sm ∈ S.
(1)

4. Methods
We now present our two methods to construct Interactive

Annotation Dialogs (IAD).

4.1. IAD by predicting probability of acceptance

One way to minimize the expected duration of the episode
is by estimating the probability that the proposed boxes will
be accepted by the annotator. We can train a classifier g that
will predict if the box bi ∈ B0 is going to be accepted or not
as a function of various parameters of the state of the episode.
By looking at the probability of acceptance p(bi) for every
box, we can compute the expected duration of the episode
T (V mD,Sm) for any V mD and Sm. Given this acceptance
probability estimation, we show that there exists a simple
decision rule that chooses m and Sm so as to minimize the
expected episode duration.

Optimal strategy Suppose for now that we know the prob-
abilities p(bi) for every box bi to be accepted at a quality
level α:

p(bi) = P[max
b?∈B?

{IoU(bi, b
?)} ≥ α]. (2)

Later in this section we will explain how to estimate p(bi) in
practice.

Imagine for a moment that we have only one box proposal
b1. In this case the only two possible sequences of actions
are D and V 1D. Let us compute the expected time until the
end of the episode for both of them. The episode duration
for strategy D is just the time required for manual drawing:
T (D) = tD.

For the second strategy V 1D, the end of the episode is
reached with probability p(b1) when a box proposal is ac-
cepted and with probability q(b1) = 1− p(b1) when manual
drawing is done. Hence, the expected duration of the episode
is

T (V 1D, (b1)) = tV + q(b1)tD. (3)

As we want to choose the strategy with the lowest expected
duration of the episode, D is preferred to V 1D if T (D) ≤
T (V 1D, (b1)), i.e.

tD ≤ tV + q(b1)tD ⇐⇒ p(b1) ≤ tV /tD. (4)

Now let us go back to a situation with a sequence of box
proposals B0. We sort B0 in the order of decreasing proba-
bility of acceptance p(bi), resulting in a sequence of boxes
S̄n. Consider the following strategy (Alg. IAD-Prob): Verify
boxes from S̄n for which p(bi) > tV /tD; if none of them is
accepted, then do manual box drawing. We claim that the
strategy produced by IAD-Prob is optimal, i.e. it minimizes
the expected duration of the episode.

Algorithm IAD-Prob

1: Input: B0 = (b1, . . . , bn); p(b1), . . . , p(bn); tV ; tD
2: S̄n = (s̄1, s̄2, . . . , s̄n)← sort(B0) by p(bi)
3: π = ()
4: Ak = ()
5: while p(s̄i) > tV /tD do
6: Ak ← Ak _ s̄i
7: π ← V kD
8: return sequence of actions π, sequence of boxes Ak

Theorem 1. If probabilities of acceptance {p(bi)} are
known, the strategy of applying a sequence of actions V kD
defined by IAD-Prob to a sequence of boxes Ak minimizes
the annotation time, i.e. for all m ∈ {0, . . . , n} and for all
box sequences Sm:

T (V kD,Ak) ≤ T (V mD,Sm) (5)

Sketch of the proof. The proof consists of two parts. First,
we show that for any strategy V mD, the best box sequence is
obtained by sorting the available boxes by their probability of
acceptance and using the first m of them. Second, we show
that the number of verification steps found by IAD-Prob, k,
is indeed the optimal one.

We start by rewriting the expected episode length in
closed form. For a strategy V mD and any sequence of
boxes, Sm = (s1, . . . , sm), we obtain

T (V mD,Sm) = tV + q(s1)tV + q(s1)q(s2)tV + . . .

+ q(s1)q(s2) · · · q(sm−1)tV + q(s1)q(s2) · · · q(sm)tD

= tV

m−1∑
l=0

l∏
j=1

q(sj) + tD

m∏
j=1

q(sj). (6)

Our first observation is that (6) is monotonically decreasing
as a function of q(s1), . . . , q(sm). Consequently, the small-
est value is obtained by selecting the set of m boxes that
have the smallest rejection probabilities. To prove that their
optimal order is sorted in decreasing order, assume that Sm
is not sorted, i.e. there exists an index l ∈ {1, . . . ,m−1} for
which q(sl) > q(sl+1). We compare the expected episode
length of Sm to that of a sequence S̃m in which sl and sl+1

are at switched positions. Using (6) and noticing that many

of the terms cancel out, we obtain

T (V mD,Sm) − T (V mD, S̃m)

= tV
(
q(sl)−q(sl+1)

)(l−1∏
j=1

qj
)

> 0. (7)

This shows that S̃m has strictly smaller expected episode
length than Sm, so Sm cannot have been the optimal order.

Consequently, for any strategy V mD, the optimal se-
quence is to sort the boxes by decreasing probability of
rejection, i.e. increasing acceptance probability. We denote
it by S̄m = (s̄1, . . . , s̄m).

Next, we show that the number, k, of verification actions
found by the IAD-Prob algorithm is optimal, i.e. V kD is
better or equal to V mD for any m 6= k. As we already know
that the optimal box sequence for any strategy V mD is S̄m,
it is enough to show that

T (V m−1D, S̄m−1) ≥ T (V mD, S̄m), (8)

for all m ∈ {1, . . . , k}, and

T (V m−1D, S̄m−1) ≤ T (V mD, S̄m). (9)

for all m ∈ {k + 1, . . . , n}. To prove these inequalities, we
again make use of expression (6). For any m ∈ {1, . . . , n−
1} we obtain

T (V mD, S̄m) − T (V m−1D, S̄m−1)

= tV

m−1∏
j=1

q(s̄j) + tD

m∏
j=1

q(s̄j) − tD

m−1∏
j=1

q(s̄j)

=
(m−1∏

j=1

q(s̄j)
)(

tV + q(s̄m)tD − tD
)
. (10)

For m ∈ {1, . . . , k}, we know that p(s̄m) > tV /tD by
construction of the strategy. As in (4), this is equivalent
to tV + q(s̄m)tD − tD ≥ 0. Consequently, (10) is non-
negative in this case, and inequality (8) is confirmed. For
m ∈ {k + 1, . . . , n}, we know p(s̄m) ≤ tV /tD, again
by construction. Consequently, tV + q(s̄m)tD − tD ≤ 0,
which shows that (10) is nonpositive in this case, confirming
(9).

Predicting acceptance probability To follow the optimal
strategy IAD-Prob, we need the probabilities of acceptance
{p(bi)} which we estimate using a classifier g. To obtain
these probabilities we start with a (small) set Z0 of annotated
bounding boxes on a set of images I0. We apply a detector
f0 on I0 to obtain a set of detections B0. Afterwards, we
generate a feature vector φi for every box bi ∈ B0. The exact
features are specified in Sec. 5.1 and include measurements
such as detector scores, entropy, and box-size.

Next, we simulate verification responses for box propos-
als B0 of every image-class pair with known ground truth.
A box bi gets label yi = 1 if its IoU with any of the ground

truth boxes is great or equal to α, otherwise it gets label
0. This procedure results in feature-label pairs (φi, yi) that
serve as a dataset for training a probabilistic classifier g.

Intuitively, the classifier learns that, for example, boxes
with high detector’s score are more likely to be accepted
than boxes with low detector’s score, bounding boxes for
class cat are more likely to be accepted than bounding boxes
for class potted plant, and smaller bounding boxes are less
likely to be accepted than big ones.

4.2. IAD by reinforcement learning

The problem of finding a sequence of actions to produce
a box annotation can be naturally formulated as a reinforce-
ment learning problem. This approach allows us to learn a
strategy directly from trial-and-error experience and to avoid
the explicit modeling of Sec. 4.1. To construct an optimal
strategy it does not need any prior knowledge about the en-
vironment. Thus, it is easily extensible to other types of
actions or to stochastic environments with variable response
time by an annotator.

Suppose that bounding boxes in an episode are verified
in order of decreasing detector’s score given by B0. In an
episode of annotating one image for a given target class, the
IAD agent interacts with the environment in the form of the
annotator. A state sτ is characterised by the properties of a
current image, detector and a current box proposal (as φi in
Sec. 4.1). In each state the agent has a choice of two possible
actions a: 1) ask for verification of the current box (a = V)
and 2) ask for a manual drawing (a = D) The reward at
every step τ is the negative time required for the chosen
action: rτ = −tV and rτ = −tD. If a box is positively
verified or manually drawn, the episode terminates with a
reward 0. Otherwise the agent finds itself in the next state
corresponding to the next highest-scored box proposal in B0.
The total return of the episode is the sum of rewards over all
steps. Denoting the number of steps after which an episodes
terminates by K, the return is R =

∑K
τ=1 rτ . This is equal

to −(K − 1)tV − tD if the episode finished with manual
drawing, or −KtV if it finished with box acceptance. By
trying to maximise the return R, the agent learns a policy π
that minimises the total annotation time. This results in a
strategy that consists of a sequence of actions π applied to a
sequence of boxes B0.

Training the agent The agent can learn the optimal policy
π from trial and error interactions with the environment. As
in Sec. 4.1, we train on a small subset of annotated bounding
boxes Z0. We learn a policy with Q-learning which learns to
approximate Q-functionQπ(a, sτ) that indicates what return
the agent should expect at state sτ after taking an action a
and after that following a strategy π.

5. Experiments
5.1. Experimental setup

We evaluate the performance of the IAD approach on the
task of annotating bounding boxes on the PASCAL VOC
2007 trainval dataset. In all experiments our detector is
Faster-RCNN [36] using Inception-ResNet [44] as base net-
work.

Annotator actions and timings We simulate the annota-
tor based on the ground truth bounding boxes. When asked
for verification, a simulated human annotator deterministi-
cally accepts a box proposal if IoU≥ α and it takes tV = 1.8
seconds [34]. When the simulated annotator is asked to draw
a box, we use the ground truth box. We consider two inter-
faces for drawing: the classical manual drawing M [43] and
the new faster Extreme Clicking X [32]. We consider that
it takes a simulated user tM = 25.5 or tX = 7 seconds to
return a bounding box that corresponds to any of the objects
b? [43, 32].

Box proposal order The order of box proposals for verifi-
cations is set to be B0, i.e. in decreasing order of detector’s
score (Sec. 3.2). Then, the optimality condition of strategy
IAD-Prob assumes that a box with higher score is more likely
to be accepted than a box with lower score. Empirically, we
observe only rare cases when this assumption is violated,
but even then, changing the order does not improve results.
Thus, we keep the original order B0 for computational effi-
ciency and consistency with IAD-RL. The images come in
the same fixed random order for all methods.

Box features When predicting the acceptance probability
(Sec. 4.1) and during reinforcement learning (Sec. 4.2), we
use the following features φi characterizing box bi, image,
detector, and target class: a) prediction score of the detector
on the box: d(bi); b) relative size of the box bi in the image;
c) average prediction score of all box proposals for the tar-
get class; d) difference between c) and d(bi); e) difference
between the maximum score for the target class among all
box proposals and d(bi); f) one-hot encoding of class.

IAD-Prob To predict box acceptance probabilities, we use
a neural network classifier with 2 to 5 layers containing 5
to 50 neurons in each layer for predicting the acceptance of
a box and these parameters are chosen in cross-validation
(Sec. 4.1). We experimented with other types of classifiers
including logistic regression and random forest and did not
find any significant difference in their performance.

IAD-RL We learn a policy for the reinforcement learning
agent with a method similar to [29] (Sec. 4.2). The function
approximation of Q-values is a fully-connected neural net-
work with 2 layers and 30 neurons at every layer. We learn
it from interactions with simulated environment using expe-
rience replay. We use exploration rate ε = 0.2, mini-batches
of size 64 and between 500 and 1000 training iterations. A

subset of training samples is reserved for validation: we use
it for choosing parameter of neural network and for early
stopping.

5.2. IAD with a fixed detector

Scenarios We evaluate our methods in several scenarios,
by varying the following properties of the problem: a) the
desired quality of boxes, b) the strength of the detector,
and c) which interface is used to draw a box. Intuitively,
different properties tend to prioritize different actions V or
D. The higher the desired quality is, the more frequently
manual box drawing is needed. When the detector is strong,
box verification is successful more often and is preferred to
drawing due to its small cost. Finally, using the fast Extreme
Clicking interface, manual drawing is cheaper and becomes
more attractive. Specifically, we consider the following three
configurations, each for both quality levels:

1. Weak detector, slow drawing, varying quality
Classical, slow interface to draw boxes [43] with a
weak detector. To train the detector (Sec. 5.1), we
first produce bounding box estimates using standard
Multiple Instance Learning (MIL, e.g. [5, 13, 42]). The
first two columns of Tab. 1 report the average time per
one annotation episode.

2. Weak detector, fast drawing, varying quality
The fast Extreme Clicking [32] for drawing boxes. We
report the results in columns 3 and 4 of Tab. 1.

3. Strong detector, fast drawing, varying quality
In many situations we have access to a reasonably
strong detector before starting annotation of a new
dataset. To model this we train f0 on the PASCAL
2012 dataset train set which contains 16k boxes. The
results are presented in the last two columns of Tab. 1.

Dataset We use PASCAL 2007 trainval [15], where we
assume that image-level annotations are available for all
images, whereas bounding boxes are given only in a small
subset of images Z0. The task is to annotate the rest of
the images Z ′ with bounding boxes. Z and Z ′ are set with
10-fold validation and the reported results are averages over
them.

Standard strategies As baselines, we consider two stan-
dard annotation strategies. The first is to always do manual
drawing (D). The second is to run box verification series,
followed by drawing if all available boxes have been rejected
(V ∗D). This strategy is guaranteed to terminate successfully
while being the closest to [34].

Fixed strategies We introduce a family of fixed strate-
gies that combine the two actions V and D in a predefined
manner, without adapting to a particular image, class and
detector: V 1D, V 2D, and V 3D.

Drawing technique Slow drawing Fast drawing
Detector Weak detector Weak detector Strong detector
Quality level α = 0.7 α = 0.5 α = 0.7 α = 0.5 α = 0.7 α = 0.5

D (standard) 25.50 ± 0.00 25.50 ± 0.00 7.00 ± 0.00 7.00 ± 0.00 7.00 ± 0.00 7.00 ± 0.00
V 1D 23.01 ± 0.07 17.30 ± 0.07 7.62 ± 0.02 6.05 ± 0.02 3.45 ± 0.01 2.50 ± 0.01
V 2D 23.79 ± 0.06 16.67 ± 0.06 8.92 ± 0.02 6.67 ± 0.02 3.48 ± 0.01 2.45 ± 0.01
V 3D 24.67 ± 0.07 16.38 ± 0.07 10.21 ± 0.02 7.32 ± 0.03 3.65 ± 0.02 2.48 ± 0.01
V ?D (standard) 42.29 ± 0.07 17.37 ± 0.07 31.82 ± 0.11 11.46 ± 0.04 8.83 ± 0.09 3.18 ± 0.02

IAD-Prob 23.07 ± 0.23 12.64 ± 1.29 6.81 ± 0.02 5.86 ± 0.04 3.42 ± 0.18 2.73 ± 0.08
IAD-RL 23.62 ± 0.38 16.30 ± 0.09 6.83 ± 0.03 5.89 ± 0.05 3.60 ± 0.07 2.66 ± 0.06

lower bound 18.55 ± 0.05 10.23 ± 0.04 5.99 ± 0.01 4.66 ± 0.01 2.80 ± 0.01 2.19 ± 0.01

Table 1: Average episode duration for standard, fixed and IAD strategies in scenarios varying in drawing speed, strength of
detector and quality level. Best fixed strategy results are highlighted in bold. The best result of each scenario is indicated in
yellow (multiple highlights if very close). The two IAD agents do approximately equally well.

Lower bound We also report the lower bound on the du-
ration of the annotation episode. If we knew which box
(Sec 3.2) in the proposal sequence B0 is the first that will be
accepted, we could choose a sequence of actions that leads to
the lowest annotation cost. If accepted box is at the position
k? in sequence B0, then the strategy is the following. If
the cost of k? verifications is lower than the cost of a draw-
ing, then the verification series is done, otherwise, drawing
is done. Note how this lower bound requires knowing the
ground-truth bounding box. So, it is only intended to reveal
the limits of what can be achieved by the type of strategies
that we explore.

Results Tab. 1 shows that the scenario settings indeed in-
fluence the choice between V and D, along three dimen-
sions: a) When annotations of higher quality are required,
the best fixed strategy does fewer verifications, i.e. it re-
sorts to manual drawing ealier in the series than when lower
quality is acceptable (columns 1 vs. 2, 3 vs. 4, 5 vs. 6).
b) When the detector is strong (columns 5 and 6), the best
fixed strategy does more box verifications than with a weak
detector (columns 3 and 4). c) When manual drawing is fast
(columns 3 and 4), the best fixed strategy tends to do fewer
box verifications than when drawing is slow (columns 1 and
2). The gap to the lower bound indicates how hard each of
the scenarios is.

Importantly, both of our IAD strategies outperform any
standard strategy in all scenarios. Moreover, IAD-Prob is
significantly better than the best fixed strategy in three sce-
narios, equal in two, and worse in one. No single fixed strat-
egy works well in all scenarios, and finding the best fixed
strategy requires manual experimentation. In contrast, IAD
offers a principled way to automatically construct an adap-
tive strategy that works well in all problem settings. Indeed,
the consistent competitive performance of IAD demonstrates
that it learns to adapt to the scenario at hand.

5.3. IAD with an iteratively improving detector

In realistic settings, the detector becomes stronger with
a growing amount of annotations. Thus, to annotate bound-
ing boxes with minimal cost, the object detector should be
iteratively re-trained on previously annotated data.

Horizontal re-training One way to introduce detector re-
training is suggested by the box verification series tech-
nique [34]. It starts with a given object detector f0, typi-
cally trained on image-level labels using MIL. In the first
iteration, f0 is applied to all images, and the highest scored
detection b1 in each image is sent for human verification.
After this, the detector is re-trained on all accepted boxes,
giving a new detector f1. In the second iteration, f1 is
applied to all images where a proposed box was rejected,
attempting to localize the objects again as f1 is stronger
than f0 (re-localization phase). Afterwards, these new de-
tections are sent for verification, and finally the detector is
re-trained again. The re-training, re-localization, and ver-
ification phases are iteratively alternated for a predefined
number of iterations. We refer to this method as V -hor in
our experiments. It essentially corresponds to the original
method [34].

Vertical re-training A different way to incorporate detec-
tor re-training is inspired by batch-mode active learning [40].
In this case, a subset of images I1 (batch) is annotated until
completion, by running box verification series in each image
while keeping the initial detector f0 fixed. After this, the
detector is re-trained on all boxes produced so far, giving
f1, and is then applied to the next batch I2 to generate box
proposals. The process iteratively moves from batch to batch
until all images are processed.

IAD with vertical re-training It is straightforward to ap-
ply vertical retraining to any fixed dialog strategy. However,
re-training the detector on more data increases the advantage
of V over D, so a truly adaptive strategy should change as

0 20000 40000

annotation time (sec.)

0.0

0.5

1.0

%
im

ag
es

0 2500 5000 7500

images

0

10

20

ep
is

o
d
e

d
u
ra

ti
o
n

X

V - hor

IAD-Prob

1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

1.0

V

X

VV

V X

other

Figure 3: Left: the proportion of annotated images as a function of annotation time for IAD-Prob and standard strategies.
Middle: average episode duration for various batches of data. Right: the proportion of various annotation sequences in batches
of data at 6 iteration.

the detector gets stronger. We achieve this with the following
procedure. At any given iteration τ , we train dialog strategy
IAD-Prob(Iτ , fτ−1) using boxes collected on Iτ and detec-
tor fτ−1. IAD-Prob(Iτ , fτ−1) is applied with detector fτ to
collect new boxes on the next batch Iτ+1. Note that IAD-
Prob(Iτ , fτ−1) is trained with the help of detector fτ−1, but
it is applied with the box proposals of detector fτ . This pro-
cedure introduces a small discrepancy, but it is not important
when detectors fτ and fτ−1 are sufficiently similar, which is
the case in the experiments below. To initialize the procedure
we set f0 to be a weakly supervised MIL detector and we
annotate I1 by manual box drawing D.

We set the desired quality of bounding boxes to high (i.e.
α = 0.7) and we use Extreme Clicking for manual drawing.
We perform 6 re-training iterations with an increasingly large
batch size: |I1| = 3.125%, |I2| = 3.125%, |I3| = 6.25%,
|I4| = 12.5%, |I5| = 25%, |I6| = 50%. This batching
schedule is motivated by the fact that the gain in detector’s
performance after re-training is more noticeable when the
previous training set is considerably smaller.

Results Fig. 3 (left) shows what proportion of boxes is
collected as a function of total annotation time. We compare
IAD-Prob against the strategy V -hor [34], and the standard
fast drawing strategy X . IAD-Prob is able to annotate the
whole dataset faster than any of the considered strategies.
Fig. 3 (middle) shows the average episode duration in each
batch. By design, the annotation time for strategy X is
constant. For V -hor, after the first re-training iteration (from
a weakly supervised to supervised detector) the average
annotation cost grows because only difficult images are left
to be annotated. On the contrary, annotation time for IAD
decreases with every new batch because dialogs become
stronger and box verifications become more successful.

Quality of boxes and resulting detector The data for
training a detector and strategy in IAD includes both man-
ually drawn boxes and boxes verified at IoU ≥ 0.7. More
precisely, IAD data collection results in 44% drawn boxes
and 56% verified boxes. The quality of the verified boxes

reaches 83% mIoU. The detector trained on the boxes pro-
duced by IAD reaches 98% of the mAP of the detector
trained on ground-truth boxes.

Evolution of adaptive strategies To gain better under-
standing of adaptive behaviour of IAD, we study the com-
position of sequences of actions produced during labelling
of each batch. Fig. 3 (right) shows the proportion of images
that are labelled by X , V , V X , V V and others sequences
of actions. At the beginning of the process (batch 2), the
vast majority of boxes is produced simply by asking for
Extreme Clicking (X). It means that IAD learns that this
is the best thing to do when the detector is weak. As the
process continues, the detector gets stronger and IAD selects
more frequently series composed purely of box verifications
(V ,V V), and mixed series with both actions (V X). Exam-
ples of the annotation dialogs are presented in the supple-
mentary materials. This experiment demonstrates that IAD
is capable of producing strategies that dynamically adapt
to the change in problem property caused by the gradually
improving detector. One cannot achieve this with any fixed
strategy.

6. Conclusion

In this paper we introduced Intelligent Annotation Di-
alogs for the task of bounding box annotation. IAD auto-
matically chooses a sequence of actions V kD that results
in time-efficient annotations. We presented two methods to
achieve this. The first method models the annotation time by
predicting the acceptance probability for every box proposal.
The second method skips the modelling step and learns an
efficient strategy directly from trial-and-error interactions.
In the extensive experimental evaluation IAD demonstrated
competitive performance against various baselines and the
ability to adapt to multiple problem properties. In future
work we would like to model variable annotation time and
context switches.

References
[1] M. Asada, S. Noda, S. Tawaratsumida, and K. Hosoda. Pur-

posive behavior acquisition for a real robot by vision-based
reinforcement learning. Machine Learning, 23(2):279–303,
1996. 2

[2] A. Bearman, O. Russakovsky, V. Ferrari, and L. Fei-Fei.
What’s the point: Semantic segmentation with point supervi-
sion. In ECCV, 2016. 2

[3] S. Bell, P. Upchurch, N. Snavely, and K. Bala. Material
recognition in the wild with the materials in context database.
In CVPR, 2015. 2

[4] M. Bellver, X. G. i Nieto, F. Marques, and J. Torres. Hierar-
chical object detection with deep reinforcement learning. In
NIPS Workshop on Deep Reinforcement Learning, 2016. 2

[5] H. Bilen, M. Pedersoli, and T. Tuytelaars. Weakly supervised
object detection with posterior regularization. In BMVC, 2014.
6

[6] H. Bilen and A. Vedaldi. Weakly supervised deep detection
networks. In CVPR, 2016. 1, 2

[7] A. Biswas and D. Parikh. Simultaneous active learning of
classifiers & attributes via relative feedback. In CVPR, 2013.
2

[8] Y. Boykov and M. P. Jolly. Interactive graph cuts for optimal
boundary and region segmentation of objects in N-D images.
In ICCV, 2001. 2

[9] S. Branson, K. Hjörleifsson, and P. Perona. Active annotation
translation. In CVPR, 2014. 2

[10] S. Branson, C. Wah, F. Schroff, B. Babenko, P. Welinder,
P. Perona, and S. Belongie. Visual recognition with humans
in the loop. In ECCV, 2010. 2

[11] J. C. Caicedo and S. Lazebnik. Active object localization
with deep reinforcement learning. In ICCV, pages 2488–2496,
2015. 2

[12] L. Castrejon, K. Kundu, R. Urtasun, and S. Fidler. Annotating
object instances with a polygon-rnn. 2017. 2

[13] R. Cinbis, J. Verbeek, and C. Schmid. Multi-fold mil training
for weakly supervised object localization. In CVPR, 2014. 2,
6

[14] T. Deselaers, B. Alexe, and V. Ferrari. Localizing objects
while learning their appearance. In ECCV, 2010. 2

[15] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman. The PASCAL Visual Object Classes (VOC)
Challenge. IJCV, 2010. 2, 6

[16] M. Haußmann, F. Hamprecht, and M. Kandemir. Variational
bayesian multiple instance learning with gaussian processes.
In CVPR, 2017. 2

[17] S. Jain and K. Grauman. Click carving: Segmenting objects
in video with point clicks. In Proceedings of the Fourth
AAAI Conference on Human Computation and Crowdsourc-
ing, 2016. 2

[18] S. D. Jain and K. Grauman. Predicting sufficient annotation
strength for interactive foreground segmentation. In ICCV,
2013. 2

[19] D. Jayaraman and K. Grauman. Learning to look around.
arXiv preprint arXiv:1709.00507, 2017. 2

[20] A. J. Joshi, F. Porikli, and N. Papanikolopoulos. Multi-class
active learning for image classification. In CVPR, 2009. 2

[21] V. Kantorov, M. Oquab, M. Cho, and I. Laptev. Contextlocnet:
Context-aware deep network models for weakly supervised

localization. In ECCV, 2016. 1, 2
[22] A. Kovashka, S. Vijayanarasimhan, and K. Grauman. Actively

selecting annotations among objects and attributes. In ICCV,
2011. 2

[23] I. Krasin, T. Duerig, N. Alldrin, V. Ferrari, S. Abu-El-Haija,
A. Kuznetsova, H. Rom, J. Uijlings, S. Popov, A. Veit,
S. Belongie, V. Gomes, A. Gupta, C. Sun, G. Chechik,
D. Cai, Z. Feng, D. Narayanan, and K. Murphy. Openim-
ages: A public dataset for large-scale multi-label and multi-
class image classification. Dataset available from https:
//github.com/openimages/dataset, 2017. 2

[24] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end
training of deep visuomotor policies. JMLR, 17:1–40, 2016.
2

[25] D. Lin, J. Dai, J. Jia, K. He, and J. Sun. ScribbleSup: Scribble-
supervised convolutional networks for semantic segmentation.
In CVPR, 2016. 2

[26] S. Mathe and C. Sminchisescu. Dynamic eye movement
datasets and learnt saliency models for visual action recogni-
tion. In ECCV, 2012. 2

[27] P. Mettes, J. C. van Gemert, and C. G. Snoek. Spot on:
Action localization from pointly-supervised proposals. In
ECCV, 2016. 1, 2

[28] J. Michels, A. Saxena, and A. Ng. High speed obstacle
avoidance using monocular vision and reinforcement learning.
In ICML, 2005. 2

[29] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves,
I. Antonoglou, D. Wierstra, and M. Riedmiller. Playing atari
with deep reinforcement learning. In NIPS Deep Learning
Workshop. 2013. 6

[30] N. S. Nagaraja, F. R. Schmidt, and T. Brox. Video segmenta-
tion with just a few strokes. In ICCV, 2015. 2

[31] D. P. Papadopoulos, A. D. F. Clarke, F. Keller, and V. Ferrari.
Training object class detectors from eye tracking data. In
ECCV, 2014. 1, 2

[32] D. P. Papadopoulos, J. R. Uijlings, F. Keller, and V. Ferrari.
Extreme clicking for efficient object annotation. In ICCV,
2017. 1, 2, 3, 6

[33] D. P. Papadopoulos, J. R. Uijlings, F. Keller, and V. Ferrari.
Training object class detectors with click supervision. In
CVPR, 2017. 1, 2

[34] D. P. Papadopoulos, J. R. R. Uijlings, F. Keller, and V. Ferrari.
We don’t need no bounding-boxes: Training object class
detectors using only human verification. In CVPR, 2016. 1,
2, 3, 6, 7, 8

[35] A. Parkash and D. Parikh. Attributes for classifier feedback.
In ECCV, 2012. 2

[36] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN:
Towards real-time object detection with region proposal net-
works. In NIPS, 2015. 6

[37] C. Rother, V. Kolmogorov, and A. Blake. Grabcut: interactive
foreground extraction using iterated graph cuts. SIGGRAPH,
23(3):309–314, 2004. 2

[38] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. Berg, and
L. Fei-Fei. ImageNet large scale visual recognition challenge.
IJCV, 2015. 1, 2

[39] O. Russakovsky, L.-J. Li, and L. Fei-Fei. Best of both worlds:
human-machine collaboration for object annotation. In CVPR,
2015. 2

https://github.com/openimages/dataset
https://github.com/openimages/dataset

[40] B. Settles. Active learning literature survey. University of
Wisconsin, Madison, 2010. 7

[41] B. Siddiquie and A. Gupta. Beyond active noun tagging: Mod-
eling contextual interactions for multi-class active learning.
In CVPR, 2010. 2

[42] P. Siva and T. Xiang. Weakly supervised object detector
learning with model drift detection. In ICCV, 2011. 6

[43] H. Su, J. Deng, and L. Fei-Fei. Crowdsourcing annotations
for visual object detection. In AAAI Human Computation
Workshop, 2012. 1, 2, 3, 6

[44] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.
Rethinking the inception architecture for computer vision. In
CVPR, 2016. 6

[45] S. Vijayanarasimhan and K. Grauman. Multi-level active
prediction of useful image annotations for recognition. In
NIPS, 2008. 2

[46] S. Vijayanarasimhan and K. Grauman. What’s it going to cost
you?: Predicting effort vs. informativeness for multi-label
image annotations. In CVPR, 2009. 2

[47] S. Vijayanarasimhan and K. Grauman. Large-scale live active
learning: Training object detectors with crawled data and
crowds. IJCV, 108(1-2):97–114, 2014. 2

[48] C. Vondrick, D. Patterson, and D. Ramanan. Efficiently scal-
ing up crowdsourced video annotation. IJCV, 2013. 2

[49] C. Wah, G. Van Horn, S. Branson, S. Maji, P. Perona, and
S. Belongie. Similarity comparisons for interactive fine-
grained categorization. In CVPR, 2014. 2

[50] T. Wang, B. Han, and J. Collomosse. Touchcut: Fast image
and video segmentation using single-touch interaction. CVIU,
2014. 2

[51] J. Xu, A. G. Schwing, and R. Urtasun. Learning to segment
under various forms of weak supervision. In CVPR, 2015. 2

[52] A. Yao, J. Gall, C. Leistner, and L. Van Gool. Interactive
object detection. In CVPR, 2012. 2

[53] Y. Zhu, Y. Zhou, Q. Ye, Q. Qiu, and X. Jiao. Soft proposal
networks for weakly supervised object localization. In ICCV,
2017. 1, 2

