32,355 research outputs found

    Analysis of Home Location Estimation with Iteration on Twitter Following Relationship

    Full text link
    User's home locations are used by numerous social media applications, such as social media analysis. However, since the user's home location is not generally open to the public, many researchers have been attempting to develop a more accurate home location estimation. A social network that expresses relationships between users is used to estimate the users' home locations. The network-based home location estimation method with iteration, which propagates the estimated locations, is used to estimate more users' home locations. In this study, we analyze the function of network-based home location estimation with iteration while using the social network based on following relationships on Twitter. The results indicate that the function that selects the most frequent location among the friends' location has the best accuracy. Our analysis also shows that the 88% of users, who are in the social network based on following relationships, has at least one correct home location within one-hop (friends and friends of friends). According to this characteristic of the social network, we indicate that twice is sufficient for iteration.Comment: The 2016 International Conference on Advanced Informatics: Concepts, Theory and Application (ICAICTA2016

    Time-Scale Domain Characterization of Time-Varying Ultrawideband Infostation Channel

    Get PDF
    The time-scale domain geometrical-based method for the characterization of the time varying ultrawideband (UWB) channel typical of an infostation channel is presented. Compared to methods that use Doppler shift as a measure of time-variation in the channel this model provides a more reliable measure of frequency dispersion caused by terminal mobility in the UWB infostation channel. Particularly, it offers carrier frequency independent method of computing wideband channel responses and parameters which are important for ultrawideband systems. Results show that the frequency dispersion of the channel depends on the frequency and not on the choice of bandwidth. And time dispersion depends on bandwidth and not on the frequency. It is also shown that for time-varying UWB, frame length defined over the coherence time obtained with reference to the carrier frequency results in an error margin which can be reduced by using the coherence time defined with respect to the maximum frequency in a given frequency band. And the estimation of the frequency offset using the time-scale domain (wideband) model presented here (especially in the case of multiband UWB frequency synchronization) is more accurate than using frequency offset estimate obtained from narrowband models

    Improving performance of pedestrian positioning by using vehicular communication signals

    Get PDF
    Pedestrian-to-vehicle communications, where pedestrian devices transmit their position information to nearby vehicles to indicate their presence, help to reduce pedestrian accidents. Satellite-based systems are widely used for pedestrian positioning, but have much degraded performance in urban canyon, where satellite signals are often obstructed by roadside buildings. In this paper, we propose a pedestrian positioning method, which leverages vehicular communication signals and uses vehicles as anchors. The performance of pedestrian positioning is improved from three aspects: (i) Channel state information instead of RSSI is used to estimate pedestrian-vehicle distance with higher precision. (ii) Only signals with line-of-sight path are used, and the property of distance error is considered. (iii) Fast mobility of vehicles is used to get diverse measurements, and Kalman filter is applied to smooth positioning results. Extensive evaluations, via trace-based simulation, confirm that (i) Fixing rate of positions can be much improved. (ii) Horizontal positioning error can be greatly reduced, nearly by one order compared with off-the-shelf receivers, by almost half compared with RSSI-based method, and can be reduced further to about 80cm when vehicle transmission period is 100ms and Kalman filter is applied. Generally, positioning performance increases with the number of available vehicles and their transmission frequency

    RF Localization in Indoor Environment

    Get PDF
    In this paper indoor localization system based on the RF power measurements of the Received Signal Strength (RSS) in WLAN environment is presented. Today, the most viable solution for localization is the RSS fingerprinting based approach, where in order to establish a relationship between RSS values and location, different machine learning approaches are used. The advantage of this approach based on WLAN technology is that it does not need new infrastructure (it reuses already and widely deployed equipment), and the RSS measurement is part of the normal operating mode of wireless equipment. We derive the Cramer-Rao Lower Bound (CRLB) of localization accuracy for RSS measurements. In analysis of the bound we give insight in localization performance and deployment issues of a localization system, which could help designing an efficient localization system. To compare different machine learning approaches we developed a localization system based on an artificial neural network, k-nearest neighbors, probabilistic method based on the Gaussian kernel and the histogram method. We tested the developed system in real world WLAN indoor environment, where realistic RSS measurements were collected. Experimental comparison of the results has been investigated and average location estimation error of around 2 meters was obtained

    Finding Non-overlapping Clusters for Generalized Inference Over Graphical Models

    Full text link
    Graphical models use graphs to compactly capture stochastic dependencies amongst a collection of random variables. Inference over graphical models corresponds to finding marginal probability distributions given joint probability distributions. In general, this is computationally intractable, which has led to a quest for finding efficient approximate inference algorithms. We propose a framework for generalized inference over graphical models that can be used as a wrapper for improving the estimates of approximate inference algorithms. Instead of applying an inference algorithm to the original graph, we apply the inference algorithm to a block-graph, defined as a graph in which the nodes are non-overlapping clusters of nodes from the original graph. This results in marginal estimates of a cluster of nodes, which we further marginalize to get the marginal estimates of each node. Our proposed block-graph construction algorithm is simple, efficient, and motivated by the observation that approximate inference is more accurate on graphs with longer cycles. We present extensive numerical simulations that illustrate our block-graph framework with a variety of inference algorithms (e.g., those in the libDAI software package). These simulations show the improvements provided by our framework.Comment: Extended the previous version to include extensive numerical simulations. See http://www.ima.umn.edu/~dvats/GeneralizedInference.html for code and dat
    corecore