13,808 research outputs found

    Synchronization of multihop wireless sensor networks at the application layer

    Get PDF
    Time synchronization is a key issue in wireless sensor networks; timestamping collected data, tasks scheduling, and efficient communications are just some applications. From all the existing techniques to achieve synchronization, those based on precisely time-stamping sync messages are the most accurate. However, working with standard protocols such as Bluetooth or ZigBee usually prevents the user from accessing lower layers and consequently reduces accuracy. A receiver-to-receiver schema improves timestamping performance because it eliminates the largest non-deterministic error at the sender’s side: the medium access time. Nevertheless, utilization of existing methods in multihop networks is not feasible since the amount of extra traffic required is excessive. In this article, we present a method that allows accurate synchronization of large multihop networks, working at the application layer while keeping the message exchange to a minimum. Through an extensive experimental study, we evaluate the protocol’s performance and discuss the factors that influence synchronization accuracy the most.Ministerio de Ciencia y Tecnología TIN2006-15617-C0

    D-SLATS: Distributed Simultaneous Localization and Time Synchronization

    Full text link
    Through the last decade, we have witnessed a surge of Internet of Things (IoT) devices, and with that a greater need to choreograph their actions across both time and space. Although these two problems, namely time synchronization and localization, share many aspects in common, they are traditionally treated separately or combined on centralized approaches that results in an ineffcient use of resources, or in solutions that are not scalable in terms of the number of IoT devices. Therefore, we propose D-SLATS, a framework comprised of three different and independent algorithms to jointly solve time synchronization and localization problems in a distributed fashion. The First two algorithms are based mainly on the distributed Extended Kalman Filter (EKF) whereas the third one uses optimization techniques. No fusion center is required, and the devices only communicate with their neighbors. The proposed methods are evaluated on custom Ultra-Wideband communication Testbed and a quadrotor, representing a network of both static and mobile nodes. Our algorithms achieve up to three microseconds time synchronization accuracy and 30 cm localization error

    A Geometric Approach to Slot Alignment in Wireless Sensor Networks

    Full text link
    Traditionally, slotted communication protocols have employed guard times to delineate and align slots. These guard times may expand the slot duration significantly, especially when clocks are allowed to drift for longer time to reduce clock synchronization overhead. Recently, a new class of lightweight protocols for statistical estimation in wireless sensor networks have been proposed. This new class requires very short transmission durations (jam signals), thus the traditional approach of using guard times would impose significant overhead. We propose a new, more efficient algorithm to align slots. Based on geometrical properties of space, we prove that our approach bounds the slot duration by only a constant factor of what is needed. Furthermore, we show by simulation that this bound is loose and an even smaller slot duration is required, making our approach even more efficient.National Science Foundation (CNS Cybertrust Award 0524477, CNS ITR Award 0205294, EIA RI Award 0202067

    Wireless synchronisation for low cost wireless sensor networks using DCF77

    Get PDF
    Wireless Sensor Networks (WSN) consist out of multiple end nodes containing sensors and one or more coordinator nodes which poll and command the end nodes. WSN can prove very efficient in distributed energy data acquisition, e.g. for phasor or power measurements. These types of measurements however require relatively tight synchronisation, which is sometimes difficult to achieve for low-cost WSN. This paper explores the possibility of a low-cost wireless synchronization system using the DCF77 long wave time signal to achieve sub-millisecond synchronisation accuracy. The results are compared to conventional GPS based synchronisation. As a practical example, the implementation of the described synchronisation method is proposed for a non-contact electrical phase identifier, which uses synchronised current measurements to distinguishing between the different phases in an unmarked electrical distribution grid
    corecore