3,579 research outputs found

    Real-time human ambulation, activity, and physiological monitoring:taxonomy of issues, techniques, applications, challenges and limitations

    Get PDF
    Automated methods of real-time, unobtrusive, human ambulation, activity, and wellness monitoring and data analysis using various algorithmic techniques have been subjects of intense research. The general aim is to devise effective means of addressing the demands of assisted living, rehabilitation, and clinical observation and assessment through sensor-based monitoring. The research studies have resulted in a large amount of literature. This paper presents a holistic articulation of the research studies and offers comprehensive insights along four main axes: distribution of existing studies; monitoring device framework and sensor types; data collection, processing and analysis; and applications, limitations and challenges. The aim is to present a systematic and most complete study of literature in the area in order to identify research gaps and prioritize future research directions

    Magnetic and radar sensing for multimodal remote health monitoring

    Get PDF
    With the increased life expectancy and rise in health conditions related to aging, there is a need for new technologies that can routinely monitor vulnerable people, identify their daily pattern of activities and any anomaly or critical events such as falls. This paper aims to evaluate magnetic and radar sensors as suitable technologies for remote health monitoring purpose, both individually and fusing their information. After experiments and collecting data from 20 volunteers, numerical features has been extracted in both time and frequency domains. In order to analyse and verify the validation of fusion method for different classifiers, a Support Vector Machine with a quadratic kernel, and an Artificial Neural Network with one and multiple hidden layers have been implemented. Furthermore, for both classifiers, feature selection has been performed to obtain salient features. Using this technique along with fusion, both classifiers can detect 10 different activities with an accuracy rate of approximately 96%. In cases where the user is unknown to the classifier, an accuracy of approximately 92% is maintained

    Smart Computing and Sensing Technologies for Animal Welfare: A Systematic Review

    Get PDF
    Animals play a profoundly important and intricate role in our lives today. Dogs have been human companions for thousands of years, but they now work closely with us to assist the disabled, and in combat and search and rescue situations. Farm animals are a critical part of the global food supply chain, and there is increasing consumer interest in organically fed and humanely raised livestock, and how it impacts our health and environmental footprint. Wild animals are threatened with extinction by human induced factors, and shrinking and compromised habitat. This review sets the goal to systematically survey the existing literature in smart computing and sensing technologies for domestic, farm and wild animal welfare. We use the notion of \emph{animal welfare} in broad terms, to review the technologies for assessing whether animals are healthy, free of pain and suffering, and also positively stimulated in their environment. Also the notion of \emph{smart computing and sensing} is used in broad terms, to refer to computing and sensing systems that are not isolated but interconnected with communication networks, and capable of remote data collection, processing, exchange and analysis. We review smart technologies for domestic animals, indoor and outdoor animal farming, as well as animals in the wild and zoos. The findings of this review are expected to motivate future research and contribute to data, information and communication management as well as policy for animal welfare

    Fall Prediction and Prevention Systems: Recent Trends, Challenges, and Future Research Directions.

    Get PDF
    Fall prediction is a multifaceted problem that involves complex interactions between physiological, behavioral, and environmental factors. Existing fall detection and prediction systems mainly focus on physiological factors such as gait, vision, and cognition, and do not address the multifactorial nature of falls. In addition, these systems lack efficient user interfaces and feedback for preventing future falls. Recent advances in internet of things (IoT) and mobile technologies offer ample opportunities for integrating contextual information about patient behavior and environment along with physiological health data for predicting falls. This article reviews the state-of-the-art in fall detection and prediction systems. It also describes the challenges, limitations, and future directions in the design and implementation of effective fall prediction and prevention systems

    Recognition of elementary arm movements using orientation of a tri-axial accelerometer located near the wrist

    No full text
    In this paper we present a method for recognising three fundamental movements of the human arm (reach and retrieve, lift cup to mouth, rotation of the arm) by determining the orientation of a tri-axial accelerometer located near the wrist. Our objective is to detect the occurrence of such movements performed with the impaired arm of a stroke patient during normal daily activities as a means to assess their rehabilitation. The method relies on accurately mapping transitions of predefined, standard orientations of the accelerometer to corresponding elementary arm movements. To evaluate the technique, kinematic data was collected from four healthy subjects and four stroke patients as they performed a number of activities involved in a representative activity of daily living, 'making-a-cup-of-tea'. Our experimental results show that the proposed method can independently recognise all three of the elementary upper limb movements investigated with accuracies in the range 91–99% for healthy subjects and 70–85% for stroke patients

    Context-awareness for mobile sensing: a survey and future directions

    Get PDF
    The evolution of smartphones together with increasing computational power have empowered developers to create innovative context-aware applications for recognizing user related social and cognitive activities in any situation and at any location. The existence and awareness of the context provides the capability of being conscious of physical environments or situations around mobile device users. This allows network services to respond proactively and intelligently based on such awareness. The key idea behind context-aware applications is to encourage users to collect, analyze and share local sensory knowledge in the purpose for a large scale community use by creating a smart network. The desired network is capable of making autonomous logical decisions to actuate environmental objects, and also assist individuals. However, many open challenges remain, which are mostly arisen due to the middleware services provided in mobile devices have limited resources in terms of power, memory and bandwidth. Thus, it becomes critically important to study how the drawbacks can be elaborated and resolved, and at the same time better understand the opportunities for the research community to contribute to the context-awareness. To this end, this paper surveys the literature over the period of 1991-2014 from the emerging concepts to applications of context-awareness in mobile platforms by providing up-to-date research and future research directions. Moreover, it points out the challenges faced in this regard and enlighten them by proposing possible solutions

    Implementing and Evaluating a Wireless Body Sensor System for Automated Physiological Data Acquisition at Home

    Full text link
    Advances in embedded devices and wireless sensor networks have resulted in new and inexpensive health care solutions. This paper describes the implementation and the evaluation of a wireless body sensor system that monitors human physiological data at home. Specifically, a waist-mounted triaxial accelerometer unit is used to record human movements. Sampled data are transmitted using an IEEE 802.15.4 wireless transceiver to a data logger unit. The wearable sensor unit is light, small, and consumes low energy, which allows for inexpensive and unobtrusive monitoring during normal daily activities at home. The acceleration measurement tests show that it is possible to classify different human motion through the acceleration reading. The 802.15.4 wireless signal quality is also tested in typical home scenarios. Measurement results show that even with interference from nearby IEEE 802.11 signals and microwave ovens, the data delivery performance is satisfactory and can be improved by selecting an appropriate channel. Moreover, we found that the wireless signal can be attenuated by housing materials, home appliances, and even plants. Therefore, the deployment of wireless body sensor systems at home needs to take all these factors into consideration.Comment: 15 page
    corecore