3,489 research outputs found

    GMRES-Accelerated ADMM for Quadratic Objectives

    Full text link
    We consider the sequence acceleration problem for the alternating direction method-of-multipliers (ADMM) applied to a class of equality-constrained problems with strongly convex quadratic objectives, which frequently arise as the Newton subproblem of interior-point methods. Within this context, the ADMM update equations are linear, the iterates are confined within a Krylov subspace, and the General Minimum RESidual (GMRES) algorithm is optimal in its ability to accelerate convergence. The basic ADMM method solves a Îș\kappa-conditioned problem in O(Îș)O(\sqrt{\kappa}) iterations. We give theoretical justification and numerical evidence that the GMRES-accelerated variant consistently solves the same problem in O(Îș1/4)O(\kappa^{1/4}) iterations for an order-of-magnitude reduction in iterations, despite a worst-case bound of O(Îș)O(\sqrt{\kappa}) iterations. The method is shown to be competitive against standard preconditioned Krylov subspace methods for saddle-point problems. The method is embedded within SeDuMi, a popular open-source solver for conic optimization written in MATLAB, and used to solve many large-scale semidefinite programs with error that decreases like O(1/k2)O(1/k^{2}), instead of O(1/k)O(1/k), where kk is the iteration index.Comment: 31 pages, 7 figures. Accepted for publication in SIAM Journal on Optimization (SIOPT

    On Quasi-Newton Forward--Backward Splitting: Proximal Calculus and Convergence

    Get PDF
    We introduce a framework for quasi-Newton forward--backward splitting algorithms (proximal quasi-Newton methods) with a metric induced by diagonal ±\pm rank-rr symmetric positive definite matrices. This special type of metric allows for a highly efficient evaluation of the proximal mapping. The key to this efficiency is a general proximal calculus in the new metric. By using duality, formulas are derived that relate the proximal mapping in a rank-rr modified metric to the original metric. We also describe efficient implementations of the proximity calculation for a large class of functions; the implementations exploit the piece-wise linear nature of the dual problem. Then, we apply these results to acceleration of composite convex minimization problems, which leads to elegant quasi-Newton methods for which we prove convergence. The algorithm is tested on several numerical examples and compared to a comprehensive list of alternatives in the literature. Our quasi-Newton splitting algorithm with the prescribed metric compares favorably against state-of-the-art. The algorithm has extensive applications including signal processing, sparse recovery, machine learning and classification to name a few.Comment: arXiv admin note: text overlap with arXiv:1206.115

    A Smooth Primal-Dual Optimization Framework for Nonsmooth Composite Convex Minimization

    Get PDF
    We propose a new first-order primal-dual optimization framework for a convex optimization template with broad applications. Our optimization algorithms feature optimal convergence guarantees under a variety of common structure assumptions on the problem template. Our analysis relies on a novel combination of three classic ideas applied to the primal-dual gap function: smoothing, acceleration, and homotopy. The algorithms due to the new approach achieve the best known convergence rate results, in particular when the template consists of only non-smooth functions. We also outline a restart strategy for the acceleration to significantly enhance the practical performance. We demonstrate relations with the augmented Lagrangian method and show how to exploit the strongly convex objectives with rigorous convergence rate guarantees. We provide numerical evidence with two examples and illustrate that the new methods can outperform the state-of-the-art, including Chambolle-Pock, and the alternating direction method-of-multipliers algorithms.Comment: 35 pages, accepted for publication on SIAM J. Optimization. Tech. Report, Oct. 2015 (last update Sept. 2016
    • 

    corecore