33,868 research outputs found

    MAGMA: Multi-level accelerated gradient mirror descent algorithm for large-scale convex composite minimization

    Full text link
    Composite convex optimization models arise in several applications, and are especially prevalent in inverse problems with a sparsity inducing norm and in general convex optimization with simple constraints. The most widely used algorithms for convex composite models are accelerated first order methods, however they can take a large number of iterations to compute an acceptable solution for large-scale problems. In this paper we propose to speed up first order methods by taking advantage of the structure present in many applications and in image processing in particular. Our method is based on multi-level optimization methods and exploits the fact that many applications that give rise to large scale models can be modelled using varying degrees of fidelity. We use Nesterov's acceleration techniques together with the multi-level approach to achieve O(1/ϵ)\mathcal{O}(1/\sqrt{\epsilon}) convergence rate, where ϵ\epsilon denotes the desired accuracy. The proposed method has a better convergence rate than any other existing multi-level method for convex problems, and in addition has the same rate as accelerated methods, which is known to be optimal for first-order methods. Moreover, as our numerical experiments show, on large-scale face recognition problems our algorithm is several times faster than the state of the art

    Templates for Convex Cone Problems with Applications to Sparse Signal Recovery

    Full text link
    This paper develops a general framework for solving a variety of convex cone problems that frequently arise in signal processing, machine learning, statistics, and other fields. The approach works as follows: first, determine a conic formulation of the problem; second, determine its dual; third, apply smoothing; and fourth, solve using an optimal first-order method. A merit of this approach is its flexibility: for example, all compressed sensing problems can be solved via this approach. These include models with objective functionals such as the total-variation norm, ||Wx||_1 where W is arbitrary, or a combination thereof. In addition, the paper also introduces a number of technical contributions such as a novel continuation scheme, a novel approach for controlling the step size, and some new results showing that the smooth and unsmoothed problems are sometimes formally equivalent. Combined with our framework, these lead to novel, stable and computationally efficient algorithms. For instance, our general implementation is competitive with state-of-the-art methods for solving intensively studied problems such as the LASSO. Further, numerical experiments show that one can solve the Dantzig selector problem, for which no efficient large-scale solvers exist, in a few hundred iterations. Finally, the paper is accompanied with a software release. This software is not a single, monolithic solver; rather, it is a suite of programs and routines designed to serve as building blocks for constructing complete algorithms.Comment: The TFOCS software is available at http://tfocs.stanford.edu This version has updated reference

    An Accelerated Proximal Coordinate Gradient Method and its Application to Regularized Empirical Risk Minimization

    Get PDF
    We consider the problem of minimizing the sum of two convex functions: one is smooth and given by a gradient oracle, and the other is separable over blocks of coordinates and has a simple known structure over each block. We develop an accelerated randomized proximal coordinate gradient (APCG) method for minimizing such convex composite functions. For strongly convex functions, our method achieves faster linear convergence rates than existing randomized proximal coordinate gradient methods. Without strong convexity, our method enjoys accelerated sublinear convergence rates. We show how to apply the APCG method to solve the regularized empirical risk minimization (ERM) problem, and devise efficient implementations that avoid full-dimensional vector operations. For ill-conditioned ERM problems, our method obtains improved convergence rates than the state-of-the-art stochastic dual coordinate ascent (SDCA) method

    Catalyst Acceleration for First-order Convex Optimization: from Theory to Practice

    Full text link
    We introduce a generic scheme for accelerating gradient-based optimization methods in the sense of Nesterov. The approach, called Catalyst, builds upon the inexact accelerated proximal point algorithm for minimizing a convex objective function, and consists of approximately solving a sequence of well-chosen auxiliary problems, leading to faster convergence. One of the keys to achieve acceleration in theory and in practice is to solve these sub-problems with appropriate accuracy by using the right stopping criterion and the right warm-start strategy. We give practical guidelines to use Catalyst and present a comprehensive analysis of its global complexity. We show that Catalyst applies to a large class of algorithms, including gradient descent, block coordinate descent, incremental algorithms such as SAG, SAGA, SDCA, SVRG, MISO/Finito, and their proximal variants. For all of these methods, we establish faster rates using the Catalyst acceleration, for strongly convex and non-strongly convex objectives. We conclude with extensive experiments showing that acceleration is useful in practice, especially for ill-conditioned problems.Comment: link to publisher website: http://jmlr.org/papers/volume18/17-748/17-748.pd
    • …
    corecore