
An Accelerated Proximal Coordinate Gradient Method and its

Application to Regularized Empirical Risk Minimization

Qihang Lin∗ Zhaosong Lu† Lin Xiao‡

July 4, 2014

Abstract

We consider the problem of minimizing the sum of two convex functions: one is smooth and
given by a gradient oracle, and the other is separable over blocks of coordinates and has a simple
known structure over each block. We develop an accelerated randomized proximal coordinate
gradient (APCG) method for minimizing such convex composite functions. For strongly convex
functions, our method achieves faster linear convergence rates than existing randomized prox-
imal coordinate gradient methods. Without strong convexity, our method enjoys accelerated
sublinear convergence rates. We show how to apply the APCG method to solve the regularized
empirical risk minimization (ERM) problem, and devise efficient implementations that avoid
full-dimensional vector operations. For ill-conditioned ERM problems, our method obtains im-
proved convergence rates than the state-of-the-art stochastic dual coordinate ascent (SDCA)
method.

1 Introduction

Coordinate descent methods have received extensive attention in recent years due to its potential
for solving large-scale optimization problems arising from machine learning and other applications
(e.g., [29, 10, 47, 17, 45, 30]). In this paper, we develop an accelerated proximal coordinate gradient
(APCG) method for solving problems of the following form:

minimize
x∈RN

{
F (x)

def
= f(x) + Ψ(x)

}
, (1)

where f and Ψ are proper and lower semicontinuous convex functions [34, Section 7]. Moreover,
we assume that f is differentiable on R

N , and Ψ has a block separable structure, i.e.,

Ψ(x) =
n∑

i=1

Ψi(xi), (2)

where each xi denotes a sub-vector of x with cardinality Ni, and the collection {xi : i = 1, . . . , n}
form a partition of the components of x. In addition to the capability of modeling nonsmooth

∗Tippie College of Business, The University of Iowa, Iowa City, IA 52242, USA. Email: qihang-lin@uiowa.edu.
†Department of Mathematics, Simon Fraser University, Surrey, BC V3T 0A3, Canada. Email: zhaosong@sfu.ca.
‡Machine Learning Groups, Microsoft Research, Redmond, WA 98052, USA. Email: lin.xiao@microsoft.com.

1

terms such as Ψ(x) = λ‖x‖1, this model also includes optimization problems with block separable
constraints. More specifically, each block constraints xi ∈ Ci, where Ci is a closed convex set, can
be modeled by an indicator function defined as Ψi(xi) = 0 if xi ∈ Ci and ∞ otherwise.

At each iteration, coordinate descent methods choose one block of coordinates xi to sufficiently
reduce the objective value while keeping other blocks fixed. In order to exploit the known structure
of each Ψi, a proximal coordinate gradient step can be taken [33]. To be more specific, given the
current iterate x(k), we pick a block ik ∈ {1, . . . , n} and solve a block-wise proximal subproblem in
the form of

h
(k)
ik

= argmin
h∈ℜNik

{

〈∇ikf(x
(k)), h〉+ Lik

2
‖h‖2 +Ψik(x

(k)
ik

+ h)

}

, (3)

and then set the next iterate as

x
(k+1)
i =

{

x
(k)
ik

+ h
(k)
ik

, if i = ik,

x
(k)
i , if i 6= ik,

i = 1, . . . , n. (4)

Here ∇if(x) denotes the partial gradient of f with respect to xi, and Li is the Lipschitz constant
of the partial gradient (which will be defined precisely later).

One common approach for choosing such a block is the cyclic scheme. The global and local
convergence properties of the cyclic coordinate descent method have been studied in, e.g., [41, 22,
36, 2, 9]. Recently, randomized strategies for choosing the block to update became more popular
[38, 15, 26, 33]. In addition to its theoretical benefits (randomized schemes are in general easier
to analyze than the cyclic scheme), numerous experiments have demonstrated that randomized
coordinate descent methods are very powerful for solving large-scale machine learning problems [6,
10, 38, 40]. Their efficiency can be further improved with parallel and distributed implementations
[5, 31, 32, 23, 19]. Randomized block coordinate descent methods have also been proposed and
analyzed for solving problems with coupled linear constraints [43, 24] and a class of structured
nonconvex optimization problems (e.g., [21, 28]). Coordinate descent methods with more general
schemes of choosing the block to update have also been studied; see, e.g., [3, 44, 46].

Inspired by the success of accelerated full gradient methods [25, 1, 42, 27], several recent work
extended Nesterov’s acceleration technique to speed up randomized coordinate descent methods.
In particular, Nesterov [26] developed an accelerated randomized coordinate gradient method for
minimizing unconstrained smooth functions, which corresponds to the case of Ψ(x) ≡ 0 in (1).
Lu and Xiao [20] gave a sharper convergence analysis of Nesterov’s method using a randomized
estimate sequence framework, and Lee and Sidford [14] developed extensions using weighted random
sampling schemes. Accelerated coordinate gradient methods have also been used to speed up the
solution of linear systems [14, 18]. More recently, Fercoq and Richtárik [8] proposed an APPROX
(Accelerated, Parallel and PROXimal) coordinate descent method for solving the more general
problem (1) and obtained accelerated sublinear convergence rate, but their method cannot exploit
the strong convexity of the objective function to obtain accelerated linear rates.

In this paper, we propose a general APCG method that achieves accelerated linear convergence
rates when the objective function is strongly convex. Without the strong convexity assumption,
our method recovers a special case of the APPROX method [8]. Moreover, we show how to apply
the APCG method to solve the regularized empirical risk minimization (ERM) problem, and devise
efficient implementations that avoid full-dimensional vector operations. For ill-conditioned ERM
problems, our method obtains improved convergence rates than the state-of-the-art stochastic dual
coordinate ascent (SDCA) method [40].

2

1.1 Outline of paper

This paper is organized as follows. The rest of this section introduces some notations and state
our main assumptions. In Section 2, we present the general APCG method and our main theorem
on its convergence rate. We also give two simplified versions of APCG depending on whether or
not the function f is strongly convex, and explain how to exploit strong convexity in Ψ. Section 3
is devoted to the convergence analysis that proves our main theorem. In Section 4, we derive
equivalent implementations of the APCG method that can avoid full-dimensional vector operations.

In Section 5, we apply the APCG method to solve the dual of the regularized ERM problem
and give the corresponding complexity results. We also explain how to recover primal solutions to
guarantee the same rate of convergence for the primal-dual gap. In addition, we present numerical
experiments to demonstrate the performance of the APCG method.

1.2 Notations and assumptions

For any partition of x ∈ R
N into {xi ∈ R

Ni : i = 1, . . . , n} with
∑n

i=1Ni = N , there is an N ×N
permutation matrix U partitioned as U = [U1 · · ·Un], where Ui ∈ R

N×Ni , such that

x =
n∑

i=1

Uixi, and xi = UT
i x, i = 1, . . . , n.

For any x ∈ R
N , the partial gradient of f with respect to xi is defined as

∇if(x) = UT
i ∇f(x), i = 1, . . . , n.

We associate each subspace RNi , for i = 1, . . . , n, with the standard Euclidean norm, denoted ‖ ·‖2.
We make the following assumptions which are standard in the literature on coordinate descent
methods (e.g., [26, 33]).

Assumption 1. The gradient of function f is block-wise Lipschitz continuous with constants Li,
i.e.,

‖∇if(x+ Uihi)−∇if(x)‖2 ≤ Li‖hi‖2, ∀hi ∈ R
Ni , i = 1, . . . , n, x ∈ R

N .

An immediate consequence of Assumption 1 is (see, e.g., [25, Lemma 1.2.3])

f(x+ Uihi) ≤ f(x) + 〈∇if(x), hi〉+
Li

2
‖hi‖22, ∀hi ∈ R

Ni , i = 1, . . . , n, x ∈ R
N . (5)

For convenience, we define the following weighted norm in the whole space R
N :

‖x‖L =

(n∑

i=1

Li‖xi‖22
)1/2

, ∀x ∈ R
N . (6)

Assumption 2. There exists µ ≥ 0 such that for all y ∈ R
N and x ∈ dom (Ψ),

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ µ

2
‖y − x‖2L.

The convexity parameter of f with respect to the norm ‖ · ‖L is the largest µ such that the
above inequality holds. Every convex function satisfies Assumption 2 with µ = 0. If µ > 0, then
the function f is called strongly convex.

Remark. Together with (5) and the definition of ‖ · ‖L in (6), Assumption 2 implies µ ≤ 1.

3

Algorithm 1 The APCG method

input: x(0) ∈ dom (Ψ) and convexity parameter µ ≥ 0.

initialize: set z(0) = x(0) and choose 0 < γ0 ∈ [µ, 1].

iterate: repeat for k = 0, 1, 2, . . .

1. Compute αk ∈ (0, 1
n] from the equation

n2α2
k = (1− αk) γk + αkµ, (7)

and set
γk+1 = (1− αk)γk + αkµ, βk =

αkµ

γk+1
. (8)

2. Compute y(k) as

y(k) =
1

αkγk + γk+1

(

αkγkz
(k) + γk+1x

(k)
)

. (9)

3. Choose ik ∈ {1, . . . , n} uniformly at random and compute

z(k+1) = argmin
x∈RN

{nαk

2

∥
∥x− (1− βk)z

(k) − βky
(k)
∥
∥2

L
+ 〈∇ikf(y

(k)), xik〉+Ψik(xik)
}

.

4. Set
x(k+1) = y(k) + nαk(z

(k+1) − z(k)) +
µ

n
(z(k) − y(k)). (10)

2 The APCG method

In this section we describe the general APCG method, and its two simplified versions under different
assumptions (whether or not the objective function is strong convex). We also present our main
theorem on the convergence rates of the APCG method.

We first explain the notations used in our algorithms. The algorithms proceed in iterations,
with k being the iteration counter. Lower case letters x, y, z represent vectors in the full space RN ,
and x(k), y(k) and z(k) are their values at the kth iteration. Each block coordinate is indicated with

a subscript, for example, x
(k)
i represent the value of the ith block of the vector x(k). The Greek

letters α, β, γ are scalars, and αk, βk and γk represent their values at iteration k. For scalars, a
superscript represents the power exponent; for example, n2, α2

k denotes the squares of n and αk

respectively.
The general APCG method is given as Algorithm 1. At each iteration k, the APCG method

picks a random coordinate ik ∈ {1, . . . , n} and generates y(k), x(k+1) and z(k+1). One can observe
that x(k+1) and z(k+1) depend on the realization of the random variable

ξk = {i0, i1, . . . , ik},

while y(k) is independent of ik and only depends on ξk−1.
To better understand this method, we make the following observations. For convenience, we

4

define

z̃(k+1) = argmin
x∈RN

{nαk

2

∥
∥x− (1− βk)z

(k) − βky
(k)
∥
∥2

L
+ 〈∇f(y(k)), x− y(k)〉+Ψ(x)

}

, (11)

which is a full-dimensional update version of Step 3. One can observe that z(k+1) is updated as

z
(k+1)
i =







z̃
(k+1)
i if i = ik,

(1− βk)z
(k)
i + βky

(k)
i if i 6= ik.

(12)

Notice that from (7), (8), (9) and (10) we have

x(k+1) = y(k) + nαk

(

z(k+1) − (1− βk)z
(k) − βky

(k)
)

,

which together with (12) yields

x
(k+1)
i =







y
(k)
i + nαk

(

z
(k+1)
i − z

(k)
i

)

+ µ
n

(

z
(k)
i − y

(k)
i

)

if i = ik,

y
(k)
i if i 6= ik.

(13)

That is, in Step 4, we only need to update the block coordinates x
(k+1)
ik

as in (13) and set the rest

to be y
(k)
i .

We now state an expected-value type of convergence rate for the APCG method.

Theorem 1. Suppose Assumptions 1 and 2 hold. Let F ⋆ be the optimal value of problem (1), and
{x(k)} be the sequence generated by the APCG method. Then, for any k ≥ 0, there holds:

Eξk−1
[F (x(k))]− F ⋆ ≤ min

{(

1−
√
µ

n

)k

,

(
2n

2n+ k
√
γ0

)2
}
(

F (x(0))− F ⋆ +
γ0
2
R2

0

)

,

where
R0

def
= min

x⋆∈X⋆
‖x(0) − x⋆‖L, (14)

and X⋆ is the set of optimal solutions of problem (1).

For n = 1, our results in Theorem 1 match exactly the convergence rates of the accelerated full
gradient method in [25, Section 2.2]. For n > 1, our results improve upon the convergence rates of
the randomized proximal coordinate gradient method described in (3) and (4). More specifically, if
the block index ik ∈ {1, . . . , n} is chosen uniformly at random, then the analysis in [33, 20] states
that the convergence rate of (3) and (4) is on the order of

O

(

min

{(

1− µ

n

)k
,

n

n+ k

})

.

Thus we obtain both accelerated linear rate for strongly convex functions (µ > 0) and accelerated
sublinear rate for non-strongly convex functions (µ = 0). To the best of our knowledge, this is the
first time that such an accelerated linear convergence rate is obtained for solving the general class
of problems (1) using coordinate descent type of methods.

The proof of Theorem 1 is given in Section 3. Next we give two simplified versions of the APCG
method, for the special cases of µ > 0 and µ = 0, respectively.

5

Algorithm 2 APCG with γ0 = µ > 0

input: x(0) ∈ dom (Ψ) and convexity parameter µ > 0.

initialize: set z(0) = x(0) and α =
√
µ
n .

iterate: repeat for k = 0, 1, 2, . . . and repeat for k = 0, 1, 2, . . .

1. Compute y(k) = x(k)+αz(k)

1+α .

2. Choose ik ∈ {1, . . . , n} uniformly at random and compute

z(k+1) = argmin
x∈RN

{nα

2

∥
∥x− (1− α)z(k) − αy(k)

∥
∥2

L
+ 〈∇ikf(y

(k)), xik − y
(k)
ik

〉+Ψik(xik)
}

.

3. Set x(k+1) = y(k) + nα(z(k+1) − z(k)) + nα2(z(k) − y(k)).

Algorithm 3 APCG with µ = 0

Input: x(0) ∈ dom (Ψ).

Initialize: set z(0) = x(0) and choose α−1 ∈ (0, 1
n].

Iterate: repeat for k = 0, 1, 2, . . .

1. Compute αk = 1
2

(√

α4
k−1 + 4α2

k−1 − α2
k−1

)

.

2. Compute y(k) = (1− αk)x
(k) + αkz

(k).

3. Choose ik ∈ {1, . . . , n} uniformly at random and compute

z
(k+1)
ik

= argmin
x∈RN

{nαkLik

2

∥
∥x− z

(k)
ik

∥
∥2

2
+ 〈∇ikf(y

(k)), x− y
(k)
ik

〉+Ψik(x)
}

.

and set z
(k+1)
i = z

(k)
i for all i 6= ik.

4. Set x(k+1) = y(k) + nαk(z
(k+1) − z(k)).

2.1 Two special cases

For the strongly convex case with µ > 0, we can initialize Algorithm 1 with the parameter γ0 = µ,
which implies γk = µ and αk = βk =

√
µ/n for all k ≥ 0. This results in Algorithm 2. As a direct

corollary of Theorem 1, Algorithm 2 enjoys an accelerated linear convergence rate:

Eξk−1
[F (x(k))]− F ⋆ ≤

(

1−
√
µ

n

)k (

F (x(0))− F ⋆ +
µ

2
‖x(0) − x⋆‖2L

)

,

where x⋆ is the unique solution of (1) under the strong convexity assumption.
Algorithm 3 shows the simplified version for µ = 0, which can be applied to problems without

strong convexity, or if the convexity parameter µ is unknown. According to Theorem 1, Algorithm 3
has an accelerated sublinear convergence rate, that is

Eξk−1
[F (x(k))]− F ⋆ ≤

(
2n

2n+ knα0

)2 (

F (x(0))− F ⋆ +
nα0

2
R2

0

)

.

6

With the choice of α−1 = 1/
√
n2 − 1, which implies α0 = 1/n, Algorithm 3 reduces to the APPROX

method [8] with single block update at each iteration (i.e., τ = 1 in their Algorithm 1).

2.2 Exploiting strong convexity in Ψ

In this section we consider problem (1) with strongly convex Ψ. We assume that f and Ψ have
convexity parameters µf ≥ 0 and µΨ > 0, both with respect to the standard Euclidean norm,
denoted ‖ · ‖2.

Let x(0) ∈ dom (Ψ) and s(0) ∈ ∂Ψ(x(0)) be arbitrarily chosen, and define two functions

f̃(x)
def
= f(x) + Ψ(x(0)) + 〈s(0), x− x(0)〉+ µΨ

2
‖x− x(0)‖22

Ψ̃(x)
def
= Ψ(x)−Ψ(x(0))− 〈s(0), x− x(0)〉 − µΨ

2
‖x− x(0)‖22.

One can observe that the gradient of the function f̃ is block-wise Lipschitz continuous with constants
L̃i = Li + µΨ with respect to the norm ‖ · ‖2. The convexity parameter of f̃ with respect to the
norm ‖ · ‖L̃ defined in (6) is

µ :=
µf + µΨ

max
1≤i≤n

{Li + µΨ}
. (15)

In addition, Ψ̃ is a block separable convex function which can be expressed as Ψ̃(x) =
∑n

i=1 Ψ̃i(xi),
where

Ψ̃i(xi) = Ψi(xi)−Ψi(x
0
i)− 〈s0i , xi − x0i 〉 −

µΨ

2
‖xi − x0i ‖22, i = 1, . . . , n.

As a result of the above definitions, we see that problem (1) is equivalent to

minimize
x∈ℜN

{

f̃(x) + Ψ̃(x)
}

, (16)

which can be suitably solved by the APCG method proposed in Section 2 with f , Ψi and Li replaced
by f̃ , Ψ̃i and Li + µΨ, respectively. The rate of convergence of APCG applied to problem (16)
directly follows from Theorem 1, with µ given in (15) and the norm ‖ · ‖L in (14) replaced by ‖ · ‖L̃.

3 Convergence analysis

In this section, we prove Theorem 1. First we establish some useful properties of the sequences
{αk}∞k=0 and {γk}∞k=0 generated in Algorithm 1. Then in Section 3.1, we construct a sequence

{Ψ̂k}∞k=1 to bound the values of Ψ(x(k)) and prove a useful property of the sequence. Finally we
finish the proof of Theorem 1 in Section 3.2.

Lemma 1. Suppose γ0 > 0 and γ0 ∈ [µ, 1] and {αk}∞k=0 and {γk}∞k=0 are generated in Algorithm 1.
Then there hold:

(i) {αk}∞k=0 and {γk}∞k=0 are well-defined positive sequences.

(ii)
√
µ/n ≤ αk ≤ 1/n and µ ≤ γk ≤ 1 for all k ≥ 0.

(iii) {αk}∞k=0 and {γk}∞k=0 are non-increasing.

7

(iv) γk = n2α2
k−1 for all k ≥ 1.

(v) With the definition of

λk =
k−1∏

i=0

(1− αi), (17)

we have for all k ≥ 0,

λk ≤ min

{(

1−
√
µ

n

)k

,

(
2n

2n+ k
√
γ0

)2
}

.

Proof. Due to (7) and (8), statement (iv) always holds provided that {αk}∞k=0 and {γk}∞k=0 are
well-defined. We now prove statements (i) and (ii) by induction. For convenience, Let

gγ(t) = n2t2 − γ(1− t)− µt.

Since µ ≤ 1 and γ0 ∈ (0, 1], one can observe that gγ0(0) = −γ0 < 0 and

gγ0

(
1

n

)

= 1− γ0

(

1− 1

n

)

− µ

n
≥ 1− γ0 ≥ 0.

These together with continuity of gγ0 imply that there exists α0 ∈ (0, 1/n] such that gγ0(α0) = 0,
that is, α0 satisfies (7) and is thus well-defined. In addition, by statement (iv) and γ0 ≥ µ, one can
see α0 ≥

√
µ/n. Therefore, statements (i) and (ii) hold for k = 0.

Suppose that the statements (i) and (ii) hold for some k ≥ 0, that is, αk, γk > 0,
√
µ/n ≤

αk ≤ 1/n and µ ≤ γk ≤ 1. Using these relations and (8), one can see that γk+1 is well-defined and
moreover µ ≤ γk+1 ≤ 1. In addition, we have γk+1 > 0 due to statement (iv) and αk > 0. Using
the fact µ ≤ 1 (see the remark after Assumption 2), γ0 ∈ (0, 1] and a similar argument as above,
we obtain gγk(0) < 0 and gγk(1/n) ≥ 0, which along with continuity of gγk imply that there exists
αk+1 ∈ (0, 1/n] such that gγk(αk+1) = 0, that is, αk+1 satisfies (7) and is thus well-defined. By
statement (iv) and γk+1 ≥ µ, one can see that αk+1 ≥ √

µ/n. This completes the induction and
hence statements (i) and (ii) hold.

Next, we show statement (iii) holds. Indeed, it follows from (8) that

γk+1 − γk = αk(µ− γk),

which together with γk ≥ µ and αk > 0 implies that γk+1 ≤ γk and hence {γk}∞k=0 is non-increasing.
Notice from statement (iv) and αk > 0 that αk =

√
γk+1/n. It follows that {αk}∞k=0 is also non-

increasing.
Statement (v) can be proved by using the same arguments in the proof of [25, Lemma 2.2.4],

and the details can be found in [20, Section 4.2].

3.1 Construction and properties of Ψ̂k

Motivated by [8], we give an explicit expression of x(k) as a convex combination of the vectors
z(0), . . . , z(k), and use the coefficients to construct a sequence {Ψ̂k}∞k=1 to bound Ψ(x(k)).

8

Lemma 2. Let the sequences {αk}∞k=0, {γk}∞k=0, {x(k)}∞k=0 and {z(k)}∞k=0 be generated by Algo-
rithm 1. Then each x(k) is a convex combination of z(0), . . . , z(k). More specifically, for all k ≥ 0,

x(k) =

k∑

l=0

θ
(k)
l z(l), (18)

where the constants θ
(k)
0 , . . . , θ

(k)
k are nonnegative and sum to 1. Moreover, these constants can be

obtained recursively by setting θ
(0)
0 = 1, θ

(1)
0 = 1− nα0, θ

(1)
1 = nα0 and for k ≥ 1,

θ
(k+1)
l =







nαk l = k + 1,
(
1− µ

n

) αkγk+nαk−1γk+1

αkγk+γk+1
− (1−αk)γk

nαk
l = k,

(
1− µ

n

) γk+1

αkγk+γk+1
θ
(k)
l l = 0, . . . , k − 1.

(19)

Proof. We prove the statements by induction. First, notice that x(0) = z(0) = θ
(0)
0 z(0). Using this

relation and (9), we see that y(0) = z(0). From (10) and y(0) = z(0), we obtain

x(1) = y(0) + nα0

(

z(1) − z(0)
)

+
µ

n

(

z(0) − y(0)
)

= z(0) + nα0

(

z(1) − z(0)
)

= (1− nα0)z
(0) + nα0z

(1). (20)

Since α0 ∈ (0, 1/n] (Lemma 1 (ii)), the vector x(1) is a convex combination of z(0) and z(1) with

the coefficients θ
(1)
0 = 1− nα0, θ

(1)
1 = nα0. For k = 1, substituting (9) into (10) yields

x(2) = y(1) + nα1

(

z(2) − z(1)
)

+
µ

n

(

z(1) − y(1)
)

=
(

1− µ

n

) γ2
α1γ1 + γ2

x(1) +

[(

1− µ

n

) α1γ1
α1γ1 + γ2

− n2α2
1 − α1µ

nα1

]

z(1) + nα1z
(2).

Substituting (20) into the above equality, and using (1− α1)γ1 = n2α2
1 − α1µ from (7), we get

x(2) =
(

1− µ

n

) γ2(1− nα0)

α1γ1 + γ2
︸ ︷︷ ︸

θ
(2)
0

z(0) +

[(

1− µ

n

) α1γ1 + nα0γ2
α1γ1 + γ2

− (1− α1)γ1
nα1

]

︸ ︷︷ ︸

θ
(2)
1

z(1) + nα1
︸︷︷︸

θ
(2)
2

z(2). (21)

From the definition of θ
(2)
1 in the above equation, we observe that

θ
(2)
1 =

(

1− µ

n

) α1γ1 + nα0γ2
α1γ1 + γ2

− (1− α1)γ1
nα1

=
(

1− µ

n

) α1γ1(1− nα0) + nα0(α1γ1 + γ2)

α1γ1 + γ2
− n2α2

1 − α1µ

nα1

=
α1γ1

α1γ1 + γ2

(

1− µ

n

)

(1− nα0) +
(

1− µ

n

)

nα0 − nα1 +
µ

n

=
α1γ1

α1γ1 + γ2

(

1− µ

n

)

(1− nα0) +
(

1− µ

n

)

n(α0 − α1) +
µ

n
(1− nα1).

9

From the above expression, and using the facts µ ≤ 1, α0 ≥ α1, γk ≥ 0 and 0 ≤ αk ≤ 1/n

(Lemma 1), we conclude that θ
(2)
1 ≥ 0. Also considering the definitions of θ

(2)
0 and θ

(2)
2 in (21), we

conclude that θ
(2)
l ≥ 0 for 0 ≤ l ≤ 2. In addition, one can observe from (9), (10) and (20) that x(1)

is an affine combination of z(0) and z(1), y(1) is an affine combination of z(1) and x(1), and x(2) is
an affine combination of y(1), z(1) and z(2). It is known that substituting one affine combination
into another yields a new affine combination. Hence, the combination given in (21) must be affine,

which together with θ
(2)
l ≥ 0 for 0 ≤ l ≤ 2 implies that it is also a convex combination.

Now suppose the recursion (19) holds for some k ≥ 1. Substituting (9) into (10), we obtain
that

x(k+1) =
(

1− µ

n

) γk+1

αkγk + γk+1
x(k) +

[(

1− µ

n

) αkγk
αkγk + γk+1

− (1− αk)γk
nαk

]

z(k) + nαkz
(k+1).

Further, substituting x(k) = nαk−1z
(k) +

∑k−1
l=0 θ

(k)
l z(l) (the induction hypothesis) into the above

equation gives

x(k+1) =
k−1∑

l=0

(

1− µ

n

) γk+1

αkγk + γk+1
θ
(k)
l

︸ ︷︷ ︸

θ
(k+1)
l

z(l) +

[(

1− µ

n

) αkγk + nαk−1γk+1

αkγk + γk+1
− (1− αk)γk

nαk

]

︸ ︷︷ ︸

θ
(k+1)
k

z(k)

+ nαk
︸︷︷︸

θ
(k+1)
k+1

z(k+1). (22)

This gives the form of (18) and (19). In addition, by the induction hypothesis, x(k) is an affine
combination of z(0), . . . , z(k). Also, notice from (9) and (10) that y(k) is an affine combination of
z(k) and x(k), and x(k+1) is an affine combination of y(k), z(k) and z(k+1). Using these facts and a
similar argument as for x(2), it follows that the combination (22) must be affine.

Finally, we claim θ
(k+1)
l ≥ 0 for all l. Indeed, we know from Lemma 1 that µ ≤ 1, αk ≥ 0,

γk ≥ 0. Also, θ
(k)
l ≥ 0 due to the induction hypothesis. It follows that θ

(k+1)
l ≥ 0 for all l 6= k. It

remains to show that θ
(k+1)
k ≥ 0. To this end, we again use (7) to obtain (1−αk)γk = n2α2

k −αkµ,

and use (19) and a similar argument as for θ
(2)
1 to rewrite θ

(k+1)
k as

θ
(k+1)
k =

αkγk
αkγk + γk+1

(

1− µ

n

)

(1− nαk−1) +
(

1− µ

n

)

n(αk−1 − αk) +
µ

n
(1− nαk).

Together with µ ≤ 1, 0 ≤ αk ≤ 1/n, γk ≥ 0 and αk−1 ≥ αk, this implies that θ
(k+1)
k ≥ 0. Therefore,

x(k+1) is a convex combination of z(0), . . . , z(k+1) with the coefficients given in (19).

In the following lemma, we construct the sequence {Ψ̂k}∞k=0 and prove a recursive inequality.

Lemma 3. Let Ψ̂k denotes the convex combination of Ψ(z(0)), . . . ,Ψ(z(k)) using the same coeffi-
cients given in Lemma 2, i.e.,

Ψ̂k =
k∑

l=0

θ
(k)
l Ψ(z(l)).

Then for all k ≥ 0, we have Ψ(x(k)) ≤ Ψ̂k and

Eik [Ψ̂k+1] ≤ αkΨ(z̃(k+1)) + (1− αk)Ψ̂k. (23)

10

Proof. The first result Ψ(x(k)) ≤ Ψ̂k follows directly from convexity of Ψ. We now prove (23). First
we deal with the case k = 0. Using (12), (19), and the facts y(0) = z(0) and Ψ̂0 = Ψ(x(0)), we get

Ei0 [Ψ̂1] = Ei0

[

nα0Ψ(z(1)) + (1− nα0)Ψ(z(0))
]

= Ei0

[

nα0

(

Ψi0(z̃
(1)
i0

) +
∑

j 6=i0
Ψj(z

0
j)
)]

+ (1− nα0)Ψ(z(0))

= α0Ψ(z̃(1)) + (n− 1)α0Ψ(z(0)) + (1− nα0)Ψ(x(0))

= α0Ψ(z̃(1)) + (1− α0)Ψ(x(0))

= α0Ψ(z̃(1)) + (1− α0)Ψ̂0.

For k ≥ 1, we use (12) and the definition of βk in (8) to obtain that

Eik

[

Ψ(z(k+1))
]

= Eik

[

Ψik(z
(k+1)
ik

) +
∑

j 6=ik

Ψj(z
(k+1)
j)

]

=
1

n
Ψ(z̃(k+1)) +

(

1− 1

n

)

Ψ

(
(1− αk)γk

γk+1
z(k) +

αkµ

γk+1
y(k)

)

. (24)

Using (8) and (9), one can observe that

(1− αk)γk
γk+1

z(k) +
αkµ

γk+1
y(k) =

(1− αk)γk
γk+1

z(k) +
αkµ

γk+1(αkγk + γk+1)

(

αkγkz
(k) + γk+1x

(k)
)

=

(

1− αkµ

αkγk + γk+1

)

z(k) +
αkµ

αkγk + γk+1
x(k).

It follows from the above equation and convexity of Ψ that

Ψ

(
(1− αk)γk

γk+1
z(k) +

αkµ

γk+1
y(k)

)

≤
(

1− αkµ

αkγk + γk+1

)

Ψ(z(k)) +
αkµ

αkγk + γk+1
Ψ(x(k)),

which together with (24) yields

Eik

[

Ψ(z(k+1))
]

≤ 1

n
Ψ(z̃(k+1)) +

(

1− 1

n

)[(

1− αkµ

αkγk + γk+1

)

Ψ(z(k)) +
αkµ

αkγk + γk+1
Ψ(x(k))

]

.

(25)

In addition, from the definition of Ψ̂k and θ
(k)
k = nαk−1, we have

k−1∑

l=0

θ
(k)
l Ψ(z(l)) = Ψ̂k − nαk−1Ψ(z(k)). (26)

Next, using the definition of Ψ̂k and (19), we obtain

Eik [Ψ̂k+1] = nαkEik

[

Ψ(z(k+1))
]

+

[(

1− µ

n

) αkγk + nαk−1γk+1

αkγk + γk+1
− (1− αk)γk

nαk

]

Ψ(z(k))

+
(

1− µ

n

) γk+1

αkγk + γk+1

k−1∑

l=0

θ
(k)
l Ψ(z(l)). (27)

11

Plugging (25) and (26) into (27) yields

Eik [Ψ̂k+1] ≤ αkΨ(z̃(k+1)) + (n− 1)αk

[(

1− αkµ

αkγk + γk+1

)

Ψ(z(k)) +
αkµ

αkγk + γk+1
Ψ(x(k))

]

+

[(

1− µ

n

) αkγk + nαk−1γk+1

αkγk + γk+1
− (1− αk)γk

nαk

]

Ψ(z(k)) (28)

+
(

1− µ

n

) γk+1

αkγk + γk+1

(

Ψ̂k − nαk−1Ψ(z(k))
)

≤ αkΨ(z̃(k+1)) +
(n− 1)α2

kµ+
(
1− µ

n

)
γk+1

αkγk + γk+1
︸ ︷︷ ︸

Γ

Ψ̂k (29)

+

[

(n− 1)αk

(

1− αkµ

αkγk + γk+1

)

+
(

1− µ

n

) αkγk
αkγk + γk+1

− (1− αk)γk
nαk

]

︸ ︷︷ ︸

∆

Ψ(z(k)),

where the second inequality is due to Ψ(x(k)) ≤ Ψ̂k. Notice that the right hand side of (25) is an
affine combination of Ψ(z̃(k+1)), Ψ(z(k)) and Ψ(x(k)), and the right hand side of (27) is an affine
combination of Ψ(z(0)), . . . ,Ψ(z(k+1)). In addition, all operations in (28) and (29) preserves the
affine combination property. Using these facts, one can observe that the right hand side of (29) is
also an affine combination of Ψ(z̃(k+1)), Ψ(z(k)) and Ψ̂k, namely, αk +∆+ Γ = 1, where ∆ and Γ
are defined above.

We next show that Γ = 1− αk and ∆ = 0. Indeed, notice that from (8) we have

αkγk + γk+1 = αkµ+ γk. (30)

Using this relation, γk+1 = n2α2
k (Lemma 1 (iv)), and the definition of Γ in (29), we get

Γ =
(n− 1)α2

kµ+
(
1− µ

n

)
γk+1

αkγk + γk+1
=

(n− 1)α2
kµ+ γk+1 − µ

nγk+1

αkγk + γk+1

=
(n− 1)α2

kµ+ γk+1 − µ
n(n

2α2
k)

αkγk + γk+1
=

γk+1 − α2
kµ

αkγk + γk+1

= 1− αk

(
αkµ+ γk

αkγk + γk+1

)

= 1− αk,

where the last equalities is due to (30). Finally, ∆ = 0 follows from Γ = 1−αk and αk+∆+Γ = 1.
These together with the inequality (29) yield the desired result.

3.2 Proof of Theorem 1

We are now ready to present a proof for Theorem 1. We note that the proof in this subsection can
also be recast into the framework of randomized estimate sequence developed in [20, 14], but here
we give a straightforward proof without using that machinery.

Dividing both sides of (7) by nαk gives

nαk =
(1− αk)γk

nαk
+

µ

n
. (31)

12

Observe from (9) that

z(k) − y(k) = − γk+1

αkγk

(

x(k) − y(k)
)

. (32)

It follow from (10) and (31) that

x(k+1) − y(k) = nαkz
(k+1) − (1− αk)γk

nαk
z(k) − µ

n
y(k)

= nαkz
(k+1) − (1− αk)γk

nαk
(z(k) − y(k))−

(
(1− αk)γk

nαk
+

µ

n

)

y(k),

which together with (31), (32) and γk+1 = n2α2
k (Lemma 1 (iv)) gives

x(k+1) − y(k) = nαkz
(k+1) +

(1− αk)γk+1

nα2
k

(

x(k) − y(k)
)

− nαky
(k)

= nαkz
(k+1) + n(1− αk)(x

(k) − y(k))− nαky
(k)

= n
[

αk(z
(k+1) − y(k)) + (1− αk)(x

(k) − y(k))
]

.

Using this relation, (13) and Assumption 1, we have

f(x(k+1)) ≤ f(y(k)) +
〈

∇ikf(y
(k)), x

(k+1)
ik

− y
(k)
ik

〉

+
Lik

2

∥
∥
∥x

(k+1)
ik

− y
(k)
ik

∥
∥
∥

2

2

= f(y(k)) + n

〈

∇ikf(y
(k)),

[

αk(z
(k+1) − y(k)) + (1− αk)(x

(k) − y(k))
]

ik

〉

+
n2Lik

2

∥
∥
∥
∥

[

αk(z
(k+1) − y(k)) + (1− αk)(x

(k) − y(k))
]

ik

∥
∥
∥
∥

2

2

= (1− αk)
[

f(y(k)) + n
〈

∇ikf(y
(k)), (x

(k)
ik

− y
(k)
ik

)
〉]

+αk

[

f(y(k)) + n
〈

∇ikf(y
(k)), (z

(k+1)
ik

− y
(k)
ik

)
〉]

+
n2Lik

2

∥
∥
∥
∥

[

αk(z
(k+1) − y(k)) + (1− αk)(x

(k) − y(k))
]

ik

∥
∥
∥
∥

2

2

.

Taking expectation on both sides of the above inequality with respect to ik, and noticing that

z
(k+1)
ik

= z̃
(k+1)
ik

, we get

Eik

[

f(x(k+1))
]

≤ (1− αk)
[

f(y(k)) +
〈

∇f(y(k)), (x(k) − y(k))
〉]

+αk

[

f(y(k)) +
〈

∇f(y(k)), (z̃(k+1) − y(k))
〉]

+
n

2

∥
∥
∥αk(z̃

(k+1) − y(k)) + (1− αk)(x
(k) − y(k))

∥
∥
∥

2

L

≤ (1− αk)f(x
(k)) + αk

[

f(y(k)) +
〈

∇f(y(k)), (z̃(k+1) − y(k))
〉]

+
n

2

∥
∥
∥αk(z̃

(k+1) − y(k)) + (1− αk)(x
(k) − y(k))

∥
∥
∥

2

L
, (33)

where the second inequality follows from convexity of f .

13

In addition, by (8), (32) and γk+1 = n2α2
k (Lemma 1 (iv)), we have

n

2

∥
∥
∥αk(z̃

(k+1) − y(k)) + (1− αk)(x
(k) − y(k))

∥
∥
∥

2

L
=

n

2

∥
∥
∥
∥
αk(z̃

(k+1) − y(k))− αk(1− αk)γk
γk+1

(z(k) − y(k))

∥
∥
∥
∥

2

L

=
nα2

k

2

∥
∥
∥
∥
z̃(k+1) − y(k) − (1− αk)γk

γk+1
(z(k) − y(k))

∥
∥
∥
∥

2

L

=
γk+1

2n

∥
∥
∥
∥
z̃(k+1) − (1− αk)γk

γk+1
z(k) − αkµ

γk+1
y(k)

∥
∥
∥
∥

2

L

, (34)

where the first equality used (32), the third one is due to (7) and (8), and γk+1 = n2α2
k. This

equation together with (33) yields

Eik

[

f(x(k+1))
]

≤ (1− αk)f(x
(k)) + αk

[

f(y(k)) +
〈

∇f(y(k)), z̃(k+1) − y(k)
〉

+
γk+1

2nαk

∥
∥
∥
∥
z̃(k+1) − (1− αk)γk

γk+1
z(k) − αkµ

γk+1
y(k)

∥
∥
∥
∥

2

L

]

.

Using Lemma 3, we have

Eik

[

f(x(k+1)) + Ψ̂k+1

]

≤ Eik [f(x
(k+1))] + αkΨ(z̃(k+1)) + (1− αk)Ψ̂k.

Combining the above two inequalities, one can obtain that

Eik

[

f(x(k+1)) + Ψ̂k+1

]

≤ (1− αk)
(

f(x(k)) + Ψ̂k

)

+ αkV (z̃(k+1)), (35)

where

V (x) = f(y(k)) +
〈

∇f(y(k)), x− y(k)
〉

+
γk+1

2nαk

∥
∥
∥
∥
x− (1− αk)γk

γk+1
z(k) − αkµ

γk+1
y(k)

∥
∥
∥
∥

2

L

+Ψ(x).

Comparing with the definition of z̃(k+1) in (11), we see that

z̃(k+1) = argmin
x∈ℜN

V (x). (36)

Notice that V has convexity parameter
γk+1

nαk
= nαk with respect to ‖ · ‖L. By the optimality

condition of (36), we have that for any x⋆ ∈ X∗,

V (x⋆) ≥ V (z̃(k+1)) +
γk+1

2nαk
‖x⋆ − z̃(k+1)‖2L.

Using the above inequality and the definition of V , we obtain

V (z̃(k+1)) ≤ V (x⋆)− γk+1

2nαk
‖x⋆ − z̃(k+1)‖2L

= f(y(k)) +
〈

∇f(y(k)), x⋆ − y(k)
〉

+
γk+1

2nαk

∥
∥
∥
∥
x⋆ − (1− αk)γk

γk+1
z(k) − αkµ

γk+1
y(k)

∥
∥
∥
∥

2

L

+Ψ(x⋆)− γk+1

2nαk
‖x⋆ − z̃(k+1)‖2L.

14

Now using the assumption that f has convexity parameter µ with respect to ‖ · ‖L, we have

V (z̃(k+1)) ≤ f(x⋆)− µ

2
‖x⋆ − y(k)‖2L +

γk+1

2nαk

∥
∥
∥
∥
x⋆ − (1− αk)γk

γk+1
z(k) − αkµ

γk+1
y(k)

∥
∥
∥
∥

2

L

+Ψ(x⋆)

− γk+1

2nαk
‖x⋆ − z̃(k+1)‖2L.

Combining this inequality with (35), one see that

Eik

[

f(x(k+1)) + Ψ̂k+1

]

≤ (1− αk)
(

f(x(k)) + Ψ̂k

)

+ αkF
⋆ − αkµ

2
‖x⋆ − y(k)‖2L (37)

+
γk+1

2n

∥
∥
∥
∥
x⋆ − (1− αk)γk

γk+1
z(k) − αkµ

γk+1
y(k)

∥
∥
∥
∥

2

L

− γk+1

2n
‖x⋆ − z̃(k+1)‖2L.

In addition, it follows from (8) and convexity of ‖ · ‖2L that

∥
∥
∥
∥
x⋆ − (1− αk)γk

γk+1
z(k) − αkµ

γk+1
y(k)

∥
∥
∥
∥

2

L

≤ (1− αk)γk
γk+1

‖x⋆ − z(k)‖2L +
αkµ

γk+1
‖x⋆ − y(k)‖2L. (38)

Using this relation and (12), we observe that

Eik

[γk+1

2
‖x⋆ − z(k+1)‖2L

]

=
γk+1

2

[

n− 1

n

∥
∥
∥
∥
x⋆ − (1− αk)γk

γk+1
z(k) − αkµ

γk+1
y(k)

∥
∥
∥
∥

2

L

+
1

n
‖x⋆ − z̃(k+1)‖2L

]

=
γk+1(n− 1)

2n

∥
∥
∥
∥
x⋆ − (1− αk)γk

γk+1
z(k) − αkµ

γk+1
y(k)

∥
∥
∥
∥

2

L

+
γk+1

2n
‖x⋆ − z̃(k+1)‖2L

=
γk+1

2

∥
∥
∥
∥
x⋆ − (1− αk)γk

γk+1
z(k) − αkµ

γk+1
y(k)

∥
∥
∥
∥

2

L

−γk+1

2n

∥
∥
∥
∥
x⋆ − (1− αk)γk

γk+1
z(k) − αkµ

γk+1
y(k)

∥
∥
∥
∥

2

L

+
γk+1

2n
‖x⋆ − z̃(k+1)‖2L

≤ (1− αk)γk
2

‖x⋆ − z(k)‖2L +
αkµ

2
‖x⋆ − y(k)‖2L

−γk+1

2n

∥
∥
∥
∥
x⋆ − (1− αk)γk

γk+1
z(k) − αkµ

γk+1
y(k)

∥
∥
∥
∥

2

L

+
γk+1

2n
‖x⋆ − z̃(k+1)‖2L,

where the inequality follows from (38). Summing up this inequality and (37) gives

Eik

[

f(x(k+1)) + Ψ̂k+1 +
γk+1

2
‖x⋆ − z(k+1)‖2L

]

≤ (1−αk)
(

f(x(k)) + Ψ̂k +
γk
2
‖x⋆ − z(k)‖2L

)

+αkF
⋆.

Taking expectation on both sides with respect to ξk−1 yields

Eξk

[

f(x(k+1)) + Ψ̂k+1 − F ⋆ +
γk+1

2
‖x⋆ − z(k+1)‖2L

]

≤ (1−αk)Eξk−1

[

f(x(k)) + Ψ̂k − F ⋆ +
γk
2
‖x⋆ − z(k)‖2L

]

,

which together with Ψ̂0 = Ψ(x(0)), z(0) = x(0) and λk = Πk−1
i=0 (1− αi) gives

Eξk−1

[

f(x(k)) + Ψ̂k − F ⋆ +
γk
2
‖x⋆ − z(k)‖2L

]

≤ λk

[

F (x(0))− F ⋆ +
γ0
2
‖x⋆ − x(0)‖2L

]

.

The conclusion of Theorem 1 immediately follows from F (x(k)) ≤ f(x(k)) + Ψ̂k, Lemma 1 (v), the
arbitrariness of x⋆ and the definition of R0.

15

Algorithm 4 Efficient implementation of APCG with γ0 = µ > 0

input: x(0) ∈ dom (Ψ) and convexity parameter µ > 0.

initialize: set α =
√
µ
n and ρ = 1−α

1+α , and initialize u(0) = 0 and v(0) = x(0).

iterate: repeat for k = 0, 1, 2, . . .

1. Choose ik ∈ {1, . . . , n} uniformly at random and compute

h
(k)
ik

= argmin
h∈RNik

{
nαLik

2
‖h‖22 +

〈

∇ikf(ρ
k+1u(k)+v(k)), h

〉

+Ψik

(

−ρk+1u
(k)
ik

+v
(k)
ik

+h
)}

.

2. Let u(k+1) = u(k) and v(k+1) = v(k), and update

u
(k+1)
ik

= u
(k)
ik

− 1− nα

2ρk+1
h
(k)
ik

, v
(k+1)
ik

= v
(k)
ik

+
1 + nα

2
h
(k)
ik

. (39)

output: x(k+1) = ρk+1u(k+1) + v(k+1)

4 Efficient implementation

The APCGmethods we presented in Section 2 all need to perform full-dimensional vector operations
at each iteration. In particular, y(k) is updated as a convex combination of x(k) and z(k), and this
can be very costly since in general they are dense vectors in R

N . Moreover, in the strongly convex
case (Algorithms 1 and 2), all blocks of z(k+1) also need to be updated at each iteration, although
only the ikth block needs to compute the partial gradient and perform an proximal mapping of Ψik .
These full-dimensional vector updates cost O(N) operations per iteration and may cause the overall
computational cost of APCG to be comparable or even higher than the full gradient methods (see
discussions in [26]).

In order to avoid full-dimensional vector operations, Lee and Sidford [14] proposed a change
of variables scheme for accelerated coordinated gradient methods for unconstrained smooth min-
imization. Fercoq and Richtárik [8] devised a similar scheme for efficient implementation in the
non-strongly convex case (µ = 0) for composite minimization. Here we show that full vector op-
erations can also be avoided in the strongly convex case for minimizing composite functions. For
simplicity, we only present an efficient implementation of the simplified APCG method with µ > 0
(Algorithm 2), which is given as Algorithm 4.

Proposition 1. The iterates of Algorithm 2 and Algorithm 4 satisfy the following relationships:

x(k) = ρku(k) + v(k),

y(k) = ρk+1u(k) + v(k), (40)

z(k) = −ρku(k) + v(k),

for all k ≥ 0. That is, these two algorithms are equivalent.

Proof. We prove by induction. Notice that Algorithm 2 is initialized with z(0) = x(0), and its

first step implies y(0) = x(0)+αz(0)

1+α = x(0); Algorithm 4 is initialized with u(0) = 0 and v(0) = x(0).
Therefore we have

x(0) = ρ0u(0) + v(0), y(0) = ρ1u(0) + v(0), z(0) = −ρ0u(0) + v(0),

16

which means that (40) holds for k = 0. Now suppose that it holds for some k ≥ 0, then

(1− α)z(k) + αy(k) = (1− α)
(

−ρku(k) + v(k)
)

+ α
(

ρk+1u(k) + v(k)
)

= −ρk ((1− α)− αρ)u(k) + (1− α)v(k) + αv(k)

= −ρk+1u(k) + v(k). (41)

So h
(k)
ik

in Algorithm 4 can be written as

h
(k)
ik

= argmin
h∈RNik

{
nαLik

2
‖h‖22 + 〈∇ikf(y

(k)), h〉+Ψik

(

(1− α)z
(k)
ik

+ αy
(k)
ik

+ h
)}

.

Comparing with (11), and using βk = α, we obtain

h
(k)
ik

= z̃
(k+1)
ik

−
(
(1− α)z

(k)
ik

+ αy
(k)
ik

)
.

In terms of the full dimensional vectors, using (12) and (41), we have

z(k+1) = (1− α)z(k) + αy(k) + Uikh
(k)
ik

= −ρk+1u(k) + v(k) + Uikh
(k)
ik

= −ρk+1u(k) + v(k) +
1− nα

2
Uikh

(k)
ik

+
1 + nα

2
Uikh

(k)
ik

= −ρk+1

(

u(k) − 1− nα

2ρk+1
Uikh

(k)
ik

)

+

(

v(k) +
1 + nα

2
Uikh

(k)
ik

)

= −ρk+1u(k+1) + v(k+1).

Using Step 3 of Algorithm 2, we get

x(k+1) = y(k) + nα(z(k+1) − z(k)) + nα2(z(k) − y(k))

= y(k) + nα
(

z(k+1) −
(
(1− α)z(k) + αy(k)

))

= y(k) + nαUikh
(k)
ik

,

where the last step used (12). Now using the induction hypothesis y(k) = ρk+1u(k) + v(k), we have

x(k+1) = ρk+1u(k) + v(k) +
1− nα

2
Uikh

(k)
ik

+
1 + nα

2
Uikh

(k)
ik

= ρk+1

(

u(k) − 1− nα

2ρk+1
Uikh

(k)
ik

)

+

(

v(k) +
1 + nα

2
Uikh

(k)
ik

)

= ρk+1u(k+1) + v(k+1).

Finally,

y(k+1) =
1

1 + α

(

x(k+1) + αz(k+1)
)

=
1

1 + α

(

ρk+1u(k+1) + v(k+1)
)

+
α

1 + α

(

−ρk+1u(k+1) + v(k+1)
)

=
1− α

1 + α
ρk+1u(k+1) +

1 + α

1 + α
v(k+1)

= ρk+2u(k+1) + v(k+1).

We just showed that (40) also holds for k + 1. This finishes the induction.

17

We note that in Algorithm 4, only a single block coordinates of the vectors u(k) and v(k)

are updated at each iteration, which cost O(Nik). However, computing the partial gradient
∇ikf(ρ

k+1u(k)+v(k)) may still cost O(N) in general. In Section 5.2, we show how to further exploit
problem structure in regularized empirical risk minimization to completely avoid full-dimensional
vector operations.

5 Application to regularized empirical risk minimization (ERM)

In this section, we show how to apply the APCG method to solve the regularized ERM problems
associated with linear predictors.

Let A1, . . . , An be vectors in R
d, φ1, . . . , φn be a sequence of convex functions defined on R,

and g be a convex function defined on R
d. The goal of regularized ERM with linear predictors is

to solve the following (convex) optimization problem:

minimize
w∈Rd

{

P (w)
def
=

1

n

n∑

i=1

φi(A
T
i w) + λg(w)

}

, (42)

where λ > 0 is a regularization parameter. For binary classification, given a label bi ∈ {±1} for
each vector Ai, for i = 1, . . . , n, we obtain the linear SVM (support vector machine) problem by
setting φi(z) = max{0, 1− biz} and g(w) = (1/2)‖w‖22. Regularized logistic regression is obtained
by setting φi(z) = log(1 + exp(−biz)). This formulation also includes regression problems. For
example, ridge regression is obtained by setting φi(z) = (1/2)(z − bi)

2 and g(w) = (1/2)‖w‖22, and
we get the Lasso if g(w) = ‖w‖1. Our method can also be extended to cases where each Ai is a
matrix, thus covering multiclass classification problems as well (see, e.g., [39]).

For each i = 1, . . . , n, let φ∗
i be the convex conjugate of φi, that is,

φ∗
i (u) = max

z∈R
{zu− φi(z)}.

The dual of the regularized ERM problem (42), which we call the primal, is to solve the problem
(see, e.g., [40])

maximize
x∈Rn

{

D(x)
def
=

1

n

n∑

i=1

−φ∗
i (−xi)− λg∗

(
1

λn
Ax

)}

, (43)

where A = [A1, . . . , An]. This is equivalent to minimize F (x)
def
= −D(x), that is,

minimize
x∈Rn

{

F (x)
def
=

1

n

n∑

i=1

φ∗
i (−xi) + λg∗

(
1

λn
Ax

)}

. (44)

The structure of F (x) above matches our general formulation of minimizing composite convex
functions in (1) and (2) with

f(x) = λg∗
(

1

λn
Ax

)

, Ψ(x) =
1

n

n∑

i=1

φ∗
i (−xi). (45)

Therefore, we can directly apply the APCG method to solve the problem (44), i.e., to solve the dual
of the regularized ERM problem. Here we assume that the proximal mappings of the conjugate

18

functions φ∗
i can be computed efficiently, which is indeed the case for many regularized ERM

problems (see, e.g., [40, 39]).
In order to obtain accelerated linear convergence rates, we make the following assumption.

Assumption 3. Each function φi is 1/γ smooth, and the function g has unit convexity parameter 1.

Here we slightly abuse the notation by overloading γ and λ, which appeared in Sections 2
and 3. In this section γ represents the (inverse) smoothness parameter of φi, and λ denotes the
regularization parameter on g. Assumption 3 implies that each φ∗

i has strong convexity parameter γ
(with respect to the local Euclidean norm) and g∗ is differentiable and ∇g∗ has Lipschitz constant 1.

In order to match the condition in Assumption 2, i.e., f(x) needs to be strongly convex, we can
apply the technique in Section 2.2 to relocate the strong convexity from Ψ to f . Without loss of
generality, we can use the following splitting of the composite function F (x) = f(x) + Ψ(x):

f(x) = λg∗
(

1

λn
Ax

)

+
γ

2n
‖x‖22, Ψ(x) =

1

n

n∑

i=1

(

φ∗(−xi)−
γ

2
‖xi‖22

)

. (46)

Under Assumption 3, the function f is smooth and strongly convex and each Ψi, for i = 1, . . . , n,
is still convex. As a result, we have the following complexity guarantee when applying the APCG
method to minimize the function F (x) = −D(x).

Theorem 2. Suppose Assumption 3 holds and ‖Ai‖2 ≤ R for all i = 1, . . . , n. In order to obtain
an expected dual optimality gap E[D⋆ −D(x(k))] ≤ ǫ using the APCG method, it suffices to have

k ≥
(

n+

√

nR2

λγ

)

log(C/ǫ). (47)

where D⋆ = maxx∈Rn D(x) and

C = D⋆ −D(x(0)) +
γ

2n
‖x(0) − x⋆‖22. (48)

Proof. First, we notice that the function f(x) defined in (46) is differentiable. Moreover, for any
x ∈ R

n and hi ∈ R,

‖∇if(x+ Uihi)−∇if(x)‖2 =

∥
∥
∥
∥

1

n
AT

i

[

∇g∗
(

1

λn
A(x+ Uihi)

)

−∇g∗
(

1

λn
Ax

)]

+
γ

n
hi

∥
∥
∥
∥
2

≤ ‖Ai‖2
n

∥
∥
∥
∥
∇g∗

(
1

λn
A(x+ Uihi)

)

−∇g∗
(

1

λn
Ax

)∥
∥
∥
∥
2

+
γ

n
‖hi‖2

≤ ‖Ai‖2
n

∥
∥
∥
∥

1

λn
Aihi

∥
∥
∥
∥
2

+
γ

n
‖hi‖2

≤
(‖Ai‖22

λn2
+

γ

n

)

‖hi‖2,

where the second inequality used the assumption that g has convexity parameter 1 and thus ∇g∗

has Lipschitz constant 1. The coordinate-wise Lipschitz constants as defined in Assumption 1 are

Li =
‖Ai‖22
λn2

+
γ

n
≤ R2 + λγn

λn2
, i = 1, . . . , n.

19

The function f has convexity parameter γ
n with respect to the Euclidean norm ‖ · ‖2. Let µ be its

convexity parameter with respect to the norm ‖ · ‖L defined in (6). Then

µ ≥ γ

n

/R2 + λγn

λn2
=

λγn

R2 + λγn
.

According to Theorem 1, the APCG method converges geometrically:

E
[

D⋆ −D(x(k))
]

≤
(

1−
√
µ

n

)k

C ≤ exp

(

−
√
µ

n
k

)

C,

where the constant C is given in (48). Therefore, in order to obtain E[D⋆−D(x(k))] ≤ ǫ, it suffices
to have the number of iterations k to be larger than

n√
µ
log(C/ǫ) ≤ n

√

R2 + λγn

λγn
log(C/ǫ) =

√

n2 +
nR2

λγ
log(C/ǫ) ≤

(

n+

√

nR2

λγ

)

log(C/ǫ).

This finishes the proof.

Let us compare the result in Theorem 2 with the complexity of solving the dual problem (44)
using the accelerated full gradient (AFG) method of Nesterov [27]. Using the splitting in (45)

and under Assumption 3, the gradient ∇f(x) has Lipschitz constant
‖A‖22
λn2 , where ‖A‖2 denotes the

spectral norm of A, and Ψ(x) has convexity parameter γ
n with respect to ‖ · ‖2. So the condition

number of the problem is

κ =
‖A‖22
λn2

/
γ

n
=

‖A‖22
λγn

.

Suppose each iteration of the AFG method costs as much as n times of the APCG method (as we
will see in Section 5.2), then the complexity of the AFG method [27, Theorem 6] measured in terms
of number of coordinate gradient steps is

O
(
n
√
κ log(1/ǫ)

)
= O





√

n‖A‖22
λγ

log(1/ǫ)



 ≤ O

(√

n2R2

λγ
log(1/ǫ)

)

.

The inequality above is due to ‖A‖22 ≤ ‖A‖2F ≤ nR2. Therefore in the ill-conditioned case (assuming

n ≤ R2

λγ), the complexity of AFG can be a factor of
√
n worse than that of APCG.

Several state-of-the-art algorithms for regularized ERM, including SDCA [40], SAG [35, 37] and
SVRG [11, 48], have the iteration complexity

O

((

n+
R2

λγ

)

log(1/ǫ)

)

.

Here the ratio R2

λγ can be interpreted as the condition number of the regularized ERM problem (42)
and its dual (43). We note that our result in (47) can be much better for ill-conditioned problems,

i.e., when the condition number R2

λγ is much larger than n.
Most recently, Shalev-Shwartz and Zhang [39] developed an accelerated SDCA method which

achieves the same complexity O
((

n+
√

n
λγ

)

log(1/ǫ)
)

as our method. Their method is an inner-

outer iteration procedure, where the outer loop is a full-dimensional accelerated gradient method

20

in the primal space w ∈ R
d. At each iteration of the outer loop, the SDCA method [40] is called to

solve the dual problem (43) with customized regularization parameter and precision. In contrast,
our APCG method is a straightforward single loop coordinate gradient method.

We note that the complexity bound for the aforementioned work are either for the primal
optimality P (w(k)) − P ⋆ (SAG and SVRG) or for the primal-dual gap P (w(k)) − D(x(k)) (SDCA
and accelerated SDCA). Our results in Theorem 2 are in terms of the dual optimality D⋆−D(x(k)).
In Section 5.1, we show how to recover primal solutions with the same order of convergence rate. In
Section 5.2, we show how to exploit problem structure of regularized ERM to compute the partial
gradient∇if(x), which together with the efficient implementation proposed in Section 4, completely
avoid full-dimensional vector operations. The experiments in Section 5.3 illustrate that our method
has superior performance in reducing both the primal objective value and the primal-dual gap.

5.1 Recovering the primal solution

Under Assumption 3, the primal problem (42) and dual problem (43) each has a unique solution,
say w⋆ and x⋆, respectively. Moreover, we have P (w⋆) = D(x⋆). With the definition

ω(x) = ∇g∗
(

1

λn
Ax

)

, (49)

we have w⋆ = ω(x⋆). When applying the APCGmethod to solve the dual regularized ERM problem,
which generate a dual sequence x(k), we can obtain a primal sequence w(k) = ω(x(k)). Here we
discuss the relationship between the primal-dual gap P (w(k)) − D(x(k)) and the dual optimality
D⋆ −D(x(k)).

Let a = (a1, . . . , an) be a vector in R
n. We consider the saddle-point problem

max
x

min
a,w

{

Φ(x, a, w)
def
=

1

n

n∑

i=1

φi(ai) + λg(w)− 1

n

n∑

i=1

xi(A
T
i w − ai)

}

, (50)

so that

D(x) = min
a,w

Φ(x, a, w).

Given an approximate dual solution x(k) (generated by the APCG method), we can find a pair of
primal solutions (a(k), w(k)) = argmina,w Φ(x(k), a, w), or more specifically,

a
(k)
i = argmax

ai

{

−x
(k)
i ai − φi(ai)

}

∈ ∂φ∗
i (−x

(k)
i), i = 1, . . . , n, (51)

w(k) = argmax
w

{

wT

(
1

λn
Ax(k)

)

− g(w)

}

= ∇g∗
(

1

λn
Ax(k)

)

. (52)

As a result, we obtain a subgradient of D at x(k), denoted D′(x(k)), and

‖D′(x(k))‖22 =
1

n2

n∑

i=1

(

AT
i w

(k) − a
(k)
i

)2
. (53)

We note that ‖D′(x(k))‖22 is not only a measure of the dual optimality of x(k), but also a measure
of the primal feasibility of (a(k), w(k)). In fact, it can also bound the primal-dual gap, which is the
result of the following lemma.

21

Lemma 4. Given any dual solution x(k), let (a(k), w(k)) be defined as in (51) and (52). Then

P (w(k))−D(x(k)) ≤ 1

2nγ

n∑

i=1

(

AT
i w

(k) − a
(k)
i

)2
=

n

2γ
‖D′(x(k))‖22.

Proof. Because of (51), we have ∇φi(a
(k)
i) = −x

(k)
i . The 1/γ-smoothness of φi(a) implies

P (w(k)) =
1

n

n∑

i=1

φi(A
T
i w

(k)) + λg(w(k))

≤ 1

n

n∑

i=1

(

φi(a
(k)
i) +∇φi(a

(k)
i)T

(

AT
i w

(k) − a
(k)
i

)

+
1

2γ

(

AT
i w

(k) − a
(k)
i

)2
)

+ λg(w(k))

=
1

n

n∑

i=1

(

φi(a
(k)
i)− x

(k)
i

(

AT
i w

(k) − a
(k)
i

)

+
1

2γ

(

AT
i w

(k) − a
(k)
i

)2
)

+ λg(w(k))

= Φ(x(k), a(k), w(k)) +
1

2nγ

n∑

i=1

(

AT
i w

(k) − a
(k)
i

)2

= D(x(k)) +
1

2nγ

n∑

i=1

(AT
i w

(k) − a
(k)
i)2,

which leads to the inequality in the conclusion. The equality in the conclusion is due to (53).

The following theorem states that under a stronger assumption than Assumption 3, the primal-
dual gap can be bounded directly by the dual optimality gap, hence they share the same order of
convergence rate.

Theorem 3. Suppose g is 1-strongly convex and each φi is 1/γ-smooth and also 1/η-strongly
convex (all with respect to the Euclidean norm ‖ · ‖2). Given any dual point x(k), let the primal
correspondence be w(k) = ω(x(k)), i.e., generated from (52). Then we have

P (w(k))−D(x(k)) ≤ ληn+ ‖A‖22
λγn

(

D⋆ −D(x(k))
)

, (54)

where ‖A‖2 denotes the spectral norm of A.

Proof. Since g(w) is 1-strongly convex, the function f(x) = λg∗
(
Ax
λn

)
is differentiable and ∇f(x)

has Lipschitz constant
‖A‖22
λn2 . Similarly, since each φi is 1/η strongly convex, the function Ψ(x) =

1
n

∑n
i=1 φ

∗
i (−xi) is differentiable and ∇Ψ(x) has Lipschitz constant η

n . Therefore, the function
−D(x) = f(x) + Ψ(x) is smooth and its gradient has Lipschitz constant

‖A‖22
λn2

+
η

n
=

ληn+ ‖A‖22
λn2

.

It is known that (e.g., [25, Theorem 2.1.5]) if a function F (x) is convex and L-smooth, then

F (y) ≥ F (x) +∇F (x)T (y − x) +
1

2L
‖∇F (x)−∇F (y)‖22

22

for all x, y ∈ R
n. Applying the above inequality to F (x) = −D(x), we get for all x and y,

−D(y) ≥ −D(x)−∇D(x)T (y − x) +
λn2

2(ληn+ ‖A‖22)
‖∇D(x)−∇D(y)‖22. (55)

Under our assumptions, the saddle-point problem (50) has a unique solution (x⋆, a⋆, w⋆), where
w⋆ and x⋆ are the solutions to the primal and dual problems (42) and (43), respectively. Moreover,
they satisfy the optimality conditions

AT
i w

⋆ − a⋆i = 0, a⋆i = ∇φ∗
i (−x⋆i), w⋆ = ∇g∗

(
1

λn
Ax⋆

)

.

Since D is differentiable in this case, we have D′(x) = ∇D(x) and ∇D(x⋆) = 0. Now we choose x
and y in (55) to be x⋆ and x(k) respectively. This leads to

‖∇D(x(k))‖22 = ‖∇D(x(k))−∇D(x⋆)‖22 ≤ 2(ληn+ ‖A‖22)
λn2

(D(x⋆)−D(x(k))).

Then the conclusion can be derived from Lemma 4.

The assumption that each φi is 1/γ-smooth and 1/η-strongly convex implies that γ ≤ η.

Therefore the coefficient on the right-hand side of (54) satisfies
ληn+‖A‖22

λγn > 1. This is consis-

tent with the fact that for any pair of primal and dual points w(k) and x(k), we always have
P (w(k))−D(x(k)) ≥ D⋆ −D(x(k)).

Corollary 1. Under the assumptions of Theorem 3, in order to obtain an expected primal-dual gap
E
[
P (w(k))−D(x(k))

]
≤ ǫ using the APCG method, it suffices to have

k ≥
(

n+

√

nR2

λγ

)

log

(
(ληn+ ‖A‖22)

λγn

C

ǫ

)

,

where the constant C is defined in (48).

The above results require that each φi be both smooth and strongly convex. One example that
satisfies such assumptions is ridge regression, where φi(ai) =

1
2(ai − bi)

2 and g(w) = 1
2‖w‖22. For

problems that only satisfy Assumption 3, we may add a small strongly convex term 1
2η (A

T
i w)

2 to

each loss φi(A
T
i w), and obtain that the primal-dual gap (of a slightly perturbed problem) share the

same accelerated linear convergence rate as the dual optimality gap. Alternatively, we can obtain
the same guarantee with the extra cost of a proximal full gradient step. This is summarized in the
following theorem.

Theorem 4. Suppose Assumption 3 holds. Given any dual point x(k), define

T (x(k)) = arg min
x∈Rn

{

〈∇f(x(k)), x〉+ ‖A‖22
2λn2

‖x− x(k)‖22 +Ψ(x)

}

, (56)

where f and Ψ are defined in the simple splitting (45). Let

w(k) = ω(T (x(k))) = ∇g∗
(

1

λn
AT (x(k))

)

. (57)

Then we have

P (w(k))−D(T (x(k))) ≤ 4‖A‖22
λγn

(

D(x⋆)−D(x(k))
)

. (58)

23

Proof. Notice that the Lipschitz constant of ∇f(x) is Lf =
‖A‖22
λn2 , which is used in calculating

T (x(k)). The corresponding gradient mapping [27] at x(k) is

G(x(k)) = Lf

(

x(k) − T (x(k))
)

=
‖A‖22
λn2

(

x(k) − T (x(k))
)

.

According to [27, Theorem 1], we have

∥
∥
∥D′

(

T (x(k))
)∥
∥
∥

2

2
≤ 4

∥
∥
∥G(x(k))

∥
∥
∥

2

2
≤ 8Lf

(

D(x⋆)−D(x(k))
)

=
8‖A‖22
λn2

(

D(x⋆)−D(x(k))
)

.

The conclusion can then be derived from Lemma 4.

Here the coefficient in the right-hand side of (58),
4‖A‖22
λγn , can be less than 1. This does not

contradict with the fact that the primal-dual gap should be no less than the dual optimality gap,
because the primal-dual gap on the left-hand side of (58) is measured at T (x(k)) rather than x(k).

Corollary 2. Suppose Assumption 3 holds. In order to obtain a primal-dual pair w(k) and x(k)

such that E
[
P (w(k))−D(T (x(k)))

]
≤ ǫ, it suffices to run the APCG method for

k ≥
(

n+

√

nR2

λγ

)

log

(
4‖A‖22
λγn

C

ǫ

)

steps and follow with a proximal full gradient step (56) and (57), where C is defined in (48).

We note that the computational cost of the proximal full gradient step (56) is comparable
with n proximal coordinate gradient steps. Therefore the overall complexity of of this scheme is
on the same order as necessary for the expected dual optimality gap to reach ǫ. Actually the
numerical experiments in Section 5.3 show that running the APCG method alone without the final
full gradient step is sufficient to reduce the primal-dual gap at a very fast rate.

5.2 Implementation details

Here we show how to exploit the structure of the regularized ERM problem to efficiently compute
the coordinate gradient ∇ikf(y

(k)), and totally avoid full-dimensional updates in Algorithm 4.
We focus on the special case g(w) = 1

2‖w‖22 and show how to compute ∇ikf(y
(k)). In this case,

g∗(v) = 1
2‖v‖22 and ∇g∗(·) is the identity map. According to (46),

∇ikf(y
(k)) =

1

λn2
AT

ik
(Ay(k)) +

γ

n
y
(k)
ik

.

Notice that we do not form y(k) in Algorithm 4. By Proposition 1, we have

y(k) = ρk+1u(k) + v(k).

So we can store and update the two vectors

p(k) = Au(k), q(k) = Av(k),

and obtain
Ay(k) = ρk+1p(k) + q(k).

24

Algorithm 5 APCG for solving regularized ERM with µ > 0

input: x(0) ∈ dom (Ψ) and convexity parameter µ = λγn
R2+λγn

.

initialize: set α =
√
µ
n and ρ = 1−α

1+α , and let u(0) = 0, v(0) = x(0), p(0) = 0 and q(0) = Ax(0).

iterate: repeat for k = 0, 1, 2, . . .

1. Choose ik ∈ {1, . . . , n} uniformly at random, compute the coordinate gradient

∇(k)
ik

=
1

λn2

(

ρk+1AT
ik
p(k) +AT

ik
q(k)
)

+
γ

n

(

ρk+1u
(k)
ik

+ v
(k)
ik

)

.

2. Compute coordinate increment

h
(k)
ik

= argmin
h∈RNik

{
α(‖Aik‖2 + λγn)

2λn
‖h‖22 + 〈∇(k)

ik
, h〉+Ψik

(

−ρk+1u
(k)
ik

+ v
(k)
ik

+ h
)}

. (59)

3. Let u(k+1) = u(k) and v(k+1) = v(k), and update

u
(k+1)
ik

= u
(k)
ik

− 1− nα

2ρk+1
h
(k)
ik

, v
(k+1)
ik

= v
(k)
ik

+
1 + nα

2
h
(k)
ik

,

p(k+1) = p(k) − 1− nα

2ρk+1
Aikh

(k)
ik

, q(k+1) = q(k) +
1 + nα

2
Aikh

(k)
ik

. (60)

output: approximate dual and primal solutions

x(k+1) = ρk+1u(k+1) + v(k+1), w(k+1) =
1

λn

(

ρk+1p(k+1) + q(k+1)
)

.

Since the update of both u(k) and v(k) at each iteration only involves the single coordinate ik, we
can update p(k) and q(k) by adding or subtracting a scaled column Aik , as given in (60). The
resulting method is detailed in Algorithm 5.

In Algorithm 5, we use ∇(k)
ik

to represent ∇ikf(y
(k)) to reflect the fact that we never form y(k)

explicitly. The function Ψi in (59) is the one given in (46), i.e.,

Ψi(xi) =
1

n
φ∗
i (−xi)−

γ

2n
‖xi‖22.

Each iteration of Algorithm 5 only involves the two inner products AT
ik
p(k) and AT

ik
q(k) in computing

∇(k)
ik

, and the two vector additions in (60). They all cost O(d) rather than O(n). When the Ai’s are
sparse (the case of most large-scale problems), these operations can be carried out very efficiently.
Basically, each iteration of Algorithm 5 only cost twice as much as that of SDCA [10, 40].

In Step 3 of Algorithm 5, the division by ρk+1 in updating u(k) and p(k) may cause numerical
problems because ρk+1 → 0 as the number of iterations k getting large. To fix this issue, we notice
that u(k) and p(k) are always accessed in Algorithm 5 in the forms of ρk+1u(k) and ρk+1p(k). So we
can replace u(k) and p(k) by

ū(k) = ρk+1u(k), p̄(k) = ρk+1p(k),

25

which can be updated without numerical problem. To see this, we have

ū(k+1) = ρk+2u(k+1)

= ρk+2

(

u(k) − 1− nα

2ρk+1
Uikh

(k)
ik

)

= ρ

(

ū(k) − 1− nα

2
Uikh

(k)
ik

)

.

Similarly, we have

p̄(k+1) = ρ

(

p̄(k) − 1− nα

2
Aikh

(k)
ik

)

.

5.3 Numerical experiments

In our experiments, we solve the regularized ERM problem (42) with smoothed hinge loss for binary
classification. That is, we pre-multiply each feature vector Ai by its label bi ∈ {±1} and let

φi(a) =







0 if a ≥ 1,
1− a− γ

2 if a ≤ 1− γ,
1
2γ (1− a)2 otherwise,

i = 1, . . . , n.

The conjugate function of φi is φ
∗
i (b) = b+ γ

2 b
2 if b ∈ [−1, 0] and ∞ otherwise. Therefore we have

Ψi(xi) =
1

n

(

φ∗
i (−xi)−

γ

2
‖xi‖22

)

=

{ −xi

n if xi ∈ [0, 1]
∞ otherwise.

For the regularization term, we use g(w) = 1
2‖w‖22. We used three publicly available datasets

obtained from [7]. The characteristics of these datasets are summarized in Table 1.
In our experiments, we comparing the APCG method (Algorithm 5) with SDCA [40] and the

accelerated full gradient method (AFG) [25] with and additional line search procedure to improve
efficiency. When the regularization parameter λ is not too small (around 10−4), then APCG
performs similarly as SDCA as predicted by our complexity results, and they both outperform
AFG by a substantial margin.

Figure 1 shows the reduction of primal optimality P (w(k)) − P ⋆ by the three methods in the
ill-conditioned setting, with λ varying form 10−5 to 10−8. For APCG, the primal points w(k)

are generated simply as w(k) = ω(x(k)) defined in (49). Here we see that APCG has superior
performance in reducing the primal objective value compared with SDCA and AFG, even without
performing the final proximal full gradient step described in Theorem 4.

Figure 2 shows the reduction of primal-dual gap P (w(k))−D(x(k)) by the two methods APCG
and SDCA. We can see that in the ill-conditioned setting, the APCG method is more effective in
reducing the primal-dual gap as well.

datasets source number of samples n number of features d sparsity

RCV1 [16] 20,242 47,236 0.16%
covtype [4] 581,012 54 22%
News20 [12, 13] 19,996 1,355,191 0.04%

Table 1: Characteristics of three binary classification datasets obtained from [7].

26

λ RCV1 covertype News20

10−5

0 20 40 60 80 100
10

−15

10
−12

10
−9

10
−6

10
−3

10
0

AFG

SDCA

APCG

0 20 40 60 80 100
10

−15

10
−12

10
−9

10
−6

10
−3

10
0

AFG

SDCA

APCG

0 20 40 60 80 100
10

−15

10
−12

10
−9

10
−6

10
−3

10
0

AFG

SDCA

APCG

10−6

0 20 40 60 80 100
10

−9

10
−6

10
−3

10
0

0 20 40 60 80 100
10

−9

10
−6

10
−3

10
0

0 20 40 60 80 100
10

−9

10
−6

10
−3

10
0

10−7

0 20 40 60 80 100
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0 20 40 60 80 100
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0 20 40 60 80 100
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10−8

0 20 40 60 80 100
10

−4

10
−3

10
−2

10
−1

10
0

AFG

SDCA

APCG

0 20 40 60 80 100
10

−4

10
−3

10
−2

10
−1

10
0

0 20 40 60 80 100
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Figure 1: Comparing the APCG method with SDCA and the accelerated full gradient method
(AFG). In each plot, the vertical axis is the primal objective value gap, i.e., P (w(k))−P ⋆, and the
horizontal axis is the number of passes through the entire dataset. The three columns correspond
to the three data sets, and each row corresponds to a particular value of λ.

27

λ RCV1 covertype News20

10−5

0 20 40 60 80 100
10−15

10−12

10−9

10−6

10−3

100

SDCA gap

APCG gap

0 20 40 60 80 100
10−12

10−9

10−6

10−3

100

SDCA gap

APCG gap

0 20 40 60 80 100
10−15

10−12

10−9

10−6

10−3

100

SDCA gap

APCG gap

10−6

0 20 40 60 80 100
10−9

10−6

10−3

100

SDCA gap

APCG gap

0 20 40 60 80 100
10−9

10−6

10−3

100

SDCA gap

APCG gap

0 20 40 60 80 100
10−9

10−6

10−3

100

SDCA gap

APCG gap

10−7

0 20 40 60 80 100
10−6

10−5

10−4

10−3

10−2

10−1

100

SDCA gap

APCG gap

0 20 40 60 80 100
10−5

10−4

10−3

10−2

10−1

100

SDCA gap

APCG gap

0 20 40 60 80 100
10−6

10−5

10−4

10−3

10−2

10−1

100

SDCA gap

APCG gap

10−8

0 20 40 60 80 100
10−4

10−3

10−2

10−1

100

SDCA gap

APCG gap

0 20 40 60 80 100
10−3

10−2

10−1

100

SDCA gap

APCG gap

0 20 40 60 80 100
10−4

10−3

10−2

10−1

100

SDCA gap

APCG gap

Figure 2: Comparing the primal-dual objective gap produced by APCG and SDCA. In each plot,
the vertical axis is the primal-dual objective value gap, i.e., P (w(k))−D(x(k)), and the horizontal
axis is the number of passes through the entire dataset. The three columns correspond to the three
data sets, and each row corresponds to a particular value of λ.

28

References

[1] A. Beck and M. Teboulle. A fast iterative shrinkage-threshold algorithm for linear inverse
problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

[2] A. Beck and L. Tetruashvili. On the convergence of block coordinate descent type methods.
SIAM Journal on Optimization, 13(4):2037–2060, 2013.

[3] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numerical Methods.
Prentice-Hall, 1989.

[4] J. A. Blackard, D. J. Dean, and C. W. Anderson. Covertype data set. In K. Bache and
M. Lichman, editors, UCI Machine Learning Repository, URL: http://archive.ics.uci.edu/ml,
2013. University of California, Irvine, School of Information and Computer Sciences.

[5] J. K. Bradley, A. Kyrola, D. Bickson, and C. Guestrin. Parallel coordinate descent for l1-
regularized loss minimization. In Proceedings of the 28th International Conference on Machine
Learning (ICML), pages 321–328, 2011.

[6] K.-W. Chang, C.-J. Hsieh, and C.-J. Lin. Coordinate descent method for large-scale l2-loss
linear support vector machines. Journal of Machine Learning Research, 9:1369–1398, 2008.

[7] R.-E. Fan and C.-J. Lin. LIBSVM data: Classification, regression and multi-label. URL:
http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets, 2011.

[8] O. Fercoq and P. Richtárik. Accelerated, parallel and proximal coordinate descent. Manuscript,
arXiv:1312.5799.

[9] M. Hong, X. Wang, M. Razaviyayn, and Z. Q. Luo. Iteration complexity analysis of block
coordinate descent methods. arXiv:1310.6957.

[10] C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and S. Sundararajan. A dual coordinate
descent method for large-scale linear svm. In Proceedings of the 25th International Conference
on Machine Learning (ICML), pages 408–415, 2008.

[11] R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In Advances in Neural Information Processing Systems 26, pages 315–323. 2013.

[12] S. S. Keerthi and D. DeCoste. A modified finite Newton method for fast solution of large scale
linear svms. Journal of Machine Learning Research, 6:341–361, 2005.

[13] K. Lang. Newsweeder: Learning to filter netnews. In Proceedings of the Twelfth International
Conference on Machine Learning (ICML), pages 331–339, 1995.

[14] Y. T. Lee and A. Sidford. Efficient accelerated coordinate descent methods and faster algo-
rithms for solving linear systems. arXiv:1305.1922.

[15] D. Leventhal and A. S. Lewis. Randomized methods for linear constraints: convergence rates
and conditioning. Mathematics of Operations Research, 35(3):641–654, 2010.

[16] D. D. Lewis, Y. Yang, T. Rose, and F. Li. RCV1: A new benchmark collection for text
categorization research. Journal of Machine Learning Research, 5:361–397, 2004.

29

[17] Y. Li and S. Osher. Coordinate descent optimization for ℓ1 minimization with application to
compressed sensing: a greedy algorithm. Inverse Problems and Imaging, 3:487–503, 2009.

[18] J. Liu and S. J. Wright. An accelerated randomized Kacamarz algorithm. arXiv:1310.2887,
2013.

[19] J. Liu, S. J. Wright, C. Ré, V. Bittorf, and S. Sridhar. An asynchronous parallel stochastic
coordinate descent algorithm. JMLR W&CP, 32(1):469–477, 2014.

[20] Z. Lu and L. Xiao. On the complexity analysis of randomized block-coordinate descent meth-
ods. Technical Report MSR-TR-2013-53, Microsoft Research, 2013.

[21] Z. Lu and L. Xiao. Randomized block coordinate non-monotone gradient method for a class
of nonlinear programming. arXiv:1306.5918, 2013.

[22] Z. Q. Luo and P. Tseng. On the convergence of the coordinate descent method for convex
differentiable minimization. Journal of Optimization Theory and Applications, 72(1):7–35,
2002.

[23] I. Necoara and D. Clipici. Distributed random coordinate descent method for composite
minimization. Technical Report 1-41, University Politehnica Bucharest, November 2013.

[24] I. Necoara and A. Patrascu. A random coordinate descent algorithm for optimization problems
with composite objective function and linear coupled constraints. Computational Optimization
and Applications, 57(2):307–377, 2014.

[25] Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Kluwer, Boston,
2004.

[26] Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems.
SIAM Journal on Optimization, 22(2):341–362, 2012.

[27] Yu. Nesterov. Gradient methods for minimizing composite functions. Mathematical Program-
ming, Ser. B, 140:125–161, 2013.

[28] A. Patrascu and I. Necoara. Efficient random coordinate descent algorithms for large-
scale structured nonconvex optimization. To appear in Journal of Global Optimization.
arXiv:1305.4027, 2013.

[29] J. Platt. Fast training of support vector machine using sequential minimal optimization. In
B. Schölkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods — Support Vector
Learning, pages 185–208. MIT Press, Cambridge, MA, USA, 1999.

[30] Z. Qin, K. Scheinberg, and D. Goldfarb. Efficient block-coordinate descent algorithms for the
Group Lasso. Mathematical Programming Computation, 5(2):143–169, 2013.

[31] P. Richtárik and M. Takáč. Parallel coordinate descent methods for big data optimization.
arXiv:1212.0873, 2012.

[32] P. Richtárik and M. Takáč. Distributed coordinate descent method for learning with big data.
arXiv:1310.2059, 2013.

30

[33] P. Richtárik and M. Takáč. Iteration complexity of randomized block-coordinate descent
methods for minimizing a composite function. Mathematical Programming, 144(1):1–38, 2014.

[34] R. T. Rockafellar. Convex Analysis. Princeton University Press, 1970.

[35] N. Le Roux, M. Schmidt, and F. Bach. A stochastic gradient method with an exponential
convergence rate for finite training sets. In Advances in Neural Information Processing Systems
25, pages 2672–2680. 2012.

[36] A. Saha and A. Tewari. On the non-asymptotic convergence of cyclic coordinate descent
methods. SIAM Jorunal on Optimization, 23:576–601, 2013.

[37] M. Schmidt, N. Le Roux, and F. Bach. Minimizing finite sums with the stochastic average
gradient. Technical Report HAL 00860051, INRIA, Paris, France, 2013.

[38] S. Shalev-Shwartz and A. Tewari. Stochastic methods for ℓ1 regularized loss minimization. In
Proceedings of the 26th International Conference on Machine Learning (ICML), pages 929–936,
Montreal, Canada, 2009.

[39] S. Shalev-Shwartz and T. Zhang. Accelerated proximal stochastic dual coordinate ascent for
regularized loss minimization. arXiv:1309.2375.

[40] S. Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent methods for regularized
loss minimization. Journal of Machine Learning Research, 14:567–599, 2013.

[41] P. Tseng. Convergence of a block coordinate descent method for nondifferentiable minimiza-
tion. Journal of Optimization Theory and Applications, 140:513–535, 2001.

[42] P. Tseng. On accelerated proximal gradient methods for convex-concave optimization. Un-
published manuscript, 2008.

[43] P. Tseng and S. Yun. Block-coordinate gradient descent method for linearly constrained
nonsmooth separable optimization. Journal of Optimization Theory and Applications, 140:513–
535, 2009.

[44] P. Tseng and S. Yun. A coordinate gradient descent method for nonsmooth separable mini-
mization. Mathematical Programming, 117:387–423, 2009.

[45] Z. Wen, D. Goldfarb, and K. Scheinberg. Block coordinate descent methods for semidefinite
programming. In M. F. Anjos and J. B. Lasserre, editors, Handbook on Semidefinite, Cone
and Polynomial Optimization: Theory, Algorithms, Software and Applications, volume 166,
pages 533–564. Springer, 2012.

[46] S. J. Wright. Accelerated block-coordinate relaxation for regularized optimization. SIAM
Journal on Optimization, 22:159–186, 2012.

[47] T. Wu and K. Lange. Coordinate descent algorithms for Lasso penalized regression. The
Annals of Applied Statistics, 2(1):224–244, 2008.

[48] L. Xiao and T. Zhang. A proximal stochastic gradient method with progressive variance
reduction. arXiv:1403.4699.

31

