34,610 research outputs found

    An Abstract View on Modularity in Knowledge Representation

    Get PDF
    Modularity is an essential aspect of knowledge representation and reasoning theory and practice. It has received substantial attention. We introduce model-based modular systems, an abstract framework for modular knowledge representation formalisms, similar in scope to multi-context systems but employing a simpler information-flow mechanism. We establish the precise relationship between the two frameworks, showing that they can simulate each other. We demonstrate that recently introduced modular knowledge representation formalisms integrating logic programming with satisfiability and, more generally, with constraint satisfaction can be cast as modular systems in our sense. These results show that our formalism offers a simple unifying framework for studies of modularity in knowledge representation

    Supporting 'design for reuse' with modular design

    Get PDF
    Engineering design reuse refers to the utilization of any knowledge gained from the design activity to support future design. As such, engineering design reuse approaches are concerned with the support, exploration, and enhancement of design knowledge prior, during, and after a design activity. Modular design is a product structuring principle whereby products are developed with distinct modules for rapid product development, efficient upgrades, and possible reuse (of the physical modules). The benefits of modular design center on a greater capacity for structuring component parts to better manage the relation between market requirements and the designed product. This study explores the capabilities of modular design principles to provide improved support for the engineering design reuse concept. The correlations between modular design and 'reuse' are highlighted, with the aim of identifying its potential to aid the little-supported process of design for reuse. In fulfilment of this objective the authors not only identify the requirements of design for reuse, but also propose how modular design principles can be extended to support design for reuse

    Modularity in support of design for re-use

    Get PDF
    We explore the structuring principle of modularity with the objective of analysing its current ability to meet the requirements of a 're-use' centred approach to design. We aim to highlight the correlation's between modular design and 're-use', and argue that it has the potential to aid the little-supported process of 'design-for-re-use'. In fulfilment of this objective we not only identify the requirements of 'design-for-re-use', but also propose how modular design principles can be extended to support 'design-for-re-use'

    The Drink You Have When You’re Not Having a Drink

    Get PDF
      The Architecture of the Mind is itself built on foundations that deserve probing. In this brief commentary I focus on these foundations—Carruthers’ conception of modularity, his arguments for thinking that the mind is massively modular in structure, and his view of human cognitive architectur

    Identifying component modules

    Get PDF
    A computer-based system for modelling component dependencies and identifying component modules is presented. A variation of the Dependency Structure Matrix (DSM) representation was used to model component dependencies. The system utilises a two-stage approach towards facilitating the identification of a hierarchical modular structure. The first stage calculates a value for a clustering criterion that may be used to group component dependencies together. A Genetic Algorithm is described to optimise the order of the components within the DSM with the focus of minimising the value of the clustering criterion to identify the most significant component groupings (modules) within the product structure. The second stage utilises a 'Module Strength Indicator' (MSI) function to determine a value representative of the degree of modularity of the component groupings. The application of this function to the DSM produces a 'Module Structure Matrix' (MSM) depicting the relative modularity of available component groupings within it. The approach enabled the identification of hierarchical modularity in the product structure without the requirement for any additional domain specific knowledge within the system. The system supports design by providing mechanisms to explicitly represent and utilise component and dependency knowledge to facilitate the nontrivial task of determining near-optimal component modules and representing product modularity

    DeepWalk: Online Learning of Social Representations

    Full text link
    We present DeepWalk, a novel approach for learning latent representations of vertices in a network. These latent representations encode social relations in a continuous vector space, which is easily exploited by statistical models. DeepWalk generalizes recent advancements in language modeling and unsupervised feature learning (or deep learning) from sequences of words to graphs. DeepWalk uses local information obtained from truncated random walks to learn latent representations by treating walks as the equivalent of sentences. We demonstrate DeepWalk's latent representations on several multi-label network classification tasks for social networks such as BlogCatalog, Flickr, and YouTube. Our results show that DeepWalk outperforms challenging baselines which are allowed a global view of the network, especially in the presence of missing information. DeepWalk's representations can provide F1F_1 scores up to 10% higher than competing methods when labeled data is sparse. In some experiments, DeepWalk's representations are able to outperform all baseline methods while using 60% less training data. DeepWalk is also scalable. It is an online learning algorithm which builds useful incremental results, and is trivially parallelizable. These qualities make it suitable for a broad class of real world applications such as network classification, and anomaly detection.Comment: 10 pages, 5 figures, 4 table
    • 

    corecore