25,112 research outputs found

    Real-time and Probabilistic Temporal Logics: An Overview

    Full text link
    Over the last two decades, there has been an extensive study on logical formalisms for specifying and verifying real-time systems. Temporal logics have been an important research subject within this direction. Although numerous logics have been introduced for the formal specification of real-time and complex systems, an up to date comprehensive analysis of these logics does not exist in the literature. In this paper we analyse real-time and probabilistic temporal logics which have been widely used in this field. We extrapolate the notions of decidability, axiomatizability, expressiveness, model checking, etc. for each logic analysed. We also provide a comparison of features of the temporal logics discussed

    Interval-based Synthesis

    Get PDF
    We introduce the synthesis problem for Halpern and Shoham's modal logic of intervals extended with an equivalence relation over time points, abbreviated HSeq. In analogy to the case of monadic second-order logic of one successor, the considered synthesis problem receives as input an HSeq formula phi and a finite set Sigma of propositional variables and temporal requests, and it establishes whether or not, for all possible evaluations of elements in Sigma in every interval structure, there exists an evaluation of the remaining propositional variables and temporal requests such that the resulting structure is a model for phi. We focus our attention on decidability of the synthesis problem for some meaningful fragments of HSeq, whose modalities are drawn from the set A (meets), Abar (met by), B (begins), Bbar (begun by), interpreted over finite linear orders and natural numbers. We prove that the fragment ABBbareq is decidable (non-primitive recursive hard), while the fragment AAbarBBbar turns out to be undecidable. In addition, we show that even the synthesis problem for ABBbar becomes undecidable if we replace finite linear orders by natural numbers.Comment: In Proceedings GandALF 2014, arXiv:1408.556

    Deciding the Satisfiability of MITL Specifications

    Get PDF
    In this paper we present a satisfiability-preserving reduction from MITL interpreted over finitely-variable continuous behaviors to Constraint LTL over clocks, a variant of CLTL that is decidable, and for which an SMT-based bounded satisfiability checker is available. The result is a new complete and effective decision procedure for MITL. Although decision procedures for MITL already exist, the automata-based techniques they employ appear to be very difficult to realize in practice, and, to the best of our knowledge, no implementation currently exists for them. A prototype tool for MITL based on the encoding presented here has, instead, been implemented and is publicly available.Comment: In Proceedings GandALF 2013, arXiv:1307.416

    Negotiating the Probabilistic Satisfaction of Temporal Logic Motion Specifications

    Full text link
    We propose a human-supervised control synthesis method for a stochastic Dubins vehicle such that the probability of satisfying a specification given as a formula in a fragment of Probabilistic Computational Tree Logic (PCTL) over a set of environmental properties is maximized. Under some mild assumptions, we construct a finite approximation for the motion of the vehicle in the form of a tree-structured Markov Decision Process (MDP). We introduce an efficient algorithm, which exploits the tree structure of the MDP, for synthesizing a control policy that maximizes the probability of satisfaction. For the proposed PCTL fragment, we define the specification update rules that guarantee the increase (or decrease) of the satisfaction probability. We introduce an incremental algorithm for synthesizing an updated MDP control policy that reuses the initial solution. The initial specification can be updated, using the rules, until the supervisor is satisfied with both the updated specification and the corresponding satisfaction probability. We propose an offline and an online application of this method.Comment: 9 pages, 4 figures; The results in this paper were presented without proofs in IEEE/RSJ International Conference on Intelligent Robots and Systems November 3-7, 2013 at Tokyo Big Sight, Japa
    • …
    corecore