142,060 research outputs found
Impact of three ampicillin dosage regimens on selection of ampicillin resistance in Enterobacteriaceae and excretion of blaTEM genes in swine feces
The aim of this study was to assess the impact of three ampicillin dosage regimens on ampicillin resistance among Enterobacteriaceae recovered from swine feces using phenotypic and genotypic approaches. Phenotypically, ampicillin resistance was determined from the percentage of resistant Enterobacteriaceae and MICs of E. coli isolates. The pool of ampicillin resistance genes was also monitored by quantification of blaTEM genes, which code for the most frequently produced β-lactamases in Gram-negative bacteria, using a newly-developed real-time PCR assay. Ampicillin was administered intramuscularly and by oral route to fed or fasted pigs for 7 days at 20 mg/kg. The average percentage of resistant Enterobacteriaceae before treatment was between 2.5% and 12% and blaTEM genes quantities were below 107 copies/g of feces. By days four and seven, the percentage of resistant Enterobacteriaceae exceeded 50% in all treated groups, with some highly resistant strains (MIC>256µg/mL). In the control group, blaTEM genes quantities fluctuated between 104 - 106 copies/g of feces, whereas they fluctuated between 106-108 and 107-109 copies/g of feces for intramuscular and oral routes, respectively. Whereas phenotypic evaluations did not discriminate between the three ampicillin dosage regimens, blaTEM genes quantification was able to differentiate between the effects of two routes of ampicillin administration. Our results suggest that fecal blaTEM genes quantification provides a sensitive tool to evaluate the impact of ampicillin administration on the selection of ampicillin resistance in the digestive microflora and its dissemination in the environment
Recommended from our members
Randomised, controlled trial of effectiveness of ampicillin in mild acute respiratory infections in Indonesian children.
The recommended treatment for mild acute respiratory infections (ARI) in children is supportive care only, but many physicians, especially in developing countries, continue to prescribe antibiotic treatment because they believe it prevents progression to more severe ARI. To find out whether ampicillin treatment conferred any benefit over supportive care alone, a randomised, controlled trial was carried out among 889 children (under 5 years) with mild ARI in Indonesia. 447 were randomly allocated ampicillin (25-30 mg/kg body weight three times daily for 5 days) plus supportive care (continued breastfeeding, clearing of the nose, and paracetamol to control fever); 442 were allocated supportive care only. The treatment groups were almost identical after randomisation in terms of age, sex, level of parental education, history of measles immunisation, and fever. After 1 week the percentages cured were nearly identical (204 [46%] ampicillin; 209 [47%] control), as were the percentages of cases progressing to moderate ARI (56 [13%] vs 53 [12%]). The effect of treatment was not modified by age, sex, measles immunisation status, or the educational level of the parents. At the 2-week follow-up, the percentages cured were 62% (277) in the ampicillin group and 58% (256) in the control group; 14% of both groups had progressed to moderate ARI; and 24% (107) and 28% (123), respectively, still had mild ARI. None of the differences in outcome between the ampicillin and control groups was statistically significant. Thus, ampicillin plus supportive care offers no benefit over supportive care alone for treatment of mild ARI in young Indonesian children
Comparison between a direct-flow SPR immunosensor for ampicillin and a competitive conventional amperometric device: analytical features and possible applications to real samples
In this research, we developed a direct-flow surface plasmon resonance (SPR) immunosensor for ampicillin to perform direct, simple, and fast measurements of this important antibiotic. In order to better evaluate the performance, it was compared with a conventional amperometric immunosensor, working with a competitive format with the aim of finding out experimental real advantages and disadvantages of two respective methods. Results showed that certain analytical features of the new SPR immunodevice, such as the lower limit of detection (LOD) value and the width of the linear range, are poorer than those of a conventional amperometric immunosensor, which adversely affects the application to samples such as natural waters. On the other hand, the SPR immunosensor was more selective to ampicillin, and measurements were more easily and quickly attained compared to those performed with the conventional competitive immunosensor
Multiresistant Salmonella enterica serovar 4,[5],12:i:- in Europe: a new pandemic strain?
A marked increase in the prevalence of S. enterica serovar 4,[5],12:i:- with resistance to ampicillin, streptomycin, sulphonamides and tetracyclines (R-type ASSuT) has been noted in food-borne infections and in pigs/pig meat in several European countries in the last ten years. One hundred and sixteen strains of S. enterica serovar 4,[5],12:i:- from humans, pigs and pig meat isolated in England and Wales, France, Germany, Italy, Poland, Spain and the Netherlands were further subtyped by phage typing, pulsed-field gel electrophoresis and multilocus variable number tandem repeat analysis to investigate the genetic relationship among strains. PCR was performed to identify the fljB flagellar gene and the genes encoding resistance to ampicillin, streptomycin, sulphonamides and tetracyclines. Class 1 and 2 integrase genes were also sought. Results indicate that genetically related serovar 4,[5],12:i:- strains of definitive phage types DT193 and DT120 with ampicillin, streptomycin, sulphonamide and tetracycline resistance encoded by blaTEM, strA-strB, sul2 and tet(B) have emerged in several European countries, with pigs the likely reservoir of infection. Control measures are urgently needed to reduce spread of infection to humans via the food chain and thereby prevent the possible pandemic spread of serovar 4,[5],12:i:- of R-type ASSuT as occurred with S. Typhimurium DT104 during the 1990s
Persisters show heritable phenotype and generate bacterial heterogeneity and noise in protein expression
Persisters are a small subpopulation of bacteria that survive a lethal concentration of antibiotic without antibiotic resistance genes. Isolation of persisters from normally dividing population is considered difficult due to their slow growth, low numbers and phenotypic shift i.e. when re-grown in antibiotic free medium, they revert to parent population. Inability to isolate persisters is a major hindrance in this field of research. Here we reject the ‘phenotypic shift’ phenomenon exhibited by persisters. Persisters, on the other hand, exhibit a heritable phenotype and can be easily isolated from a normally dividing population that allows their selective growth. Rather than a single subset, they comprise many distinct subgroups each exhibiting different growth rates, colony sizes, antibiotic tolerance and protein expression levels. Clearly, they are one of the sources of bacterial heterogeneity and noise in protein expression. Existence of persisters in normally dividing population can explain some of the unsolved puzzles like antibiotic tolerance, post-antibiotic effect and viable but non-culturable bacterial state. We hypothesize that persisters are aging bacteria
In vivo selection of resistant E. coli after ingestion of milk with added drug residues.
Antimicrobial resistance represents a major global threat to modern medicine. In vitro studies have shown that very low concentrations of drugs, as frequently identified in the environment, and in foods and water for human and animal consumption, can select for resistant bacteria. However, limited information is currently available on the in vivo impact of ingested drug residues. The objective of our study was to evaluate the effect of feeding preweaned calves milk containing antimicrobial drug residues (below the minimum inhibitory concentration), similar to concentrations detected in milk commonly fed to dairy calves, on selection of resistant fecal E. coli in calves from birth to weaning. At birth, thirty calves were randomly assigned to a controlled feeding trial where: 15 calves were fed raw milk with no drug residues (NR), and 15 calves were fed raw milk with drug residues (DR) by adding ceftiofur, penicillin, ampicillin, and oxytetracycline at final concentrations in the milk of 0.1, 0.005, 0.01, and 0.3 µg/ml, respectively. Fecal samples were rectally collected from each calf once a week starting at birth prior to the first feeding in the trial (pre-treatment) until 6 weeks of age. A significantly greater proportion of E. coli resistant to ampicillin, cefoxitin, ceftiofur, streptomycin and tetracycline was observed in DR calves when compared to NR calves. Additionally, isolates from DR calves had a significant decrease in susceptibility to ceftriaxone and ceftiofur when compared to isolates from NR calves. A greater proportion of E. coli isolates from calves in the DR group were resistant to 3 or more antimicrobial drugs when compared to calves in the ND group. These findings highlight the role that low concentrations of antimicrobial drugs have on the evolution and selection of resistance to multiple antimicrobial drugs in vivo
Pseudomonas aeruginosa bacteremia in patients undergoing liver transplantation: An emerging problem
In our institution, Pseudomonas aeruginosa bacteremia appeared to occur with increasing frequency in patients undergoing liver transplantation. We thus conducted a prospective study to define risk factors and outcome in these patients. Over a 19-month period 6% of liver transplants were followed by Pseudomonas bacteremia. The mean age was 46 years (range, 24 to 67 years). The interval between transplantation and onset of bacteremia was 3 to 372 days (mean, 80). The incidence of Pseudomonas bacteremia in liver transplants was three times that of other transplants (heart, lung, kidney). Ninety one percent of infections were nosocomial. Polymicrobial bacteremia occurred in 30% of episodes. The portal of entry was respiratory in 30%, abdominal in 35%, and biliary in 13%. Four patients had recurrent Pseudomonas bacteremia: liver abscess (1), biliary obstruction (2), subhepatic abscess (1). Survival at 14 days was 70%. Survival rates were significantly lower for patients with hypotension, on mechanical ventilators, and increasing severity of illness (p < 0.05). Survival was higher when bacteremia occurred within the first 30 days after transplantation compared to after 30 days. A large number (43.4%) of Pseudomonas bacteremias occurred after transplant surgery or biliary tract manipulation, while the patient was receiving a prophylactic regimen of cefotaxime and ampicillin. P. aeruginosa is an important pathogen in the liver transplant recipient; prevention may be possible for a subgroup of patients with the use of prophylactic antibiotics with activity against P. aeruginosa
Modulation of release kinetics by plasma polymerization of ampicillin-loaded ß-TCP ceramics
Beta-tricalcium phosphate (ß-TCP) bioceramics are employed in bone repair surgery. Their local implantation in bone defects puts them in the limelight as potential materials for local drug delivery. However, obtaining suitable release patterns fitting the required therapeutics is a challenge. Here, plasma polymerization of ampicillin-loaded ß-TCP is studied for the design of a novel antibiotic delivery system. Polyethylene glycol-like (PEG-like) coating of ß-TCP by low pressure plasma polymerization was performed using diglyme as precursor, and nanometric PEG-like layers were obtained by simple and double plasma polymerization processes. A significant increase in hydrophobicity, and the presence of plasma polymer was visible on the surface by SEM and quantified by XPS. As a main consequence of the plasma polymerisation, the release kinetics were successfully modified, avoiding burst release, and slowing down the initial rate of release leading to a 4.5¿h delay in reaching the same antibiotic release percentage, whilst conservation of the activity of the antibiotic was simultaneously maintained. Thus, plasma polymerisation on the surface of bioceramics may be a good strategy to design controlled drug delivery matrices for local bone therapiesPeer ReviewedPostprint (author's final draft
- …
