
Modulation of release kinetics by plasma polymerization of ampicillin-loaded β-

TCP ceramics 

C. Labay1,2, J. Buxadera-Palomero1,2,3, M. Avilés1,2, C. Canal1,2*, M. P. Ginebra1,2,4 

1 Biomaterials, Biomechanics and Tissue Engineering Group, Materials Science and Metallurgy Dept., 

Technical University of Catalonia (UPC), ETSEIB,  Av. Diagonal 647, 08028 Barcelona, Spain. 
2 Center for Research in NanoEngineering (CRnE)-UPC, C/Pascual i Vila 15, 08028 Barcelona, Spain. 
3 Biomaterials, Biomechanics and Tissue Engineering Group, Materials Science and Metallurgy Dept., 

UPC, EUETIB, C/ Comte d'Urgell 187, 08036 Barcelona, Spain. 
4 Institute of Bioengineering of Catalonia (IBEC), C/Baldiri Reixac 15-21, 08028 Barcelona, Spain.  

 

*corresponding author: cristina.canal@upc.edu 

 

 

Abstract 

 

Beta-tricalcium phosphate (β–TCP) bioceramics are employed in bone repair surgery. Their 

local implantation in bone defects puts them in the limelight as potential materials for local drug 

delivery. However, obtaining suitable release patterns fitting the required therapeutics is a 

challenge. Here, plasma polymerization of ampicillin-loaded β–TCP is studied for the design of 

a novel antibiotic delivery system. Polyethylene glycol-like (PEG-like) coating of β–TCP by 

low pressure plasma polymerization was performed using Diglyme as precursor, and 

nanometric PEG-like layers were obtained by simple and double plasma polymerization 

processes. Significant increase in hydrophobicity, and the presence of plasma polymer was 

visible on the surface by SEM and quantified by XPS. As main consequence of the plasma 

polymerisation, the release kinetics was successfully modified, avoiding burst release, and 

slowing down the initial rate of release leading to a 4.5 hours delay in reaching the same 

antibiotic release percentage, whilst conservation of the activity of the antibiotic was 

simultaneously maintained. Thus, plasma polymerisation on the surface of bioceramics may be 

a good strategy to design controlled drug delivery matrices for local bone therapies.  
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1. Introduction 

β–Tricalcium Phosphate (β–TCP) is a ceramic biomaterial that has been broadly used as bone 

graft in reconstructive surgery due to its resorbability and ability to promote new bone 

formation, especially by releasing a large quantity of inorganic ions such as Ca2+, indispensable 

for bone regeneration (Wang 1998, Chang 2000, Liu 2012). The possibility to use calcium 

phosphate materials not only as bone substitutes but also as carriers for local and controlled 

supply of drugs is very attractive, and can be useful in treatments of different skeletal diseases, 

such as bone tumours, osteoporosis or osteomyelitis, which normally require long and painful 

therapies (Ginebra 2012). Specifically, the incorporation of antibiotics in this kind of synthetic 

bone grafts could allow avoiding post-operatory infections. However, in this type of ceramic 

drug delivery systems the drugs are usually absorbed on the surface, resulting in a burst release. 

The development of strategies that enable controlling the drug release beyond the intrinsic 

properties of the ceramic, facilitating the release of drugs for more prolonged times is of great 

interest (Canal, 2013).  

The main purpose in the design of any implantable drug delivery system consists in obtaining a 

controlled release of the loaded molecule in the suitable timeframe for each particular therapy; 

As previously mentioned, one major challenge often consists in overcoming and delaying the 

burst release of the drug. In this sense, plasma polymerization can be considered as a pertinent 

tool to obtain a nanometric biocompatible coating on drug-loaded materials, which might act as 

permissive membrane slowing down the release kinetics. In low pressure plasma polymerization 

process, the monomer is evaporated or dragged by bubbling with an inert gas, and it is pumped 

into the vacuum chamber. A glow discharge initiates the polymerization and the monomer 

molecules break apart creating free electrons, ions, excited molecules and radicals. The radicals 

absorb or react with the previously activated surface, condense, and polymerize on the substrate 

creating a thin film coating (Goodman 1960, Williams 1966, Yasuda 1985, Kushner 1987, 

Hegemann 2006). Plasma-deposited polymers have been extensively studied in the biomedical 

field for anti-fouling applications (Nisol 2014), to improve biocompatibility, to tailor the 

physic-chemical properties of the substrates (Yoshida, 2013), to enhance cell/surface or 

tuneable biomolecule/surface interactions, for tissue engineering applications (Bhatt 2015), for 

the modification (Cools, 2014) and the patterning (Favia 2003, Sardella 2004, Sardella 2005) of 

biomedical surfaces or in the design of novel drug delivery systems (Vasilev, 2011, Bhatt 2013, 

Labay 2015, Canal 2016).  

During the plasma polymerization process, complex chemical reactions occur under the 

influence of the process conditions, the plasma design (De Geyter, 2011), the substrate and the 

monomer (Yasuda 1977, Friedrich 2011, Whittle 2012, Hegemann 2013, Michelmore, 2013, Li 

2014). Selection of monomers for plasma polymerization will determine the polymers produced 

on the surface (Kelly 2003, Morent 2011, Michelmore, 2013). For biomedical applications, the 

precursor selected should yield biocompatible plasma polymers. One of the most extensively 

described polymer for coating of biomaterials is polyethylene glycol (PEG), and its co-

polymers, for its well-known biocompatible and biodegradable properties. Plasma 

polymerization to obtain PEG-like coatings has been already described on various polymeric 

(Sakthi Kumar 2007, Nisol 2014, Abednejad 2014, Labay 2015) and metallic (Dong, 2004, 

Buxadera-Palomero 2015) substrates, using monomers such as Diethylene glycol dimethyl ether 

(Diglyme), Tetraethylene glycol dimethyl ether (Tetraglyme) and diethylene glycol divinyl 

ether (DEGDVE). In the present case, Diglyme has been selected as monomer for its potential 

to produce polyethyleneglycol after polymerization. However, since plasma polymerization 



involves complex physic-chemical processes (crosslinking, recombination, etching, etc.) and 

exact composition and structure of the obtained polymer cannot be completely ensured, for the 

purpose of this work, and according to the literature, the coatings obtained by plasma 

polymerization will be herein designated as “PEG-like coating”.  

 

In the studies mentioned, smooth model surfaces are usually employed to optimize and study 

the efficiency of the plasma processes for the different applications. β-TCP bioceramics can 

present a porous structure with complex surfaces, and different reactivity to plasmas than 

polymers or metals, as shown by their different recombination coefficients (Sarrette 2006). 

 

The behavior of bioceramics for bone regeneration to plasma polymerization processes is 

uninvestigated, and providing new tools for their use as controlled drug delivery matrices is of 

great interest. By studying different conditions of plasma polymerization, the aim of this 

research is to obtain PEG-like coatings on ampicillin-loaded β–TCP materials with ability to 

modulate subsequent ampicillin release from the bioceramic, preserving their antibacterial 

properties.  

 

2. Experimental part 

2.1. Materials 

Calcium hydrogen phosphate (CaHPO4, Sigma-Aldrich C7263) and calcium carbonate (CaCO3, 

Sigma-Aldrich C4830) were used as raw materials for the synthesis of  β–Tricalcium Phosphate 

(β-Ca3(PO4)2, β–TCP). Sodium phosphate dibasic (Na2HPO4, Sigma-Aldrich) was used in 

solution as accelerant in the synthesis of calcium deficient hydroxyapatite (CDHA) used as a 

precursor of β–TCP. Ampicillin sodium salt (371.39 g/mol), provided by Sigma-Aldrich was 

selected as antibiotic for loading β–TCP ceramics. Diethylene glycol dimethyl ether (Diglyme, 

anhydrous, 99.5%, Sigma Aldrich) (CH3OCH2CH2)2O was used as precursor for plasma 

polymerization. Phosphate buffer saline (PBS), pH 7.4, was prepared from PBS tablets (Gibco, 

LifetechnologiesTM, UK) and Milli-Q® deionized water. Agar bacteriological (Scharlau S.A., 

Spain) and Brain Heart Infusion Broth (BHI Broth) (Scharlau S.A., 02-599, Spain) were used to 

prepare the bacteriological culture media of Staphylococcus aureus (S. aureus) CCUG 15915 

(Culture Collection University of Göteborg (CCUG), Göteborg, Sweden). 

 

2.2. β-TCP synthesis 

Microporous β–TCP discs were obtained from calcium phosphate cements prepared from α–

TCP, which was obtained by solid state reaction of a 1:2 molar mixture of calcium hydrogen 

phosphate and calcium carbonate at 1400 ºC. A cement was produced by blending α–TCP with 

a solution of sodium phosphate dibasic at 2.5% (w:w) at liquid to powder ratio of 0.65. The 

mixture was put in a disc-shaped mold and allowed to set immersed in water for 7 days to 

obtain CDHA (Ginebra 2004).  The former discs were sintered at 1100 ºC to obtain microporous 

β–TCP discs of 2 mm thickness × 12 mm ø.  

2.3. Plasma polymerization 



Plasma polymerization of β–TCP discs was performed using low-pressure radio-frequency 

plasma (13.56 MHz) (Standard Femto Plasma System, Diener, Germany) with a cylindrical 

glass chamber. Diethylene glycol dimethyl ether (Diglyme, anhydrous, 99.5%, Sigma Aldrich) 

was used as source of ethylene oxide monomers to obtain a PEG-like coating on β–TCP 

(Brétagnol 2006). Unloaded or ampicillin-loaded -TCP discs were placed in the center of the 

reactor. To enhance the polymerization process a short surface activation step with O2 (5.0 

sccm, 40 Pa, 150 W) was performed for 60 s. Subsequent polymerization process consists in 

introducing Diglyme in the plasma reactor by bubbling a carrier gas (Ar) through the liquid 

monomer. The polymerization treatment was performed in continuous mode (15 sccm, 170 Pa, 

150 W) for 10 min and 30 min. Simple (SP) and double (DP) polymerizations were performed 

on each side of the β–TCP materials for both plasma treatment times, and the corresponding 

samples were referenced as SP10, DP10, SP30 and DP30 respectively. DP corresponds to 

repetition of the polymerization cycle in exactly the same conditions described, with an interval 

of at least 15min in between cycles but without removing the sample from the reactor.  

 

2.4. Surface topography  

Topography of untreated and plasma polymerized β–TCP discs was studied by Scanning 

Electron Microscopy using a Zeiss Neon 40 cross-beam workstation with Gemini SEM column 

for sample observation. Samples were C-coated before SEM observation. Observations were 

carried out at 5.0 kV working voltage. Coupled-Energy-Dispersive X-ray spectroscopy (EDX) 

equipment (INCAPentaFETx3 detector, 30 mm2, ATW2 window) was also used for in situ 

elemental analysis of the surface of a cross-section of plasma-polymerized β–TCP to determine 

the depth of the effects of plasma treatment in the surface of the ceramic materials. 

2.5. Wetting properties 

Determination of the wettability of the β–TCP surfaces, to compare the untreated with the PEG-

like coated ceramics by plasma polymerization was done by static contact angle measurements. 

A Contact Angle System OCA15 (Dataphysics, Germany) was used with the SCA20 Software 

(Dataphysics, Germany) to analyze the images acquired with a CCD. 10 µL water droplets were 

deposited on the β–TCP surface. Measurements were carried out on the plasma-polymerized 

side of the samples. In this study, a minimum of 4 replicates of each kind of treatment were 

carried out. 

2.6. X-Ray Photoelectron Spectroscopy (XPS) 

To determine the chemical composition of the surface of bare and treated β–TCP samples and 

assess the influence of plasma polymerization, X-Ray Photoelectron spectroscopy (XPS) was 

acquired in ultrahigh vacuum (5.0 × 10-7 Pa) with an XR50 Mg anode source operating at 150 

W and a Phoibos 150 MCD-9 detector. Spectra were recorded at pass energy of 25 eV with a 

step size of 1.0 eV for survey spectra and 0.1 eV for high resolution spectra, on an area of the 

sample of 3.5 x 2 mm. The recorded core levels were C1s, O1s, Ca2p and P2p. C1s peak was used 

as a reference. CasaXPS software (Casa Software Ltd., UK) was used for the determination of 

atomic elemental composition applying the manufacturer set of relative sensitivity factors. The 

relative error associated to the survey spectra XPS measurements is of 0.5%. 

 

 



2.7. Ampicillin loading of β–TCP 

Loading of ampicillin was done, previous to plasma polymerization, by soaking the β–TCP 

discs in 1.0 mL of 4.0% ampicillin aqueous solution at 50 r.p.m. and 20 ⁰C during 30 min, by 

complete immersion of the sample. Samples were dried at 37 °C for 24 h.  

2.8. Drug release experiments 

Ampicillin release experiments were performed using untreated and plasma-polymerized β –

TCP discs previously loaded with the 4.0% ampicillin solution. For the drug release study, an 

USP equipment (TDT-08L Dissolution Tester (USP), Pharma AllianceGroup, U.S.A.) with 8 

thermo-jacketed opaque cells of 300 mL was used, each one filled with 150 mL of PBS at pH 

7.4 as receptor media. Temperature and rotation were maintained constant at 37 °C and 100 

r.p.m. respectively. 1 mL samples were withdrawn from the receptor liquid media for latter 

spectroscopy analysis to determine the ampicillin released from the untreated and plasma-

polymerized β–TCP discs and plot their corresponding release kinetics. After each sample 

withdrawn, the same volume of PBS was added to the receptor media. Release experiments 

were performed with four replicates of each plasma polymerization condition.  

For the quantification of the ampicillin release, an UV-visible-NIR spectrophotometer UV-3600 

Shimadzu was used at λ = 204 nm, corresponding to the wavelength of maximum absorbance of 

ampicillin in PBS solution. The concentration of ampicillin was below 10% saturation 

concentration (SINK conditions) in the receptor solution during the experiment. Stability of 

ampicillin after plasma polymerization on the ampicillin-loaded β–TCP was also checked by 

UV-spectroscopy after release of ampicillin in PBS through comparison of the general spectra. 

 

2.9. Antibacterial assays 

The antibacterial activity of the ampicillin-loaded plasma polymerized -TCP discs was tested 

in suspension against Staphylococcus aureus (S. aureus) in BHI Broth at [BHI] = 37.0 g.L-1. 

After incubation for 24 h at 37 °C, 1 mL of the inoculate media was put in each well of a 48-

well Falcon™ culture well-plates, previously prepared by connecting two adjacent wells. The 

β–TCP materials were placed in one of the connected wells, while the second was employed to 

measure absorbance and monitoring the growth of S. aureus by means of a Synergy HTX 

Multimode Reader (BioTek Instruments, Inc.). The antibacterial activity was monitored during 

72 hours by measuring absorbance at λ=600 nm (Deng 2015). Measurements were recorded 

using Gen. 5 software (BioTek Instruments, Inc.) and results are normalized and presented in 

growth % with respect to the positive control. 

 

3. Results and Discussion 

3.1. Influence of plasma polymerization on wettability, surface chemistry and 

topography 

Untreated β–TCP displays hydrophilic properties and due to its microporous nature it absorbed 

water instantaneously (Table 1); however, the observation of water droplet persistence on the 

surface of plasma-polymerized β–TCP indicated modified wettability, so contact angles were 

measured (θs) to compare the influence of the different plasma treatments on the wettability of 



β–TCP ceramics.  While a single polymerization treatment for 10 min (SP10) only led to a 

slight delay in the water absorption (around 2 s), no water absorption was observed for a double 

polymerization treatment of 10 min (DP10), neither for longer treatments of 30 s either in single 

polymerization (SP30) or double polymerization (DP30). These three samples displayed contact 

angles between 122.6° and 128.45, as shown in Table 1 and water absorption times longer than 

10 min, and above 1h for the longest plasma treatments (DP30). 

This low wettability was surprising, considering that PEG is well-known for its hydrophilic 

properties. Depending on the polymerization process, static contact angles <60 ° can be 

expected for PEG surfaces (Li 2008). Our previous observations on PEG-like plasma coatings 

obtained from Tetraglyme deposited on different substrates (ie. polypropylene meshes (Labay 

2015), or on titanium (Buxadera 2015)) displayed much lower contact angles (23 º). In this case, 

the hydrophobic behaviour of the plasma-polymerized β-TCP ceramics should be attributed to 

the substantial surface roughness of the sample (Figure 1a), that after plasma polymerization 

could mainly be due to trapping of air on the surface, increasing the measured contact angles 

and in some cases progressive clogging of the pores of β–TCP, limiting water absorption. In a 

recent work, very low wettability was also observed on calcium phosphate scaffolds plasma 

polymerized with hydrophilic PEG-co-PCL polymers (Canal 2016). 

 

 

Figure 1. Scanning Electron Microscopy of untreated (a), SP10 (b), SP30 (c) and DP30 (d) β-

TCP surfaces. Arrows indicate areas with polymer coatings. 

This evolution of the wetting properties of β-TPC indicates a change in its surface chemistry 

due to plasma polymerization. Therefore, the elemental relative composition of untreated and 

plasma-polymerized β–TCP surfaces was been by XPS and is reported in Table 1.  

 



Table 1. Surface elemental composition, atomic ratios and contact angles of the untreated, 

activated β -TCP and plasma-polymerized β–TCP. 

 C1s O1s Ca2p P2p C/O Ca/C θs (°) 

Untreated 14.98 52.12 20.21 12.70 0.29 1.35 * 

Act. β-TCP 9.06 54.23 21.86 14.85 0.17 2.41 * 

SP10 80.45 14.48 2.67 2.41 5.56 0.033 * 

DP10 72.10 24.48 1.73 1.70 2.95 0.024 122.60 ±2.92†  

SP30 79.29 17.61 1.64 1.46 4.50 0.021 125.63 ±1.27† 

DP30 78.38 19.54 1.20 0.88 4.01 0.015 128.45 ±2.41‡ 

* Quick water absorption did not allow static contact angle measurement. Different symbols († and ‡) indicate 

statistically significant differences with p<0.05. 

 

While the untreated sample shows a relative proportion between O, Ca and P atoms fairly 

concordant with the β–TCP formula (theoretical Ca/P ratio = 1.5), the presence of carbon atoms 

can be highlighted. Since β–TCP (Ca3(PO4)2) does not include carbon atoms in its formula, the 

C1s proportion (14.98%) found in the elemental composition of the untreated β–TCP surface 

corresponds to the adsorption of ambient contamination or the presence of surface carbonates. 

The main effect obtained with the activation treatment with Oxygen plasma is related to 

decrease in C, so a cleaning effect is observed mainly attributable to etching processes.  

Plasma polymerization of β–TCP using Diglyme ((CH3OCH2CH2)2O) as monomer leads to a 

huge increase of carbon on the surface of β–TCP with C1s atomic percentages between 72.10% 

and 80.45% for the plasma polymerized samples. This increase of carbon ratio alongside the 

decrease of combined Ca and P (i.e. from 5.08% for DP10 to 2.08% for DP30) confirms a 

screening of the β–TCP surface by an increasingly thicker polymer coating of the β–TCP 

(Figure 2). However, the fact that some Ca and P can still be detected in the surface atomic 

composition of plasma treated samples indicates that the average thickness of the PEG-like 

coating obtained by plasma polymerization is of nanometric order and/or that the surface is not 

still fully coated, as the aggregates observed by SEM at shorter polymerization times.    



 

Figure 2. Evolution of (Ca+P) percentage detected by XPS surface analysis on the plasma-

polymerized β-TCP ceramics as function of the plasma polymerization time. 

 

Decomposition of the C1s peak (Table 2) revealed significant differences between simple and 

double polymerization processes. In the deconvolution of C1s peak, four different types of 

carbon bindings corresponding to C-C (284.93 eV), C-O (286.33 eV), C=O (287.91 eV), COOH 

(289.42 eV) functional groups can be found on the PEG-like coated β-TCP surface. The ether 

peak present in the plasma polymerized samples is indicative of the PEG character of the 

coating, and can be related to the fragmentation process during the plasma polymerization 

(Michel 2005, Zhang 1998, Michelmore 2013, Labay 2015).  

 

Table 2. Determination of carbon and oxygen functional groups respectively from 

decomposition of high-resolution C1s and O1s XPS peaks of activated β-TCP and plasma-

polymerized SP10, DP10, SP30 and DP30 β–TCP. 

  C1s  

 C carbide C (C-C, C-H) C (C-O) C(C=O) C (COO-) 

Act. β-TCP 6.53 69.83 11.66 11.98 - 

SP10 - 43.29 49.73 6.96 - 

DP10 - 59.19 35.14 4.64 1.03 

SP30 - 75.18 15.21 6.98 1.60 

DP30 - 80.75 14.85 2.20 2.20 

 

Simple polymerization (SP10 and SP30) on β-TCP leads to combined i) etching of β-TCP 

surface by removing the contaminant moieties and ii) to introduction of C-C and C-O functional 

groups, possibly indicating some degree of cross-linking of the plasma polymer. In double 

polymerization processes (DP10 and DP30) or in long processes (SP30), COO- groups appear, 



indicating that other mechanisms must possibly be taken into account beside deposition of 

polymer coating on β–TCP: in fact, while simple polymerization proceeds through coating of a 

ceramic β-TCP surface, the second-step of the double polymerization or in long treatments it 

proceeds through a polymer surface, as the surface of β–TCP is already coated by the first 

plasma polymerization cycle. This can lead to further oxidation of the C=O groups. In this 

sense, it could be speculated that different mechanisms are involved in simple and double 

polymerizations. Possibly the ether (C-O) groups present in the SP coated -TCP surfaces, can 

be further oxidized during the plasma treatment due to different reactions, as proposed in Figure 

3, followed by subsequent reaction with air after the treatment. 

  

Figure 3. Plasma polymerization of PEG-like coating from Diglyme precursor. Proposed 

processes involved in simple (SP) and long/double (DP) polymerization processes. 

 

From the Scanning Electron Micrographs of untreated and plasma-polymerized β-TCP surfaces 

presented in Figure 1, the untreated β–TCP surface  revealed a highly microporous material, 

with crystalline grains bound together through sintering necks (Figure 1 a). In general, the 

plasma polymerization coating was visible only in some regions, where accumulation of the 

polymer-coating led to areas of smooth appearance which clogged some of the surface pores of 

β–TCP. These were present already in SP10 (Figure 1 b), although longer treatment times led to 

bigger areas visibly covered with the thick plasma polymer (Figure 1 c and d).   

EDX of a DP30 cross-section indicated that depth of penetration of the plasma polymer was of 

the order of 7-9 µm within the porous structure of β-TCP ceramics, with higher concentration of 

carbon and thereby higher concentration of polymer on the bioceramic surface than 7-9 m in 

the bulk.  



SEM was also employed to confirm that previous loading of ampicillin in β-TCP did not affect 

the topography of the plasma polymer coating with respect to the unloaded samples.   

 

 

 

 

3.2. Influence of plasma polymerization on ampicillin release & antibacterial 

activity 

The influence of plasma polymerization on the ampicillin release from β-TCP in physiological 

conditions (Figure 4) was monitored along 24 hours for untreated, DP10, SP30 and DP30 β-

TCP ceramics. Due to the lack of uniformity of the SP10 coating of β-TCP as inferred from the 

wettability experiments, this sample was not considered for the drug release assays. The amount 

of ampicillin loaded in the β–TCP ceramics prior to the plasma polymerization was of 

5.01±0.59 mg.  

 

Figure 4. Ampicillin release kinetics from the untreated, DP10, SP30 and DP30 β-TCP 

ceramics (a), with enlargement of the first 6 hours of ampicillin release (b).  

Untreated β-TCP presents a release percentage of 79.59±2.67% after 24 h, with a burst release 

profile in which 75% of ampicillin was released after only 90 min and the stationary stage was 

soon reached. For any bone graft, delivering the drug in a controlled manner, following a more 

extended release profile should be a target, and from Figure 4 two main issues may be 

highlighted: Firstly, the final ampicillin release percentage (at 24 h) did not show significant 

differences between the untreated and the plasma-polymerized β-TCP, with final release values 

of 80.84±1.95%, 79.27±3.16% and 75.87±1.83% for DP10, SP30 and DP30, respectively. 

Secondly, and more interestingly, progressive modifications in release kinetics were observed 

with plasma polymerization of β-TCP: the antibiotic release rate progressively slowed down 

with the treatment time and thus the coating thickness. As can be more clearly observed in the 

zoom of the first 6 hours of the drug delivery assay (Figure 4b), the initial release slope was 



progressively reduced following UT>DP10>SP30>DP30 (from 2.174 for untreated β-TCP to 

0.284 in DP30 sample in the first 60% of release), corresponding to the observed slowdown of 

the release kinetics. Therein, to reach 75% of ampicillin release, -TCP coated by double 

polymerization for 10 min (DP10) took 3 hours, doubling the time of untreated -TCP. This is 

was extended to more than 6 hours for SP30 and DP30, where no statistically significant 

differences were observed in the release kinetics of SP30 and DP30.  

 

To describe the drug release mechanism involved, Korsmeyer-Peppas semi-empirical equation 

(Equation 1) was applied to the first 60% of the ampicillin release curves (Peppas 1984, Peppas 

1985, Korsmeyer 1986a, Korsmeyer 1986b, Kosmidis 2003) 

 
𝑀𝑡

M∞
=  𝑘. 𝑡𝑛      [1] 

 

Where Mt and M∞ are the absolute cumulative amount of drug released at time t and infinite 

time, respectively; k is a constant incorporating structural and geometric characteristics of the 

system, and n is the release exponent, which might be indicative of the mechanism of drug 

release, being n the exponent which is used to describe the kinetics behind the release (Ritger, 

1987). Table 3 shows that plasma polymerization on the -TCP modified the drug release 

mechanism since untreated -TCP presents Fickian-diffusion release of ampicillin (n = 0.50) 

while plasma-polymerized -TCP ceramics show non-Fickian diffusion of the antibiotic 

(0.5<n<1.0) (Ritger 1987). 

 

Table 3. Evaluation of the nature of ampicillin release mechanism from PEG-like coated β-TCP 

materials at the different plasma polymerization conditions studied from the Korsmeyer-Peppas 

model for thin films.  

 n R² Drug release mechanism 

Untreated 0.50 0.896 Fickian diffusion 

DP10 0.74 0.987 Non-Fickian diffusion 

SP30 0.79 0.984 Non-fickian diffusion 

DP30 0.82 0.989 Non-fickian diffusion 

 

Modification of the release mechanism following plasma polymerization was also observed by 

Bhatt et al. on a glass surface using a dye as model drug. They studied plasma polymerized 

multilayer PCL-co-PEG coatings (poly (ε-caprolactone)-poly (ethylene glycol) copolymer) 

prepared at different deposition times, using ε-CL/DEGME mixture of monomers. They 

observed that short plasma polymerization times (up to 10 min) of the drug-loaded substrate 

presented a zero order release as the uncoated sample, while longer plasma treatment times 

(between 20 and 50 min in their case) led to a modification of the drug release mechanism with 

an anomalous non-Fickian diffusion of the model drug (Bhatt 2013).  

The results obtained suggest that longer plasma treatment times led to higher thickness of 

polymer coating (Figure 2), which consequently contributed to improve the slow-down in the 



release kinetics of ampicillin from β-TCP ceramics (Figure 4). These promising results need 

still to be improved in further works as for bone applications, as an extended release over three 

or four weeks preceded by a burst release would be highly desirable.  

It is important to ascertain the conservation of the therapeutic activity of the antibiotic after the 

plasma coating processes and after its release from the material. The influence of plasma 

polymerization on the antibacterial activity of ampicillin against S. aureus was studied by 

antibacterial assays in BHI suspension, and results of the bacterial growth after 1.5, 6 and 72 

hours are presented in Figure 6. All -TCP ceramics loaded with ampicillin and  subsequently 

coated by plasma polymerization displayed antibacterial activity: therefore, the drug was not 

degraded and antibacterial properties were preserved after plasma polymerization. Moreover, 

within the timeframe evaluated none of the coated ceramics presented any significantly 

statistical differences between them, indicating that the Minimum Inhibitory Concentration 

(MIC) was reached in all cases. This is related with the amount of drug released, ie. after 6 h 

and 72 h, since it has been shown that all samples release nearly the same amount (about 3.7 

mg) of ampicillin after 6 hours-release experiment.  

 

Figure 5. Antibacterial properties of ampicillin-loaded untreated and plasma polymerized β-

TCP ceramics in contact with S. aureus at 1.5, 6 and 72 hours. , º, * indicate statistically 

significant differences among samples for the same time of assay: the series with the same 

number of symbols show no statistically significant differences.  

The conservation of antibacterial activity of plasma-coated polymer meshes was also shown for 

meshes for hernia repair coated by plasma polymerization from another monomer (Tetraglyme) 

(Labay, 2015), being a good indicator that the low pressure plasma process is not altering the 

molecule loaded on the materials. Moreover, in that and other works of the group (Buxadera-

Palomero 2015) very suitable biological behavior was found on PEG-like plasma coated 

materials (Polypropylene or titanium). Given the important changes produced on the surface 

chemistry of -TCP, future works will be needed to evaluate the cell response to the novel 

surfaces. 

 

 



4. Conclusions 

Microporous β-Tricalcium Phosphate (-TCP) bioceramics with intricate surfaces have been 

successfully coated with polyethyleneglycol plasma polymer, thus with significant 

modifications on surface chemistry. Different plasma polymerization conditions were evaluated, 

in particular single or double coatings at different times. Progressive screening of the Ca and P 

atoms from β-TCP by C-containing moieties confirmed the deposition of a nanometric coating.  

Despite the hydrophilic characteristics of the polymer, the coated materials were hydrophobic 

possibly due to air entrapment in the rough -TCP surface. Moreover, it has been shown that 

different physical mechanisms take place in simple and double polymerizations, mostly since in 

the second-step of a double plasma polymerization process the surface is no longer a ceramic as 

it has a prior PEG-like coating. In addition to the modification of surface chemistry, 

topographical changes could be visualized even for short plasma polymerization times (SP10), 

with accumulation of polymer in some areas. SEM observation combined with contact angle 

measurements revealed that long polymerization times and double coating processes improved 

the coating of the ceramics. 

As consequence of the physical and chemical changes in β-TCP surface induced by plasma 

polymerization, the antibiotic release from the ceramic materials was successfully modified, 

significantly slowing down the ampicillin release kinetics. It has been demonstrated that longer 

plasma polymerization times either in single or double coatings were the most effective in 

controlling the drug release, which has been related with higher thickness of the plasma polymer 

coating. While untreated β-TCP reached its final ampicillin release percentage after only 90 

min, DP30 needed more than 6 hours, with a change in the drug release mechanism from 

Fickian-release to non-Fickian diffusion. Moreover, the antibacterial activity vs. Staphilococcus 

aureus of all plasma polymerized samples was maintained.  

Plasma polymerization of the β-TCP in the conditions tested not only avoided burst release of 

the antibiotic but also led to a controlled release of the loaded ampicillin, and everything 

suggests that plasma conditions could be optimized with longer and/or multiple plasma 

sequences to further slow down the release kinetics, opening great perspectives for drug 

delivery from bone bioceramics which require longer and sustained release. In this sense, 

plasma polymerization can be considered as relevant for the design of implantable β-TCP 

matrices for controlled release applications, opening new routes for prophylaxis or treatment in 

post-operatory infections in bone repair surgery.  
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