154 research outputs found

    Vibration Serviceability Assessment of a Historic Suspension Footbridge

    Get PDF
    Experimental and numerical studies for the structural and vibration serviceability assessment of a historic suspension footbridge adopting non-invasive surveys and low-cost equipment are presented. Field surveys have been carried out to determine geometric properties, ambient vibration tests have been performed to estimate the dynamic properties, and the dynamic response of the footbridge under the action of a single crossing pedestrian has been recorded. Based on field surveys, a 3D Finite Element model was built and was then calibrated against ambient vibration test results. The experimentally-measured maximum acceleration under the action of one crossing pedestrian is compared with the ones obtained numerically and analytically. Furthermore, vibration serviceability assessment under multi-pedestrian loading is carried out, adopting the simplified procedure recommended by a recent guideline. Results show that low-cost non-invasive dynamic testing is suitable to correctly identify the footbridge vertical natural frequencies and mode shapes, including higher-order ones, and to draw considerations about the state of degradation of the structure. Moreover, the level of vibration under the action of a single pedestrian can be estimated with sufficient accuracy using a simplified loading model, provided that the modal damping ratio is properly tuned

    Modelling and testing of a historic steel suspension footbridge in Ireland

    Get PDF
    Daly's Bridge is a historic steel suspension footbridge in Ireland, known locally as the 'Shaky Bridge' for its noticeable movement under pedestrian loading. Although there is concern regarding the performance of the structure, testing or modelling has not been carried out to date and inadequate information exists in relation to carrying out such analyses. In this paper, Daly's Bridge is instrumented and tested for the first time and a model of the bridge is established and improved in the process. Apart from ambient vibration, excitation from traversing pedestrians and cyclists is considered. Video analysis of dynamic deflection, a wavelet-packet-based technique using acceleration responses and dynamic measurements from a cheap smartphone accelerometer application are used to identify and compare the natural frequency of the bridge. The work contributes to the evidence base of full-scale measurements from instrumenting and analysing responses of aging pedestrian bridges, highlighting the complexity, challenges, opportunities and limitations related to the varied levels of information available from disparate sources. The study also highlights the need to investigate to what extent cheap sensors can be successfully used as compared to their more expensive and sophisticated counterparts

    Nondestructive Testing Structural Bridge Identification

    Get PDF
    The bridges are one of the most important engineering structures. Determination of the bridge responses during their service life has gained great importance using nondestructive test methods with the changing of aims, usages, environmental conditions, material deteriorations by time, and damages during some dramatical events. This chapter presents the nondestructive experimental measurement test results of the bridges for structural identification. Ten different bridges, which have different type and carrier systems, such as historical masonry arch bridges, long span concrete highway bridges, base isolated bridges, footbridges, steel bridges, and old riveted bridges, are selected for numerical examples. The measurements are conducted under environmental excitations of pedestrian movement, traffic, wind-induced vibration, and the response signals are collected using uniaxial- and triaxial-sensitive seismic accelerometers. Operational modal analysis or ambient vibration tests are performed to extract the dynamic characteristics such as natural frequencies, mode shapes, and damping rations using enhanced frequency domain decomposition method in the frequency domain and stochastic subspace identification method in the time domain. It is demonstrated that the ambient vibration measurements are enough to identify the most significant modes of all bridge types

    Vibration-based monitoring of civil infrastructure: challenges and successes

    Get PDF
    Author's manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s13349-011-0009-5© Springer-Verlag 2011Co -published with International Society for Structural Health Monitoring of Intelligent InfrastructureStructural health monitoring (SHM) is a relatively new paradigm for civil infrastructure stakeholders including operators, consultants and contractors which has in the last two decades witnessed an acceleration of academic and applied research in related areas such as sensing technology, system identification, data mining and condition assessment. SHM has a wide range of applications including, but not limited to, diagnostic and prognostic capabilities. However, when it comes to practical applications, stakeholders usually need answers to basic and pragmatic questions about in-service performance, maintenance and management of a structure which the technological advances are slow to address. Typical among the mismatch of expectation and capability is the topic of vibration-based monitoring (VBM), which is a subset of SHM. On the one hand there is abundant reporting of exercises using vibration data to locate damage in highly controlled laboratory conditions or in numerical simulations, while the real test of a reliable and cost effective technology is operation on a commercial basis. Such commercial applications are hard to identify, with the vast majority of implementations dealing with data collection and checking against parameter limits. In addition there persists an unhelpful association between VBM and 'damage detection' among some civil infrastructure stakeholders in UK and North America, due to unsuccessful transfer of technology from the laboratory to the field, and this has resulted in unhealthy industry scepticism which hinders acceptance of successful technologies. Hence the purpose of this paper is showcase successful VBM applications and to make the case that VBM does provide valuable information in real world applications when used appropriately and without unrealistic expectations. © 2011 Springer-Verlag

    Damping estimation of a pedestrian footbridge – an enhanced frequency-domain automated approach

    Get PDF
    Real-time estimates of natural frequencies, mode shapes and damping of a structural system can be interpreted to its structural health. In this regard, real-time estimation of damping ratios for full-scale structures can be useful by itself or in conjunction with real-time estimates of natural frequencies. Such estimates also allow for continuous health monitoring. This paper demonstrates an approach of assessing real-time damping in full scale bridges and demonstrates this on one of the iconic steel bridges in Ireland, the Daly’s “Shaky” bridge. This is the only suspension bridge in the city of Cork, Ireland and renowned in popular culture for its lively behaviour. From existing vibration data evaluated from an image processing technique, the damping estimates of the Daly’s bridge are evaluated based on an automated enhanced frequency domain decomposition (AE-FDD) technique. The method provides accurate estimates of natural frequencies and mode shapes and additionally yields the damping ratio corresponding to each vibration (and/or torsional) mode. This technique of real-time damping estimation can be easily adapted for other full-scale structures in an automated real-time framework

    MATLAB for All Steps of Dynamic Vibration Test of Structures

    Get PDF
    With the recent advances in computer technology and digital simulation software, it is now possible to rapidly and accurately build computer models for complex linear and nonlinear dynamic systems. MATLAB is a unique system that can be used for structural and earthquake engineering problems. This study presents MATLAB tools developed for numerical process of all steps of dynamic vibration test of structures. The functions of the tools are processing the signals obtained from forced and ambient vibration tests of structures, determining the dynamic characteristics of structural systems, and automatically updating the analytical finite element (FE) models. The software group is composed of three programs named as SignalCAD, ModalCAD, and FemUP. The SignalCAD program is developed for processing raw measured data obtained from forced and ambient vibration tests of engineering structures. The ModalCAD program is developed for dynamic characteristic identification and validation procedure. The peak picking method, complex exponential method, and polyreference time domain method are used for modal identification process. The FemUP program is developed for automatically updating the numerical models of structures compared to modal testing results. Each program has a unique graphical user interface and is designed as user friendly. The possibilities of the programs are demonstrated with the model vibration test of a steel cantilever beam. The obtained results are compared to the analytical model, and the FE model is automatically updated, whereas the experimental model is considered as the reference model. Finally, it is seen that MATLAB can be used as a scientific programming platform in all vibration test and modal analysis applications

    Data-Enabled Prediction Framework of Dynamic Characteristics of Rural Footbridges Using Novel Citizen Sensing Approach

    Get PDF
    Rural footbridges have proved to be an impetus for growth in vulnerable areas of the developing world, increasingly being built in many isolated communities around continents. Yet, little prior assessment of their dynamic characteristics had been made due to the non-traditional constraints that arise from instrumenting footbridges in rural, off-grid settings across multiple continents. Their characteristics remain largely unknown even if the low mass and flexible nature of rural footbridges make them vulnerable to wind-induced motions. To this end, this study proposes a data-enabled prediction framework based on a novel citizen sensing protocol, which aims at predicting the dynamic properties of rural footbridges during the conceptual design phase to enhance their safety under winds. The protocol is established which enables non-experts including local citizens in isolated communities to collect vibration data of rural footbridges by way of rapidly deployable and low-cost sensing systems in a novel application to full-scale monitoring with the concept of the community engagement. This citizen sensing data helps not only establish database with dynamic properties, but also develop empirical models to predict their dynamic properties of a footbridge in the conceptual design phase without detailed and bridge-specific dynamic modeling. In addition, a simple yet effective batch processing procedure to be done by non-experts is also devised to readily process upcoming citizen sensing data from new footbridges in the future, which offers instant and continuous updates of existing database with minimal efforts for enhancing the knowledge and the prediction of dynamic characteristics of rural footbridges
    • …
    corecore