3 research outputs found

    Validation of a method for the estimation of energy expenditure during physical activity using a mobile device accelerometer

    Get PDF
    The main goal of this paper consists on the adaption and validation of a method for the measurement of the energy expenditure during physical activities. Sensors available in a mobile device, e.g., a smartphone, a smartwatch, or others, allow the capture of several signals, which may be used to the estimation of the energy expenditure. The adaption consists in the comparison between the units of the data acquired by a tri-axial accelerometer and a mobile device accelerometer. The tests were performed by healthy people with ages between 12 and 50 years old that performed several activities, such as standing, gym (walking), climbing stairs, walking, jumping, running, playing tennis, and squatting, with a mobile device on the waist. The validation of the method showed that the energy expenditure is underestimated and super estimated in some cases, but with reliable results. The creation of a validated method for the measurement of energy expenditure during physical activities capable for the implementation in a mobile application is an important issue for increase the acceptance of the mobile applications in the market. As verified the results obtained are around 124.6 kcal/h, for walking activity, and 149.7 kcal/h, for running activity.This work was supported by FCT project PEst-OE/EEI/L A0008/2013 (Este trabalho foi suportado pelo projecto FCT PEst-OE/EEI/LA0008/2013). The authors would also like to acknowledge the contribution of the COST Action IC1303 – AAPELE – Architectures, Algorithms and Protocols for Enhanced Living Environments

    Domestic Practices and User Experiences Pre- and Post- Occupancy in a Low-Carbon Development

    Get PDF
    Examination of how household practices, resource flows and social contexts change after moving into an innovative development in Western Australia, with a focus on the home system of practice. This research demonstrates that while some aspects of domestic practices may change when the context changes, entrenched habits and personal practice history prescribe how practices are performed and the subsequent resources consumed

    Sensor-based human activity recognition: Overcoming issues in a real world setting

    Get PDF
    The rapid growing of the population age in industrialized societies calls for advanced tools to continuous monitor the activities of people. The goals of those tools are usually to support active and healthy ageing, and to early detect possible health issues to enable a long and independent life. Recent advancements in sensor miniaturization and wireless communications have paved the way to unobtrusive activity recognition systems. Hence, many pervasive health care systems have been proposed which monitor activities through unobtrusive sensors and by machine learning or artificial intelligence methods. Unfortunately, while those systems are effective in controlled environments, their actual effectiveness out of the lab is still limited due to different shortcomings of existing approaches. In this work, we explore such systems and aim to overcome existing limitations and shortcomings. Focusing on physical movements and crucial activities, our goal is to develop robust activity recognition methods based on external and wearable sensors that generate high quality results in a real world setting. Under laboratory conditions, existing research already showed that wearable sensors are suitable to recognize physical activities while external sensors are promising for activities that are more complex. Consequently, we investigate problems that emerge when coming out of the lab. This includes the position handling of wearable devices, the need of large expensive labeled datasets, the requirement to recognize activities in almost real-time, the necessity to adapt deployed systems online to changes in behavior of the user, the variability of executing an activity, and to use data and models across people. As a result, we present feasible solutions for these problems and provide useful insights for implementing corresponding techniques. Further, we introduce approaches and novel methods for both external and wearable sensors where we also clarify limitations and capabilities of the respective sensor types. Thus, we investigate both types separately to clarify their contribution and application use in respect of recognizing different types of activities in a real world scenario. Overall, our comprehensive experiments and discussions show on the one hand the feasibility of physical activity recognition but also recognizing complex activities in a real world scenario. Comparing our techniques and results with existing works and state-of-the-art techniques also provides evidence concerning the reliability and quality of the proposed techniques. On the other hand, we also identify promising research directions and highlight that combining external and wearable sensors seem to be the next step to go beyond activity recognition. In other words, our results and discussions also show that combining external and wearable sensors would compensate weaknesses of the individual sensors in respect of certain activity types and scenarios. Therefore, by addressing the outlined problems, we pave the way for a hybrid approach. Along with our presented solutions, we conclude our work with a high-level multi-tier activity recognition architecture showing that aspects like physical activity, (emotional) condition, used objects, and environmental features are critical for reliable recognizing complex activities
    corecore