1,581 research outputs found

    Migration energy aware reconfigurations of virtual network function instances in NFV architectures

    Get PDF
    Network function virtualization (NFV) is a new network architecture framework that implements network functions in software running on a pool of shared commodity servers. NFV can provide the infrastructure flexibility and agility needed to successfully compete in today's evolving communications landscape. Any service is represented by a service function chain (SFC) that is a set of VNFs to be executed according to a given order. The running of VNFs needs the instantiation of VNF instances (VNFIs) that are software modules executed on virtual machines. This paper deals with the migration problem of the VNFIs needed in the low traffic periods to turn OFF servers and consequently to save energy consumption. Though the consolidation allows for energy saving, it has also negative effects as the quality of service degradation or the energy consumption needed for moving the memories associated to the VNFI to be migrated. We focus on cold migration in which virtual machines are redundant and suspended before performing migration. We propose a migration policy that determines when and where to migrate VNFI in response to changes to SFC request intensity. The objective is to minimize the total energy consumption given by the sum of the consolidation and migration energies. We formulate the energy aware VNFI migration problem and after proving that it is NP-hard, we propose a heuristic based on the Viterbi algorithm able to determine the migration policy with low computational complexity. The results obtained by the proposed heuristic show how the introduced policy allows for a reduction of the migration energy and consequently lower total energy consumption with respect to the traditional policies. The energy saving can be on the order of 40% with respect to a policy in which migration is not performed

    PIASA: A power and interference aware resource management strategy for heterogeneous workloads in cloud data centers

    Get PDF
    Cloud data centers have been progressively adopted in different scenarios, as reflected in the execution of heterogeneous applications with diverse workloads and diverse quality of service (QoS) requirements. Virtual machine (VM) technology eases resource management in physical servers and helps cloud providers achieve goals such as optimization of energy consumption. However, the performance of an application running inside a VM is not guaranteed due to the interference among co-hosted workloads sharing the same physical resources. Moreover, the different types of co-hosted applications with diverse QoS requirements as well as the dynamic behavior of the cloud makes efficient provisioning of resources even more difficult and a challenging problem in cloud data centers. In this paper, we address the problem of resource allocation within a data center that runs different types of application workloads, particularly CPU- and network-intensive applications. To address these challenges, we propose an interference- and power-aware management mechanism that combines a performance deviation estimator and a scheduling algorithm to guide the resource allocation in virtualized environments. We conduct simulations by injecting synthetic workloads whose characteristics follow the last version of the Google Cloud tracelogs. The results indicate that our performance-enforcing strategy is able to fulfill contracted SLAs of real-world environments while reducing energy costs by as much as 21%

    A survey on energy efficiency in information systems

    Get PDF
    Concerns about energy and sustainability are growing everyday involving a wide range of fields. Even Information Systems (ISs) are being influenced by the issue of reducing pollution and energy consumption and new fields are rising dealing with this topic. One of these fields is Green Information Technology (IT), which deals with energy efficiency with a focus on IT. Researchers have faced this problem according to several points of view. The purpose of this paper is to understand the trends and the future development of Green IT by analyzing the state-of-the-art and classifying existing approaches to understand which are the components that have an impact on energy efficiency in ISs and how this impact can be reduced. At first, we explore some guidelines that can help to understand the efficiency level of an organization and of an IS. Then, we discuss measurement and estimation of energy efficiency and identify which are the components that mainly contribute to energy waste and how it is possible to improve energy efficiency, both at the hardware and at the software level

    A comparison of techniques to detect similarities in cloud virtual machines

    Get PDF
    Scalability in monitoring and management of cloud data centres may be improved through the clustering of virtual machines (VMs) exhibiting similar behaviour. However, available solutions for automatic VM clustering present some important drawbacks that hinder their applicability to real cloud scenarios. For example, existing solutions show a clear trade-off between the accuracy of the VMs clustering and the computational cost of the automatic process; moreover, their performance shows a strong dependence on specific technique parameters. To overcome these issues, we propose a novel approach for VM clustering that uses Mixture of Gaussians (MoGs) together with the Kullback-Leiber divergence to model similarity between VMs. Furthermore, we provide a thorough experimental evaluation of our proposal and of existing techniques to identify the most suitable solution for different workload scenarios
    • …
    corecore