804 research outputs found

    Moving-boundary problems solved by adaptive radial basis functions

    Get PDF
    The objective of this paper is to present an alternative approach to the conventional level set methods for solving two-dimensional moving-boundary problems known as the passive transport. Moving boundaries are associated with time-dependent problems and the position of the boundaries need to be determined as a function of time and space. The level set method has become an attractive design tool for tracking, modeling and simulating the motion of free boundaries in fluid mechanics, combustion, computer animation and image processing. Recent research on the numerical method has focused on the idea of using a meshless methodology for the numerical solution of partial differential equations. In the present approach, the moving interface is captured by the level set method at all time with the zero contour of a smooth function known as the level set function. A new approach is used to solve a convective transport equation for advancing the level set function in time. This new approach is based on the asymmetric meshless collocation method and the adaptive greedy algorithm for trial subspaces selection. Numerical simulations are performed to verify the accuracy and stability of the new numerical scheme which is then applied to simulate a bubble that is moving, stretching and circulating in an ambient flow to demonstrate the performance of the new meshless approach. (C) 2010 Elsevier Ltd. All rights reserved

    Optimal Navigation Functions for Nonlinear Stochastic Systems

    Full text link
    This paper presents a new methodology to craft navigation functions for nonlinear systems with stochastic uncertainty. The method relies on the transformation of the Hamilton-Jacobi-Bellman (HJB) equation into a linear partial differential equation. This approach allows for optimality criteria to be incorporated into the navigation function, and generalizes several existing results in navigation functions. It is shown that the HJB and that existing navigation functions in the literature sit on ends of a spectrum of optimization problems, upon which tradeoffs may be made in problem complexity. In particular, it is shown that under certain criteria the optimal navigation function is related to Laplace's equation, previously used in the literature, through an exponential transform. Further, analytical solutions to the HJB are available in simplified domains, yielding guidance towards optimality for approximation schemes. Examples are used to illustrate the role that noise, and optimality can potentially play in navigation system design.Comment: Accepted to IROS 2014. 8 Page

    A short survey: topological shape optimization of structures using level set methods

    Full text link
    This paper will give a short survey about topology optimization of structures. It is particularly focused on topological shape optimization of structures using level-set methods, including the level-set based standard methods and the level-set based alternative methods. The former often directly solve the Hamilton-Jacobi partial differential equation (H-J PDE) to obtain the boundary velocity field using Finite Differential Methods (FDM), and the later commonly employ parametric or equivalent methods to evaluate the velocity field without directly solving the H-J PDE. The unique characteristics of the level-set based topology optimization methods are discussed, and a future perspective and prospects in this research area is also included. A benchmark numerical example is used to showcase the effectiveness of the level-set based methods

    Doctor of Philosophy

    Get PDF
    dissertationPartial differential equations (PDEs) are widely used in science and engineering to model phenomena such as sound, heat, and electrostatics. In many practical science and engineering applications, the solutions of PDEs require the tessellation of computational domains into unstructured meshes and entail computationally expensive and time-consuming processes. Therefore, efficient and fast PDE solving techniques on unstructured meshes are important in these applications. Relative to CPUs, the faster growth curves in the speed and greater power efficiency of the SIMD streaming processors, such as GPUs, have gained them an increasingly important role in the high-performance computing area. Combining suitable parallel algorithms and these streaming processors, we can develop very efficient numerical solvers of PDEs. The contributions of this dissertation are twofold: proposal of two general strategies to design efficient PDE solvers on GPUs and the specific applications of these strategies to solve different types of PDEs. Specifically, this dissertation consists of four parts. First, we describe the general strategies, the domain decomposition strategy and the hybrid gathering strategy. Next, we introduce a parallel algorithm for solving the eikonal equation on fully unstructured meshes efficiently. Third, we present the algorithms and data structures necessary to move the entire FEM pipeline to the GPU. Fourth, we propose a parallel algorithm for solving the levelset equation on fully unstructured 2D or 3D meshes or manifolds. This algorithm combines a narrowband scheme with domain decomposition for efficient levelset equation solving

    Anisotropic Fast-Marching on cartesian grids using Lattice Basis Reduction

    Full text link
    We introduce a modification of the Fast Marching Algorithm, which solves the generalized eikonal equation associated to an arbitrary continuous riemannian metric, on a two or three dimensional domain. The algorithm has a logarithmic complexity in the maximum anisotropy ratio of the riemannian metric, which allows to handle extreme anisotropies for a reduced numerical cost. We prove the consistence of the algorithm, and illustrate its efficiency by numerical experiments. The algorithm relies on the computation at each grid point of a special system of coordinates: a reduced basis of the cartesian grid, with respect to the symmetric positive definite matrix encoding the desired anisotropy at this point.Comment: 28 pages, 12 figure
    • …
    corecore