
PARALLEL-STREAMING ALGORITHMS FOR SOLVING

PARTIAL DIFFERENTIAL EQUATIONS ON

UNSTRUCTUREDMESHES

by

Zhisong Fu

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computing

School of Computing

The University of Utah

December 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276266403?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Copyright c© Zhisong Fu 2013

All Rights Reserved



T h e  U n i v e r s i t y  o f  U t a h  G r a d u a t e  S c h o o l  

STATEMENT OF DISSERTATION APPROVAL 

The dissertation of Zhisong Fu 

has been approved by the following supervisory committee members: 

Ross T. Whitaker , Cochair 06/28/2013  
Date Approved 

Robert M. Kirby , Cochair 06/28/2013 
Date Approved 

Mary Hall , Member 06/28/2013 
Date Approved 

 Robert S. MacLeod , Member 06/27/2013 
        Date Approved 

Jonathan M. Cohen , Member 06/28/2013 
Date Approved 

and by Alan Davis , Chair/Dean of  

the Department/College/School of                                     Computing 

and by David B. Kieda, Dean of The Graduate School. 



ABSTRACT

Partial differential equations (PDEs) are widely used in science and engineering

to model phenomena such as sound, heat, and electrostatics. In many practical

science and engineering applications, the solutions of PDEs require the tessellation

of computational domains into unstructured meshes and entail computationally

expensive and time-consuming processes. Therefore, efficient and fast PDE solving

techniques on unstructured meshes are important in these applications. Relative

to CPUs, the faster growth curves in the speed and greater power efficiency of the

SIMD streaming processors, such as GPUs, have gained them an increasingly

important role in the high-performance computing area. Combining suitable

parallel algorithms and these streaming processors, we can develop very efficient

numerical solvers of PDEs.

The contributions of this dissertation are twofold: proposal of two general

strategies to design efficient PDE solvers on GPUs and the specific applications

of these strategies to solve different types of PDEs. Specifically, this dissertation

consists of four parts. First, we describe the general strategies, the domain de-

composition strategy and the hybrid gathering strategy. Next, we introduce a

parallel algorithm for solving the eikonal equation on fully unstructured meshes

efficiently. Third, we present the algorithms and data structures necessary to move

the entire FEM pipeline to the GPU. Fourth, we propose a parallel algorithm for

solving the levelset equation on fully unstructured 2D or 3D meshes or manifolds.

This algorithm combines a narrowband scheme with domain decomposition for

efficient levelset equation solving.



CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

CHAPTERS

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 PDEs and Unstructured Meshes . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Numerical PDE Solution on GPUs and Challenges . . . . . . . . . . . 2

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Document Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2. ALGORITHMDESIGN STRATEGIES . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Domain Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Hybrid Gathering Scheme to Avoid Contention . . . . . . . . . . . . . . . . . 9

3. AFASTITERATIVEMETHODFORSOLVINGTHEEIKONALEQUATION
ON TRIANGULATED SURFACES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Fast Iterative Method (FIM) on

Unstructured Meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.1 Notation and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.2 Local Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.3 MeshFIM Updating Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.4 Algorithms for CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.5 Algorithm for GPU with SIMD Parallel Architecture . . . . . . . . . 25

3.2.5.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.5.2 Iteration step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.1 Serial CPU Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.2 GPU Implementation Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.3 Analysis of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.3.1 Asymptotical Cost Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.3.2 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.3.3 Parameter Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41



4. AFASTITERATIVEMETHODFORSOLVINGTHEEIKONALEQUATION
ON TETRAHEDRAL DOMAINS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Mathematical and Algorithmic Description . . . . . . . . . . . . . . . . . . . . . 45

4.2.1 Notation and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.2 Definition of the Local Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.3 Active List Update Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 TetFIM Serial and Parallel Implementations . . . . . . . . . . . . . . . . . . . . . 52
4.3.1 Implementation on Serial and Multithreaded CPUs . . . . . . . . . . 52
4.3.2 Implementation on Streaming SIMD Parallel Architectures . . . . 53

4.3.2.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3.2.2 Iteration step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.2.3 Description of One-ring-strip Data Structure . . . . . . . . . . . 56
4.3.2.4 Description of Cell-assembly Data Structure . . . . . . . . . . . 57

4.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.4.1 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4.2 CPU Implementation Results and Performance Comparison . . 62
4.4.3 GPU Implementation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4.4 Meshes for Complex Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4.5 Analysis of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4.5.1 Asymptotic Cost Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.4.5.2 Parameter Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5. ARCHITECTING THE FINITE ELEMENTMETHOD PIPELINE FOR
THE GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3 Problem Definition and FEM Discretization . . . . . . . . . . . . . . . . . . . . . 81
5.4 FEM Assembly on the GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.5 Solution of the FEM Linear System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.5.1 Method Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.5.1.1 Set-up Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.5.1.2 Iteration Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.5.2 Implementation and Data Structures . . . . . . . . . . . . . . . . . . . . . . 90
5.5.2.1 Set-up Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.5.2.2 Iteration Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.5.3 Mixed-Precision Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.6 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.6.1 Assembly Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.6.2 Linear System Solution Numerical Experiments . . . . . . . . . . . . . 100

5.6.2.1 Multigrid Set-up Stage Performance . . . . . . . . . . . . . . . . . . 101
5.6.2.2 Scalability with Problem Size . . . . . . . . . . . . . . . . . . . . . . . . 101
5.6.2.3 Inner Iteration Influence on Convergence Rate . . . . . . . . . . 102
5.6.2.4 Heterogeneous Media Influence on Convergence Rate . . . 103
5.6.2.5 Running Times for All Meshes Comparison . . . . . . . . . . . . 104

5.7 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

v



6. ANEFFICIENTPARALLELALGORITHMFORSOLVINGTHELEVELSET
EQUATIONS ON UNSTRUCTURED DOMAINS . . . . . . . . . . . . . . . . . . 108

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.2 Mathematical and Algorithmic Description . . . . . . . . . . . . . . . . . . . . . 111

6.2.1 Notation and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.2.2 Narrowband Scheme and Distance Transform Recomputation . 113
6.2.3 Levelset Evolution and PatchNB . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.2.4 Hybrid Gathering Parallelism and Lock-free Update . . . . . . . . . 116

6.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.3.1 Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.3.2 Reinitialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.3.3 Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.3.4 Adaptive Time-step Computation . . . . . . . . . . . . . . . . . . . . . . . . 126

6.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.4.1 CPU Implementation Results and Performance Analysis . . . . . 128
6.4.2 GPU Performance Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7. CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

APPENDIX: PUBLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

vi



LIST OF FIGURES

1.1 Body-fitting meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Matrix representations of the natural and regular decomposition schemes. 11

2.2 Matrix representations of the Hybrid Gathering scheme. . . . . . . . . . . . . . . 12

3.1 Triangulation and local solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Strategy to deal with obtuse triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Data structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Virtual edge and virtual triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Sphere and Stanford dragon meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6 Laplacian experiment results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.7 Level sets and error plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 Components of the local solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Obtuse tetrahedra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 2D representation of the outer surface of vertex v formed by the one-ring
tetrahedra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 One-ring-strip data structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5 Blobs mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.6 Color maps and level curves on the cube and the heart meshes . . . . . . . . . 67

4.7 Color maps and level curves on lens model . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.8 Color maps and level curves on the blobs model . . . . . . . . . . . . . . . . . . . . . 69

5.1 The patchSPM data structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2 Surface rendering of the exterior surfaces of the Heart and Brain meshes. 99

5.3 A cross section and the volume visualization of the Blobs mesh. . . . . . . . . 99

5.4 The plot for number of degrees of freedom against global iteration number102

5.5 Plot of inner iteration number against global iteration number. . . . . . . . . . 103

6.1 Matrix representations of the parallelism schemes . . . . . . . . . . . . . . . . . . . 118

6.2 Matrix representations of the Elemental Gathering scheme. . . . . . . . . . . . . 119

6.3 Mesh with two elements: e0 and e1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.4 Data flow for the simple mesh example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121



6.5 TheCSR representation of gatheringmatrix for the two-triangle example.
The box containing “X” denotes a memory location outside the bounds
of the column indices array. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.6 Left hemisphere of human brain cortex surface mesh. . . . . . . . . . . . . . . . . 128

6.7 The interface on the RegSquare mesh. The left image shows the initial
interface and the right image shows the interface after evolution. . . . . . . . 129

6.8 The interface on the Brainmesh. The left image shows the initial interface
and the right image shows the interface evolution. . . . . . . . . . . . . . . . . . . . 129

6.9 Performance comparison betweennonpatchedCPU implementation and
patched implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.10Performance comparison between CPU and GPU implementations for
different problem sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

viii



LIST OF TABLES

3.1 Average number of local solver calls per vertex with the FMM, syn-
chronous relabeling scheme, asynchronous relabeling scheme, andmesh-
FIM for two different meshes—one simple and one complex (sphere and
dragon described below). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Running time (millisecond) of FMM, single-threadedFIM (meshFIM-ST),
and multithreaded FIM (meshFIM-MT) on Meshes 1, 2, 3, and 4 with a
constant speed (Speed 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Running time (millisecond) of FMM and meshFIM (single and multi-
threaded) on Mesh 3 and both speed functions (Speed 1 and 2). . . . . . . . 34

3.4 Running times (milliseconds) and speedups (factor) for different algo-
rithms and architectures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 Average number of local solver calls per vertex for different algorithms. . 37

4.1 Table presenting our convergence results (L1 error) and the order of
convergence as computed from subsequent levels of refinement. . . . . . . . 63

4.2 Run-time (in seconds) of FMM, FSM, single-threaded tetFIM (tetFIM-ST),
and multithreaded tetFIM with four threads (tetFIM-MT) on Meshes 1
with Speeds 1, 2, and 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Run-time (in seconds) of FMM, FSM, tetFIM-ST, and tetFIM-MT onMesh
2 with Speeds 1, 2, and 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Run-time (in seconds) of FMM, FSM, tetFIM-ST, and tetFIM-MT onMesh
3 with Speeds 1, 2, and 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5 Run-times (in seconds) and speed-up factors (against tetFIM-ST) for the
different algorithms and architectures on all meshes with Speed 1. Data
in first row are from Tables 4.2, 4.3, and 4.4. . . . . . . . . . . . . . . . . . . . . . . . . 68

4.6 Run-times (in seconds) and speed-up factors for the different algorithms
and architectures. Data in first row are from Tables 4.2, 4.3, and 4.4. . . . . . 68

4.7 Run-times (in seconds) of the preprocessing step for Mesh 1, 2, and 3. . . . 68

4.8 Run-time (in seconds) of all methods on Meshes 4 and 5. The “Speedup
VS. FMM” column lists the speedup of all methods compared to FMM
with negative numbers denoting that the method is slower than FMM. . . 70

4.9 Asymptotic cost analysis: # iter is the number of iterations needed to
converge and # up is the average number of updates per vertex. . . . . . . . . 70

5.1 The meshes used in our experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99



5.2 Assembly performance (double precision): GPU and CPU running time
(in seconds) comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3 Multigrid set-up stage running time in seconds. S1 and S2 are the
speedups comparing patchPCGAMG to Hypre-PCGAMG and CUSP-
PCGAMG. Speedup number is in parentheses when patchPCGAMG is
slower. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.4 Heterogeneousmedia performance comparison for theBlobsmesh: (m,n)
means the σ values for the two materials in the domain are m and n,
respectively. The numbers reported are the global iteration numbers. . . . 104

5.5 Running times in seconds (global iterationnumber) for allmeshes: S1 and
S2 are the speedups of patchPCGAMG compared to Hypre-PCGAMG
and CUSP-PCGAMG. S3 is the speedup of the CUSP-CG compared to
the Hypre-CG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.6 Per global iteration running times in milliseconds for all meshes: S1 and
S2 are the speedups of patchPCGAMG compared to Hypre-PCGAMG
and CUSP-PCGAMG. Speedup number is in parentheses when patch-
PCGAMG is slower. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.1 Running times (in seconds) to show patch size influence on performance.
Bold numbers denote the sweet spot for the patch size. . . . . . . . . . . . . . . . 131

6.2 Running time (in seconds) to show narrowband width influence on
performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.3 Running times (in seconds) for the reinitialization, evolution, and total,
respectively. The numbers in the parentheses are the speedups compared
against the CPU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.4 Running times (in seconds) for the GPU implementations with hybrid
gathering and atomic operations. HG denotes hybrid gathering. . . . . . . . 135

x



ACKNOWLEDGEMENTS

I thank my advisors, Ross Whitaker and Mike Kirby for providing invaluable

guidance, both technical and methodological, throughout my graduate studies. I

also thank my committee members, Mary Hall, Rob McLeod, and Jonathan Cohen

for their valuable feedback and discussions. Many thanks go to the Scientific Com-

puting and Imaging Institute for providing a stimulating research environment

at the University of Utah. Finally, I thank my family and my friends for their

continuous support.



CHAPTER 1

INTRODUCTION

There are generally three types of PDEs: hyperbolic, elliptic, and parabolic [2].

Different types of PDEshavedifferent properties that dictate the numericalmethods

appropriate to solve them, and different numerical methods require different

algorithms and data structures to perform efficiently on GPUs. This dissertation

presents a set of algorithms and data structures to efficiently solve the canonical

equations of hyperbolic and elliptic PDEs on GPUs. Parabolic PDEs can typically

be solved as elliptic equations with implicit temporal discretization.

1.1 Motivation
1.1.1 PDEs and Unstructured Meshes

PDEs are ubiquitous in science and engineering. They are used to model a

wide variety of phenomena such as sound, heat, electrostatics, electrodynamics,

fluid flow, and elasticity. Some PDEs can be solved analytically by separation of

variables, but many of the PDEs associated with practical science and engineering

problems are difficult or even impossible to solve in this way; they have to be

solved numerically instead. To numerically solve a PDE, the solver typically

needs to tessellate the computational domain into a structured or unstructured

mesh. The studies in this dissertation are focused on PDE solutions on fully

unstructured meshes (triangular meshes or tetrahedral meshes) for two reasons.

First, unstructured meshes are widely used and have many advantages over

structured meshes. One advantage of unstructured meshes is that they can handle

complex computational domains accurately and efficiently. Many practical science

and engineering problems need to solve PDEs on complex computational domains

and require fully unstructured body-fitting meshes. For example, in cardiac

simulations, the domain is a volume bounded by a smooth, curved surface, and
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triangle meshing strategies for surfaces combined with tetrahedral meshing of

the interior can accurately and efficiently capture these irregular domains [97]

(e.g., see Figure 1.1-left). Another advantage of using unstructured meshes is that

vertices can be set on the domain boundary surfaces or interfaces of different

regions/materials, allowing for greater accuracy later when applying a numerical

method. For instance, geometric optics (Figure 1.1-right) orgeophysics applications

often require irregular unstructured meshes for accurate, efficient modeling of

material discontinuities that are represented as triangulated surfaces embedded in

a tetrahedral mesh. The other reason for focusing on unstructured meshes in this

dissertation is that unstructured meshes pose several challenges for efficient PDE

solution on GPUs that have not been addressed in the literature.

1.1.2 Numerical PDE Solution on GPUs and Challenges

Since the invention of computers, much research has been focused on the

numerical solution of PDEs, and a large number of numerical methods are in-

troduced in the literature to solve the PDEs numerically on computers [2]. One

Figure 1.1. Examples of body-fitting meshes used for numerical simulation. On
the left is the surface of a heart model mesh used for bioelectric computation. On
the right is a cross-section of a lens model used for the simulation of geometric
optics (the blue region denotes air while purple denotes the location of the lens).
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of the most important metrics by which to measure these numeral methods is the

efficiency in termsof running time. Developing efficient numerical solvers typically

entails exploiting the computing capability of modern computer architecture and

hardware and designing suitable algorithms and data structures accordingly.

Recent developments in computer hardware show that performance improve-

ments will no longer be driven primarily by increased clock speeds, but by paral-

lelism and hardware specialization. Single-core performance is leveling off, while

hex-core CPUs are available as commodities; soon, conventional CPUs will have

tens of parallel cores. Commodity multimedia processors such as the IBM Cell

and graphics processing units (GPUs) are considered forerunners of this trend.

These processors offer highly parallel streaming architectures that promise very large

computational capabilities on computers that are affordable for single-person use.

As an example, currently available GPUs can attain over a TeraFLOP in terms of

peak double-precision performance and over three TeraFLOP for single-precision

operations [69] on one’s desktop machine! In addition, the faster growth curves in

the speed and increased power efficiency of GPUs relative to CPUs have gained

them an increasingly important role in the high performance computing. They are

now widely used as floating point accelerators in supercomputers, which can be

defined as devices that carry out arithmetic operations concurrently with or in place

of the CPU. For example, Titan [66] is equipped with 18,688 GPUs that contribute

over 90% of the peak performance. Developing efficient code for such accelerators

is a very important building block of fully utilizing these supercomputers. Another

reason for the increasing importance of GPUs is the emergence of general-purpose

programming languages to facilitate implementing scientific applications on the

graphics hardware. The practicability and performance of CUDA (compute

unified device architecture) and OpenCL, an open-source standard of GPGPU

programming, greatly help scientists to fully explore the large potential computing

power of the GPUs.

However, GPUs’ computing power does come at a cost; it requires a fairly re-

strictive computational model — a highly-constrained single-instruction multiple-

datastream (SIMD) paradigm. These modern SIMD architectures offer many
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parallel computing units (up to several thousand cores) in a tiered data-sharing

structure, basic branching circuits, and ample memory bandwidth to limited

caches. These functional restrictions are not a coincidence. They are considered

an essential aspect of obtaining this raw computational power with conventional

fabrication technologies, because they significantly simplify the logic required for

synchronization and memory access. In addition, due to the relatively small cache

space, compact representation and reuse of data is essential to performance.

The restrictions made by modern streaming architectures place significant de-

mands on the design of numerical algorithms. Thus, algorithms that efficiently take

advantage of these architectures are of significant interest. However, algorithms

that achieve optimal performance on modern streaming architectures cannot be

obtained by a straightforward mapping of numerical codes to these architectures.

For example, an optimized version of a reduction operation is 30 times faster than

the unoptimized version [68]. Typically, numerical algorithms that are efficient

on streaming architectures should be specially designed for such architectures

with suitable parallelism strategy and memory access patterns for the specific

problem. However, the specialization of the algorithms can result in loss of problem

generality, and this presents a challenge in the design of APIs to allow application

scientists to easily take advantage of these new capabilities [42]. In practice, we

imagine that template metaprogramming would be combined with an application

specific API to allow the program to choose different optimization strategies based

on classes of equations and parameters.

Because of the architecture restrictions of the GPU, solving PDEs on GPUs for

unstructuredmeshes are particularly challenging. First, there is nonatural partition

of the domain for parallelism, and arbitrary decomposition of computations (e.g.,

decompose by indices) usually leads to poor cache performance and an unbalanced

workload. Second, for regular meshes, the valence of the nodes is the same, and

hence nodal parallelism is typically employed that assigns each node to a thread.

But for unstructured meshes, the nodes have variant valences that lead to irregular

data structure and unbalanced workload. Third, it is much harder to handle the

data exchange between partitions, and additional computations and a separate
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data structure to find and store the boundary locations are typically needed to

handle the boundary communications.

1.2 Contributions
In this dissertation, the research aims todevelop efficient numerical PDE solvers,

particularly on domains tessellated to body-fitting unstructured meshes. This

goal is achieved by exploiting the huge computing power of the state-of-the-art

SIMD streaming processors. Specifically, this dissertation explores the GPU-based,

efficient solutionof two typesofPDEs, hyperbolic equations (the static anddynamic

Hamilton-Jacobi equations) and elliptic equations (the Helmoholtz and Poisson

equations), withdifferent numericalmethods. The contributions of this dissertation

can be summarized into the following four categories.

1. General strategies. This dissertation presents two general strategies, the

domain decomposition strategy and the hybrid gathering strategy, for designing

efficient PDE solvers for unstructured meshes. We apply these strategies in all of

our PDE solvers in this dissertation.

2. A fast iterative method for solving the eikonal equations on unstructured

domains. This dissertation introduces a parallel algorithm for solving the eikonal

equation with both isotropic and anisotropic speed functions on fully unstructured

meshes. The method is appropriate for the type of fine-grained parallelism found

on modern massively-SIMD architectures such as GPUs and takes into account

the particular constraints and capabilities of these computing platforms. We have

implemented the algorithm on a single CPU, as well as multicore CPUs with

sharedmemory and a single GPU,with comparative results against state-of-the-art

eikonal solvers. This is the first GPU implementation to solve the eikonal equation

on unstructured meshes in the literature.

3. Architecting the finite elementmethod pipeline for the GPU. This disserta-

tion presents the algorithms and data-structures necessary to move the entire FEM

pipeline to the GPU. Specifically, we propose an efficient GPU-based algorithm

to generate local element information and to assemble the global linear system

associated with the FEM discretization of an elliptic PDE. To solve the corre-
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sponding linear system efficiently on the GPU, we have implemented a conjugate

gradient method preconditioned with a geometry-informed algebraic multigrid

(AMG) method preconditioner. We also introduce a new fine-grained parallelism

strategy, a corresponding multigrid cycling stage, and efficient data mapping to

the many-core architecture of GPU.

4. Fast parallel solver for the levelset equations on unstructured domains.

This dissertation introduces a parallel algorithm for solving the levelset equation

on fully unstructured 2D or 3D meshes or manifolds. We propose to combine

the narrowband scheme and domain decomposition for efficient levelset equation

solving. We also present the efficient narrowband fast iterative method (nbFIM) to

compute the distance transform by solving an eikonal equation and the patched

narrowband (patchNB) scheme to evolve the embedding. We apply the hybrid

gathering parallelism strategy to enable regular and lock-free computations in

both the nbFIM and patchNB.

1.3 Document Organization
Chapter 2 of this dissertation describes the general strategies of designing

efficient PDE solvers. Chapter 3 introduces an efficient iterativemethod to solve the

eikonal equation with isotropic speed functions on triangular meshes. Chapter 4

presents a fast solver for the eikonal equation with both isotropic and anisotropic

speed functions on 3D tetrahedral meshes. These two chapters correspond to

papers [37, 38], respectively. Next, a GPU-based pipeline for the finite element

method is presented in Chapter 5, which is based on paper [39]. Then, an efficient

parallel solver for the levelset equations is introduced in Chapter 6, and this

chapter corresponds to paper [40]. I keep Chapters 3- 6 basically the same as

the corresponding papers, and hence there are some redundancies. Finally, I wrap

up the dissertation by summarizing of the proposed dissertation research and

proposing future research directions in Chapter 7.



CHAPTER 2

ALGORITHMDESIGN STRATEGIES

This chapter develops two general strategies to design efficient algorithms to

numerically solve the PDEs on GPUs. Both strategies are applied in all the PDE

solvers introduced in this dissertation. Thefirst strategy is domain decomposition that

is used todecompose the computations amongGPUstreamingmultiprocessors and

cores. The other strategy is called hybrid gathering that we use to avoid contention

without atomic operations that are expensive on GPUs.

2.1 Domain Decomposition
The term “domain decomposition methods” typically refers to a group of

numerical methods that solve a boundary value problem by splitting it into smaller

boundary value problems on subdomains and iterating to coordinate the solution

between adjacent subdomains. The problems on the subdomains are independent,

which makes domain decomposition methods suitable for parallel computing.

Traditionally, this approach is used to provide coarse-grained parallelism for com-

putation on multicore processors or clusters. The computation of each subdomain

is assigned to a thread that is executed on a core of a multicore processor or a

node of a cluster. The research in this dissertation uses domain decomposition to

solve PDEs on unstructured meshes on GPUs. Here are some considerations when

designing these algorithms:

1. Fine-grained parallelism and SIMDoperation. Modern GPUs are equipped

with up to tens of streaming multiprocessors (SM), with each of them having

up to hundreds of cores. This architecture desires that the computations in

a subdomain be further decomposed into finer tasks that are assigned to the

threads of a block and executed by the cores of a SM. Ideally, these tasks should

be regular so that they can be performed efficiently in a SIMD fashion. For
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example, in a typical PDE solver for unstructured meshes, one can choose to use

node-based parallelism or element-based parallelism. Usually, the element-based

parallelism provide more regular computations. Therefore, when we perform

domain decomposition, we typically decompose the computational domain into

patches of elements and assign the computations on the elements of a patch to a

threadblock. However, in someproblems, there is nonaturalway todecompose the

computational domain that provides fine-grained parallelism, and in this case, we

can create such decomposition by replacing the original computational primitives

(e.g., computation on an element) with patches. This subdomain creation idea is used

in the solution of the eikonal equation, a hyperbolic PDE, presented in Chapters 3

and 4. One of the properties of the hyperbolic PDEs is that information propagates

across the computational domain from the boundaries at a finite speed, and the

solver needs to performmany iterations for the whole domain to converge. In each

iteration, only the computations in the region around the information propagating

front are useful, and this region is called the narrowband. To save computation,

typically only the values of the nodes in the narrowband are updated in each

iteration, and hence the actual computational domain is the narrowband. It is hard

to decompose the narrowband, which has arbitrary shape, size, and topology. In

addition, the narrowband is deformingwith iterations andneeds to be decomposed

for every iteration, which is expensive. In this case, we employ a patched update

scheme to “create” subdomains. This method decomposes the whole domain into

patches, and treats these patches, instead of nodes, as computational primitives

that are moved in and out of the narrowband. In each iteration, the solver assigns

the patches inside the narrowband to thread blocks that are executed on GPU

SMs. Now the narrowband is still changing every iteration, but there always exists

a natural domain decomposition that provide fine-grained parallelism no matter

how the narrowband changes.

2. Locality in the GPU memory hierarchy. The GPU architecture features

a hierarchical memory space, consisting of the slow global memory accessible

by all threads and the fast but small cache (e.g., shared memory, registers) only

accessible by a block or a thread. A typical kernel function consists of three steps:
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loading data from global memory, performing computation, and storing data back

to global memory. The global memory accesses have relatively high latency, and

hence ideally, the computational density should be high enough to hide the latency.

One way to increase computational density is to store the data in the fast cache and

perform extra computations on the cache. In this case, these extra computations

are fast and do not affect the overall performance, as long as the patch size is

determined according to the cache size to make sure that the subdomain can fit

into the cache. On the basis of this logic, when we design the algorithms for the

PDEs solvers, we choose numerical schemes that can benefit from the extra fast

computations, and when performing the domain decomposition, we determine

the subdomain size according to the cache size. For example, in the AMG linear

system solver introduced inChapter 5, we choose to use block Jacobimethod for the

relaxations in place of the Jacobi method. The block Jacobi methodmore effectively

smooths out high-frequency errors by performing multiple Jacobi iterations inside

each patch, and hence increases the convergence speed of the global Conjugate

Gradient method. Combined with our specially designed algorithm and data

structures, this method can take advantage of the cheap computations and achieve

great overall performance.

2.2 Hybrid Gathering Scheme to Avoid Contention
To solve PDEs on unstructured meshes, we can choose to use a node-based

parallelism or element-based parallelism to decompose the computations. For

meshes with unique-shape elements (e.g., triangular mesh), element-based par-

allelism typically leads to more regular computations and is more suitable for

SIMD operations. However, element-based parallelism may introduce contention

since degrees of freedom typically live on the nodes, and hence multiple elements

can be updating the same node at the same time. Typically, this contention

problem is solved by using atomic operations, but such operations are expensive

on GPUs, especially for double precision operations. Therefore, when designing

the algorithms for GPU-based PDE solvers on unstructured meshes, our strategy is

to avoid contention with some GPU-suited preprocessing instead of using atomic
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operations. This strategy leads to a novel computation decomposition scheme that

we call hybrid gathering. Actually, this scheme can be generalized to a broader class

of problems on unstructured meshes or graphs that have the following properties:

1. The need to compute the values for a set of degrees of freedomwhose relation-

ships and data dependencies can be expressed by a graph (typically, specifically,

an unstructured mesh);

2. Thepossibility todecompose a computationwithdifferent schemes according

to different components of the graph and different associated operators;

3. A suitable decomposition scheme (for SIMD-type architectures), which

introduces contention; and

4. Alternative decomposition schemes according to different graph components

that are related by data dependency typically dictated by the topology of the graph.

For instance, in a finite element computation, the solution and the associated

operators are approximated on elements or patches (which we collectively call

“cells”, i.e., volume elements). This is a cell-wise computation where each cell has

virtually the same amount of computation. Solutions in cells are often controlled

by degrees of freedom at vertices, and thus solutions at vertices must accumulate

the effects of adjacent cells. Valences may vary widely, and loads are not naturally

balanced for this lighter-weight computation. The context switch between these

two types of computation and the careful and efficient transfer of data are critical

to efficient solvers.

The preference of the decomposition scheme depends on how the degrees of

freedom are associated with the components of the unstructured mesh; here we

consider vertices, edges, faces, and cells. If the degrees of freedom live on one

component, the typical decomposition is to separately perform the local operators

corresponding to this particular component in parallel. We call this decomposition

scheme a natural decomposition where the decomposition is consistent with the

degrees of freedom. This decomposition scheme can be represented as a sparse

matrix-vector operation, as shown in Figure 2.1. The operator “
⊗

” denotes a

generic operation defined on the degrees of freedom that are given by the locations

of “�”s. The advantage of this scheme is that it naturally avoids contention
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Figure 2.1. Matrix representations of the natural and regular decomposition
schemes.

because each degree of freedom has an associated thread. However, it can in-

troduce unbalanced load when the graph component associated with the degrees

of freedom (usually vertices or edges) has widely varying valence. These irregular

computations and data structures are not efficient on GPUs because of the logical

branching structures they necessitate.

Analternativedecomposition scheme is todecompose the computations accord-

ing to another graph component, which is not directly tied to thedegrees of freedom

of the solution. We call such a decomposition scheme a regular decomposition; it

is often more suitable for GPUs as it tends towards regular local operators and

corresponding data structures. Such is the case with the cell-wise decomposition

in FEM. Figure 2.1 depicts the matrix representation of this approach. In this

decomposition, the matrix is grouped in terms of local operators according to

the graph components. The groups can overlap each other, and the vector of

degrees of freedom is segmented but has overlaps. Each group of matrix-vector

operations represents a set of local computations that are performed by a thread.

This decomposition scheme may result in contention as multiple threads may be

updating the same degree of freedom due to the overlapping. The conventional

solution to this problems is to use atomic operations. However, this is not suitable

for GPUs as the atomic operations on GPUs are quite expensive, especially for

double precision floating point.

We have developed the hybrid gathering scheme to combine the advantages

of both the natural and regular decomposition schemes. In the hybrid gath-
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ering decomposition scheme, the computation is decomposed into two stages

(two matrix-vector operations): (1) performing local operations on the associated

component (group matrix-vector operations) and stores intermediate result and

(2) fetching data from the intermediate result according to the gathering matrix.

The symbols
⊗

and
⊙

in Figure 2.2 represent the operations in these two

stages, respectively. In the first stage, the matrix groups and vector segments

are not overlapping, and the group matrix-vector operations can be assigned to

different threads and performed without contention. This stage decomposes the

computations according to the graph component with regular local operators, and

after this stage, each thread fetches data from the intermediate result according to

the gathering matrix to assemble the value for the degrees of freedom. In practice,

the two stages are implemented in one single kernel function, and fast GPU cache

(shared memory or registers) is used to store the intermediate data. In this way,

the gathering stage is very efficient.

The generation of the gathering matrix is a key part of the hybrid gathering

decomposition scheme. The degrees of freedom live on one component of the

graph denoted C1, and the computations are performed in another component

denoted C2. Therefore, the gathering matrix represents a topological mapping

from C2 to C1, and this mapping describes the data dependencies for each degree

of freedom. In practice, this mapping from C2 to C1 is typically given as a C2 list,

denoted E, which consists of C1 indices. For instance, if the graph is a triangular

Figure 2.2. Matrix representations of the Hybrid Gathering scheme.
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mesh, the topology information can be given as a list of triangles (C2) consisting

of indices of vertices (C1). The location indices of this list usually correspond to

memory location of the data that is needed by the threads. We create a sequence

list S that records the memory locations of E. Then, we sort E and permute S

according to the sorting. Now, in the sorted list E′, the C1 indices are grouped, and

the permuted sequence list, denoted S′, stores the data memory location in original

element list E. The E′ and S′ together indicate the locations of the “�”s in the

gathering matrix and form the coordinate list (COO) sparse matrix representation

of the gathering matrix. In this way, we virtually convert the contention problem

to sorting problem. Here, the list to be sorted, E, has fixed length keys that can

be sorted very efficiently on GPUs with radix sorting. This contention to sorting

transition is trying to avoid the weakness of the architecture of GPUs and take full

advantage of their computing power.



CHAPTER 3

A FAST ITERATIVEMETHOD FOR SOLVING

THE EIKONAL EQUATIONON

TRIANGULATED SURFACES

3.1 Introduction
The eikonal equation has a wide range of applications. In image analysis, for

example, shortest paths defined by image-driven metrics have been proposed for

segmentation [76] and tracking ofwhite-matter pathways in the diffusionweighted

images of the brain [51]. In seismology, the eikonal equation is used to calculate the

travel time of the optimal trajectories of seismic waves [91]. The eikonal equation

models the limiting behavior of Maxwell’s equations [43] and is therefore useful

in geometric optics. In computer graphics, geodesic distance on surfaces has been

proposed for surface remeshing and mesh segmentation [92, 95]. The eikonal

equation also has applications in medicine and biology. For instance, cardiac

action potentials can be represented as moving interfaces and eikonal-curvature

descriptions of wavefront propagation [56, 26]. For many of these applications

described above, unstructured simplicial meshes, such as tetrahedra and triangles,

are important for accurately modeling material interfaces and curved domains.

This chapter addresses the problem of solving the eikonal equation on triangulated

domains, which are approximations to either flat regions (subsets of�2) or curved

surfaces in�3.

For many of these applications, there is a need for fast solutions to the eikonal

equation—e.g., run times of fractions of a second on large domains. For instance,

solvers that can run interactively will allow scientists and mathematicians to

explore parameter spaces of complex models and to reconfigure geometries and

visualize their relationships to the solutions. In other cases, such as inverse
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problems and remeshing, the algorithms require multiple solutions of the eikonal

equation as part of the inner loop of an iterative process. Thus, there is a need for

fast, efficient eikonal solvers.

Efficient solutions on state-of-the-art computer architectures place particular

constraints on the data dependencies, memory access, and scale of logical opera-

tions for such algorithms. The trend in computer architecture is toward multicore

CPUs (conventional processors) and massively parallel streaming architectures,

such as graphics processing units (GPUs). Thus, parallel algorithms that run

efficiently on such architectures will become progressively more important for

many of these applications. Of particular interest are the massively parallel

streaming architectures that are available as commodities on consumer-level desk-

top computers. With appropriate numerical algorithms, these machines provide

computational performance that is comparable to the supercomputers of just a few

years ago. For example, the most recent graphics processing units (GPUs), which

cost only several hundred US dollars, can reach a peak performance of nearly 1012

floating point operations per second (TeraFLOPS); a performance equivalent to a

top supercomputer a decade ago [107]. This computing power, however, is for a

single-instruction multiple-datastream (SIMD) computational model, and most of

the recent massively parallel architectures, such as GPUs [20], rely heavily on this

paradigm. These modern SIMD architectures provide a large number of parallel

computing units (up to several hundred cores) in a hierarchical data-sharing

structure, rather simple branching circuits, and largememory bandwidth. As such,

they place important restrictions on the algorithms that they can run efficiently.

Addressing these constraints is an important aspect of this paper.

In the past several decades, many methods have been proposed to solve the

eikonal equationonunstructuredgrids for both two-dimensional and three-dimensional

domains. Iterative schemes, for example [84], rely on a fixed-point method that

solves a quadratic equation at each grid point in a predefined update order and

repeats this process until the solution on the entire grid converges. Some adaptive,

iterative methods based on a label-correcting algorithm (from a similar shortest-

path problem on graphs [13]) have been proposed [77, 16, 34, 35].
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The fast marching method (FMM) by Sethian [88], a form of the algorithm first

proposed in [80], is used widely and is the de facto state-of-the-art for solving the

eikonal equation. FMM has an asymptotic worst case complexity of O(N logN),

which is optimal. However, it uses a strict updating order and the min-heap data

structure to manage the narrow band which represents a bottleneck that thwarts

parallelization. Although the FMM has some parallel variants [46, 101] that use

domain decompositions, they rely on a serial FMMwithin each subdomain, which

is not efficient for massively parallel, SIMD architectures. Furthermore, these

parallel variants are only for regular grids, and the extension to unstructured,

triangular meshes, the topic of this chapter, is not straightforward.

For homogeneous speed functions on flat domains, the characteristics of the

eikonal equation are straight lines. In such cases, one can solve the eikonal equation

by updating solutions along specific directionswithout explicit checks for causality.

Based on this observation, Zhao [110] and Tsai et al. [100] proposed the fast sweep

method (FSM), which uses a Gauss-Seidel update scheme for the straight (grid-

aligned) wavefront and proceeds across the domain in an incremental sweep. This

methodmay converge faster than the Jacobi updatemethods, which update all grid

points at once. However, the update scheme, which proceeds simultaneously for

all nodes on the wavefront, still presents a bottleneck because it limits updates to a

specific set of points in a predefined order. More importantly, previous work [52]

has shown that the number of iterations or sweeps grows with the complexity of

the speed function, and thus the method is only efficient for relatively simple (nearly

homogeneous) inputs, where the characteristics are approximately straight. FSM

has extensions to 2D and 3D unstructured meshes [79] whose update ordering is

based on distances of grid nodes to some selective reference points. However, this

extension cannot be easily used for surface meshes (e.g., in�3) because Euclidean

distances between nodes are not consistent with geodesic distances on the mesh.

Jeong and Whitaker propose the fast iterative method [52, 51] (FIM) to solve

the heterogeneous eikonal equation and anisotropic Hamilton-Jacobi equations

efficiently on parallel architectures. The FIM manages the list of active nodes and

iteratively updates the solutions on those vertices until they are consistent with
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their neighboring vertices. Vertices are added to or removed from the list based

on a convergence criterion, but the management of this list does not entail an

extra burden of expensive ordered data structures or special updating sequences.

Proper management of the list ensures consistency of the entire solution. This

chapter builds on the FIM algorithm, and describes the application to unstructured

meshes and an implementation on a streaming, SIMD parallel architecture.

In this chapter, we propose a new computational technique to solve the eikonal

equation on triangulated surface meshes efficiently on parallel architectures; we

call it the mesh fast iterative method (meshFIM), because it is an extension of the

FIM method proposed in [52]. We describe a parallel implementation of meshFIM

on shared memory parallel systems and propose a new data structure for the

efficientmappingof unstructuredmeshes for parallel SIMDprocessorswith limited

high-bandwidth memory. The contributions of this chapter are twofold. First, we

introduce the meshFIM algorithms for both single processor and shared memory

parallel processors and perform a careful empirical analysis by comparing them to

the state-of-the-art CPU-based method, the fast marching method (FMM), in order

to understand the benefits and limitations of each method. Second, we propose

a patch-based meshFIM solver, specifically for more efficient implementation of

the proposed method on massively parallel SIMD architectures. We describe

the detailed data structure and algorithm, present the experimental results of

the patch-based meshFIM, and compare them to the results of the CPU-based

methods to illustrate how the proposed method scales well on state-of-the-art

SIMD architectures.

The chapter proceeds as follows. In the next section, we describe relevant

work from the literature. In Section 3.2, we introduce the proposed method and

its hierarchical implementation for SIMD parallel architectures. In Section 3.3,

we show numerical results, including consistency and convergence, on several

different examples with different domains and speed functions, and we compare

the performance against the fast marching method. In Section 3.4, we summarize

the chapter and discuss future research directions related to this work.
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3.2 Fast Iterative Method (FIM) on
Unstructured Meshes

3.2.1 Notation and Definitions

In this chapter, we consider the numerical solution of the eikonal equation 3.1,

a special case of nonlinear Hamilton-Jacobi partial differential equations (PDEs),

defined on a two-dimensional manifold with a scalar speed function
⎧⎪⎪⎪⎨⎪⎪⎪⎩
H(x,∇φ) =

∣∣∣∇§φ(x)
∣∣∣2− 1

f 2(x)
= 0 ∀x ∈ § ⊂�3

φ(x) = B(x) ∀x ∈ B ⊂ §
(3.1)

where § is a smooth two-dimensional manifold in�3,∇§ is the gradient operator in

the tangent plane to themanifold,φ(x) is the travel time or distance from the source,

f (x) is a positive speed function defined on §, and B is a set of smooth boundary

conditions, which adhere to the consistency requirements of the original equation.

Of course, a two-dimensional, flat domain is a special case of this specification, and

the proposed methods are appropriate for that scenario as well. The solution of

the eikonal equation with an arbitrary speed function is sometimes referred to as

a weighted distance [94] as opposed to a Euclidean distance for a constant speed

function on flat domains. We approximate the solution on a triangulation of §,

denoted §T. The solution is represented point-wise on the set of vertices V in ST,

and interpolated across the triangles with linear basis elements. The ith vertex inV

is denoted vi and its position is a 3-tuple and denoted xi = (x, y,z) where x, y,z ∈�.

An edge is a line segment connecting two vertices (vi, vj) in �3 and is denoted ei, j

while the vector from vertex vi to vertex vj is denoted ei, j which equals to x j− xi.

The angle between ei, j and ei,k is denoted ∠i or ∠ j,i,k.

The neighbors of a vertex are the set of vertices connected to it by edges. A

triangle, denoted Ti, j,k, is a set of three vertices vi, vj, vk that are each connected to

the others by an edge. We assume the triangulation adheres to a typical criteria

for consistency for 2D manifolds, e.g., edges not on the boundary of the domain

belong to two triangles, etc. We call the vertices connected to vi by an edge the

one-ring neighbors of vi and the triangles sharing vertex vi are the one-ring triangles

of vi. For example, in Figure 3.1-left, the vertex v1 is the neighbor of vertex v2 and

vice-versa. Vertices v2, v3, v4, v5, v6, v7 constitute the one-ring of v1, and triangles
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Figure 3.1. A triangulation §T of surface § (left) and the local solver: update the
value at vertex v3 in a triangle (right)

T1,2,3,T1,3,4, . . . ,T1,2,7 (which we will denote with capital letters for multi-indices TA,

. . ., TF as in the figure) form the one-ring triangles of v1. We define the discrete

approximation to φ at vertex vi to be Φi.

3.2.2 Local Solver

In Equation 3.1, domain § is a manifold for which we have a tessellation §T and

the numerical solution of the equationΦ(x) is defined on the vertices of the triangles

of the tessellation. The solution at each vertex, sometimes referred to as the travel

time, is computed from its current value and its one-ring neighbors (see Figure

3.1-left), using a linear approximation of the solution on each triangular facet.

The formulation presented here is a constructive form of derivation in [79], which

describes aGodunov approximation that picks an upwinddirection of travel for the

characteristics based on consistency of the resulting solution. For a single update

of a single vertex vi, a set of n potential solutions (n = 6 for v1 in Figure 3.1-left) are

calculated for the n one-ring triangles. Each of these triangle solutions represents

the shortest path across that triangle from the boundary conditions, as described

in the following paragraphs. The approximated solution at vertex vi, Φi ≈ φ(xi),

is set to be the minimum among the n values associated with each triangle in

the one-ring. From a computational point-of-view, the bulk of the work is in the

calculation of the n temporary or potential solutions from the adjacent triangles of



20

each vertex.

The specific calculation on each triangle is as follows. Considering a triangle

T1,2,3 in Figure 3.1-right. We use an upwind scheme to compute the solution

Φ3, from values Φ1 and Φ2 to comply to the causality property of the eikonal

solution [79]. We consider a local scheme based on piecewise linear reconstructions

within the triangle. The characteristics areperpendicular to thegradient ofΦ, which

is linear, and thus the travel time to v1 must be determined by time associated with

a line segment lying in the triangle T1,2,3.

Because acute triangles are essential for proper numerical consistency [57],

we consider only the case of acute triangles here and discuss obtuse triangles

subsequently. For a triangle T1,2,3 in Figure 3.1-right, we denote the angles formed

by the triangular edges as ∠1 = α, ∠2 = β, and ∠3 = γ, and denote the edge lengths

as ‖e1,2‖ = c, ‖e1,3‖ = b, and ‖e2,3‖ = a. We assign a constant speed f to each triangle,

T1,2,3, which is consistent with a symmetric (isotropic) speed and a linear solution

on each element. We denote the difference in travel time between v1 to v2 as

Φ1,2 = Φ1−Φ2.

If the vertices v1 and v2 are upwind of v3, then there is a characteristic passing

through v3 that intersects edge e1,2 at position xλ = x1+λe1,2, where λ is unknown

and λ ∈ [0,1] in order for the characteristic to intersect the edge. The line segment

that describes the characteristic across T1,2,3 is eλ,3 = e1,3− e1,λ = e1,3−λe1,2. Thus

the travel time from xλ to x3 is Φλ,3 = f ‖eλ,3‖ = f ‖e1,3−λe1,2‖.

Because the approximation of the solution on the triangle T1,2,3 is linear, we

have Φλ = Φ(xλ) = Φ1+λΦ1,2. The solution at v3 is the solution at xλ plus the travel

time from xλ to the vertex v3, and therefore

Φ3 = Φλ+Φλ,3 = λΦ1,2+Φ1+ f ‖e1,3−λe1,2‖. (3.2)

All that remains is to find λ, and for this we observe that λ should minimize

Φ3 because the characteristic direction is the same as the gradient of the solution.

Assigning zero to the derivative (with respect toλ) of Equation 3.2 gives a quadratic

equation from which we solve for λ. To satisfy the causality condition, λ must be

in the range of [0,1]. If the solved λ is in [0,1], we compute Φ3 from Equation 3.2,
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else we compute two Φ3’s from Equation 3.2 assuming λ as 0 and 1, and take the

smaller one.

Because the computation of the solution for linear, triangular elements have

poor approximation properties when applied to obtuse triangles [82], we have to

treat obtuse triangles as a special case. For this, we adopt the method used in [57].

As illustrated in Figure 3.2, if ∠3 is obtuse, we connect v3 to the vertex v4 of a

neighboring triangle and thereby cut the obtuse angle into two smaller angles. If

these two angles are both acute, then we are done, as shown in the left picture of

Figure 3.2; otherwise if one of the smaller angles is still obtuse, thenwe connect v3 to

the vertex v5 of another neighboring triangle. This process is performed recursively,

until all new angles at v3 are acute, as shown in the right image of Figure 3.2. Note

that algorithmically, these added edges and triangles are not considered part of the

mesh; they are used only in the solver for updating the solution at v3.

3.2.3 MeshFIM Updating Scheme

The original fast iterative method [52] for solving the eikonal equation was

proposed for rectilinear grids. In this section, we extend the method to unstruc-

tured triangular meshes, called meshFIM, in a way that is appropriate for more

general simplicial meshes. We begin with a serial (single-threaded) version of the

algorithm, and then describe a parallel (multithreaded) version of meshFIM for

Figure 3.2. Strategy to deal with obtuse triangles
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shared memory system. Finally, we describe the algorithm for SIMD, streaming

architectures with limited (hierarchical) sharedmemory capabilities in detail. Here

we mention the properties that make FIM suitable for parallel solutions of the

eikonal equation, because they govern some of the subsequent design choices:

1. The algorithm does not impose a particular update sequence.

2. The algorithm does not use a separate, heterogeneous data structure for

sorting.

3. The algorithm is able to simultaneously update multiple points.

The strategy of meshFIM is to solve the eikonal equation on triangular mesh

vertices with lightweight data structures for easy mapping to SIMD architectures

with fast access to limited amounts of high-speed memory. This is the basic model

of state-of-the-art streaming architectures [20]. As in FIM [52], meshFIMmaintains

a data structure that represents a narrow computational band, a subset of the

mesh, called the active list, for storing the vertices that are being updated. During

each iteration, the list of active vertices/triangles is modified to remove vertices

whose solutions are consistent with their neighbors and to include vertices that

could be affected by the last set of updates. Thus, a vertex is removed from the

active list when its solution is up-to-date with respect to its neighbors, and a vertex

is appended to the list when the value of any potentially upwind neighbor has

changed.

Convergence of the algorithm to a valid approximation of the eikonal equation

is provable [52] if three conditions are met:

1. Any vertex whose value may be inconsistent with its neighbors (according

to the local solver) must be appended to the active list.

2. A vertex is removed from the active list only when its value is consistent with

its neighbors.

3. The algorithm terminates only when the active list is empty.

There are a variety of algorithms that meet these criteria. Indeed, FMM is a spe-

cial case of this philosophy, which adopts a particular update order that guarantees

that once a point is removed from the active list, it will never again need to be added

(it is upwind of every subsequent update of vertex/grid values). In the remainder
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of this section, we will discuss rules for updating vertex values and managing the

active list that are efficient for arbitrary ordering of vertex-value updates, including

update schemes that include both synchronous and asynchronous update of the

active list.

Before the computation of the solution, any algorithm must compute certain

static information about the mesh, including the speed for each triangle and values

of the boundary conditions, and initialize the appropriate data structures, in this

case the active list L, which is set to be all of the vertices adjacent to the boundary

conditions. The computation of the speed function depends on the application, and

the initialization of the active list is not a computationally important step; thus, we

do not treat the initialization as an important aspect of the parallel algorithms

presented in this chapter.

We begin with the basic algorithm, which assumes synchronous updates of

the entire active list, and then introduce alternatives that take better advantage

of asynchronous updates. In this context, an iteration is one loop through the

entire active list. In the basic algorithm, for every vertex vj ∈ L, we compute the

new Φ j from solutions on the one-ring. This solution puts each vertex into a

consistent solution with the values of its neighbors from the previous iteration,

and thus all vertices, nominally, are removed from the active list. Each updated

vertex, however, triggers the activation of neighbors of greater value, which are

potentially downwind. The algorithm would continue to update each subsequent

active list until the active list is empty.

If we consider asynchronous updates, values that are potentially downwind of

others in the active list may take advantage of updated values from the current

iteration. Indeed, taken to the limit, the updates are done on individual nodes, one

at a time, proceeding from the node of lowest value—which is the FMM algorithm.

For parallel algorithms, the approach will be a mixture of synchronous updates

among processors and asynchronous updates as each processor proceeds with a

particular subset of the active list. The situation becomes more complicated when

we consider the limited amount of communication that is available between pro-

cessors or blocks of processors, which motivates processing multiple iterations on
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subsets of the domain without exchanging data or updating boundary conditions.

In such cases, it is sometimes a more effective use of computational resources to

runmultiple iterations on the same set of active nodes, not removing each one from

the list after updating, so that they can take advantage of updates of neighbors.

The particular choice of updating strategy depends on the architecture, and in the

sections that follow these choices are described for three different computational

scenarios.

3.2.4 Algorithms for CPU

The criteria for a correct algorithmwould suggest that avertex couldbe removed

from the list and its neighbors activated after a single update—knowing that it will

be reactivated as needed. However, in the absence of a strict or approximate sorting

of values in the active list, it is efficient to reconcile the values of vertices on the

current wavefront (active list), before retiring updated vertices and including new

ones. From this insight, we derive the proposed algorithm, which is as follows.

Nodes on the active list are updated one at a time. After each node is updated,

its value is consistent of its upwind neighbors, and each update is immediately

transferred to the solution to be used by subsequent updates. The algorithm loops

through the active list, continuously updating values, and when it reaches the last

element of the list simply starts again at the beginning—thus, there is effectively no

beginning or end to the list. A vertex remains on the active list until the difference

between its old value and new value is below some error tolerance—effectively, it

does not change from the last update. We refer to a vertex that does not change

value (to within tolerance ε) as ε-converged. Each ε-converged vertex is removed

from the active list. As the converged vertex is removed from the active list, all

of its potentially downwind neighbors (neighbors of greater value) undergo one

update step. If their values are not ε-converged (i.e., they change significantly),

they are appended to the active list. The algorithm continues looping through the

active list until the list is empty.

Table 3.1 compares the number of solution updates between FMM, strict syn-

chronous and asynchronous relabeling schemes, and the proposed mesh fast iter-
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Table 3.1. Average number of local solver calls per vertex with the FMM,
synchronous relabeling scheme, asynchronous relabeling scheme, andmeshFIMfor
two different meshes—one simple and one complex (sphere and dragon described
below).

FMM Synchronous Asynchronous meshFIM
Simple mesh 18.1 737.8 177.0 19.6
Complex mesh 18.3 671.7 175.2 59.2

ative method (meshFIM). The FMM is optimal (although run times will be slightly

offset by the time involved in managing the heap), and the synchronous and

asynchronous schemes perform very poorly. The asynchronous scheme depends,

in principle, on update order, but these results are consistent across a set of

experimentswith randompermutations of the active list. This table also shows that

the update strategy of the FIM, while not optimal, provides numbers of updates

that are much closer to FMM, and showed a robustness to the ordering of the active

list.

Because the serial algorithm does not depend significantly on the ordering of

updates, the extension to multiple processors is immediate. We simply divide the

active list arbitrarily into N sublists, assign the sublists to the N threads, and let

each thread use an asynchronous update for the vertices within the sublist. These

updates are done by applying the updating step in Algorithm 3.1 to each subactive

list.

3.2.5 Algorithm for GPU with SIMD Parallel Architecture

In this section, we describe the implementation of meshFIM for SIMD parallel

architecture that we call patchFIM.

To make good use of the GPU performance advantage, we propose a variant

of meshFIM, called patchFIM, that scales well on SIMD architectures, using a

patch-based update scheme. The main idea is splitting the computational domain

(mesh) into multiple nonoverlapping patches (sharing only boundary vertices),

and treating each patch, which will be processed in a SIMD fashion in a single

block, as a computing primitive, corresponding logically to a vertex in the original

meshFIM algorithm.
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Algorithm 3.1meshFIM(V,B,L)
1: Comment 1. Initialization (V : all vertices, L : active list, B: seed vertices)
2: for all v ∈ V do
3: if v ∈ B then
4: Φv ← 0
5: else
6: Φv ←∞
7: end if
8: end for
9: for all v ∈ V do
10: if any 1-ring vertex of v ∈ B then
11: add v to L
12: end if
13: end for
14: Comment 2. Update vertices in L
15: while L is not empty do
16: for all v ∈ L do
17: p← Φv
18: q←Update(v)
19: if |p− q| < ε then
20: for all adjacent neighbor vnb of v do
21: if vnb is not in L then
22: p←Φvnb
23: q←Update(vnb)
24: if p > q then
25: Φvnb ← q
26: add vnb to L
27: end if
28: end if
29: end for
30: remove v from L
31: end if
32: end for
33: end while

The active list maintains a set of active patches instead of active vertices, and

a whole active patch is moved from global memory to a block and updated for

several SIMD iterations, which we call internal iterations. A set of internal iterations

comprises a single iteration for that patch. Thus, for each patch iteration, the data

for that patch are copied to the shared memory space, and internal iterations are

executed to update the solution on that patch. Of course, multiple computing
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blocks can process multiple patches simultaneously, while other patches wait in

global memory to be swapped out to blocks.

This patch strategy is meant to take advantage of the SIMD parallelism, but it

introduces some inefficiencies. For instance, an entire patch must be activated any

time a vertex in an adjacent patch gets updated. A patch must remain active as

long as any of vertices are still active. The number of internal iterations is required

to offset of the cost of transferring data between memory caches; however, vertices

within a patch are updated without communication with adjacent patches, and

thus boundary conditions lag and may be out of date as the internal iterations

proceed.

These inefficiencies must be justified by an effective SIMD algorithm for the

patches. There are two challenges. First is to provide SIMD processing on the

unstructured mesh, and second is to keep the computational density sufficiently

high. The parallelism is obtained by introducing a data structure for SIMD

computing on unstructured meshes, which we call the cell-assembly data structure

(terminology adapted from the finite element method (FEM) literature). Specifi-

cally, the cell-assembly data structure includes three arrays, labeled mnemonically

GEO, VAL, and NBH. GEO is the array storing per-triangle geometry and speed

information required to solve the eikonal equation. It is divided into subsegments

with a predefined size that is determined by the largest patch among all. Each

subsegment stores a set of four floats for each triangle, i.e., three floats for triangle

edge lengths and one float for the speed value. VAL is the array storing per-triangle

values of solution of the eikonal equation. It is divided into subsegments, similar to

GEO, but instead of geometric information, solutions on three vertices are stored.

Weuse twoVAL arrays, one is for input and the other is for output, to avoidmemory

conflicts. To deal with boundaries across patches, we simply duplicate and store

the exterior boundary vertices for each patch and treat the data on those vertices as

fixed boundary conditions for each patch iteration. The NBH array stores indices

toVAL for the per-vertex solution. Figure 3.3 depicts the data structure introduced

above.

A single inner iteration on a patch proceeds in two steps. In the first step, all of
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Figure 3.3. Data structure: in this figure, Ti is a triangle, ei, j represents the edge
length, fi is the inverse of speed in a triangle. Φi means the value of the ith vertex. Ii
in NBH represents the data structure for the ith vertex, each of which has q indices
pointing (shown as arrows) to the value array.

the triangles produce the arrival time for the solution for each vertex of the triangle

from the opposite edge, with special values for invalid results, as above. The

triangle solutions all undergo the same computation, with some minor branching

in the determination of valid solutions. In the second step, all vertices are updated

by referring back to the appropriate data in triangle solutions andperforming amin

operation on the valid solutions (assembly). The vertex computation must loop

through all of the triangles in the one-ring, and thus the run-time of this step is

determined by the vertex with highest valence in the patch. Thus, SIMD efficiency

favors meshes with relatively consistent valences.

3.2.5.1 Preprocessing

The patchFIM algorithm requires some preprocessing before the iterations

begin. First, we must partition the mesh into patches. We use the multilevel

partitioning scheme described in [55]. It partitions the vertices of a mesh into

roughly equal patches, such that the number of edges connecting vertices in

different parts is minimized. The particular algorithm for mesh partitioning is

not important to the proposed algorithm, except that efficiency is obtained for

patches with similar numbers of vertices/triangles and relatively few vertices on
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the boundaries.

In this step, we also calculate the static mesh information, including dealing

with the obtuse triangles. We use the same idea as in meshFIM to treat obtuse

triangles. However, instead of adding virtual edge, we also add virtual triangles

generated by splitting the obtuse triangle to the corresponding cell-assembly data

structures. Figure 3.4 demonstrates this, where ∠1,3,2 is obtuse, and adding a virtual

edge e3,4 will generate two “virtual triangles” T1,3,4 and T2,3,4. If one of ∠1,3,4 and

∠2,3,4 is still obtuse, the algorithm would split again. The last thing in this step is

to initialize values of each vertices and the active list. Instead of keeping a narrow

band active vertices, we maintain list of active patches. If any of the vertices in a

patch is adjacent to a seed point, this patch is added to the initial active list.

3.2.5.2 Iteration step

In this step, each patch is treated just like a vertex in meshFIM. The main

iteration continues until the active list becomes empty. Each patch in the active

list is assigned to a SIMD computing unit where all vertices value in this patch

are updated several times. After every update, the assembly stage reconciles the

different solutions for a vertex. This is done with a loop over the NBH to find

the minimum value. If a patch is convergent, meaning all vertices in this patch

Figure 3.4. Virtual edge and virtual triangles
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are convergent, it is removed from the active list and its nonconvergent neighbor

patches are added to the active list.

Checking the patch convergence can be simply updating the entire patch once

and checking if there exists a vertex whose solution has changed by the update.

To do this, we use a reduction operator, which is commonly used in the streaming

programming model to reduce a larger input stream to a smaller output stream.

For SIMD architectures, parallel reduction can be implemented using an iterative

method. In each iteration, we adopt a tree-based method in which every thread

reads two Boolean values from the convergence array of current patch and writes

back the result of the AND operation of two values. The number of the threads

to participate in this reduction is halved in the successive iteration, and this is

repeated until only one thread is left. In this way, for a block of size n, onlyO(log2n)

computations are required to reduce a block. In the pseudo-code to follow, C(p)

is a Boolean value representing the convergence status of a patch p (per-patch

convergence), and Cv(p) is a set of Boolean values where each value represents the

convergence status of the vertices in the patch p (per-vertex convergence). The

pseudo-code for patchFIM is given in Algorithm 3.2, where the pseudo-code for

each subroutine in the patchFIM is given inAlgorithm 3.3, 3.4, and 3.5, respectively.

Algorithm 3.2 patchFIM( VALin, VALout, L, P )
1: Comment: L: active list of patches, P: set of all patches
2: while L is not empty do
3: MainUpdate(L, Cv, VALin, VALout)
4: CheckNeighbor(L, Cv, C, VALin, VALout)
5: UpdateActiveList(L, P, C)
6: end while

3.3 Results and Discussion
In this section, we discuss the performance of the proposed algorithms in

realistic settings compared to the most popular FMM-based algorithm. We have

conducted systematic empirical tests with a set of different meshes with various

speed functions. First, we show the result of the single-threaded (serial) CPU
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Algorithm 3.3MainUpdate(L, Cv, VALin, VALout)
1: 1. Main iteration
2: for all p ∈ L in parallel do
3: for i = 1 to n do
4: for all t ∈ p in parallel do
5: VALout(t)← LocalSolver(VALin(t))
6: reconcile solutions in t
7: end for
8: update Cv(p)
9: swap VALin(t) and VALout(t)
10: reconcile solutions in
11: end for
12: end for

Algorithm 3.4 CheckNeighbor(L, Cv, C, VAL in, VALout)
1: 2. Check neighbors
2: for all p ∈ L in parallel do
3: C(p)← reduction(Cv(p))
4: end for
5: for all p ∈ L in parallel do
6: if C(p) == TRUE then
7: for all adjacent neighbor of pnb of p do
8: add pnb to L
9: end for
10: end if
11: end for
12: for all p ∈ L in parallel do
13: for all t ∈ p in parallel do
14: VALout(t)← LocalSolver(VALin(t))
15: reconcile solutions in t
16: end for
17: update Cv(p)
18: swap VALin(t) and VALout(t)
19: reconcile solutions in p
20: end for
21: for all p ∈ L in parallel do
22: C(p)← reduction(Cv(p))
23: end for

implementation of meshFIM and FMM, and discuss the intrinsic characteristics

relative to existing algorithms. Second, weprovide the result ofmultithreadedCPU

implementation to discuss scalability of the proposed algorithm on sharedmemory
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Algorithm 3.5 UpdateActiveList(L, P, C)
1: 3. Update active list
2: clear(L)
3: for all p ∈ P do
4: if C(p) = FALSE then
5: insert p to L
6: end if
7: end for

multiprocessor computer systems. Last, we show the GPU implementation to

demonstrate the performance of the proposed method on SIMD parallel architec-

tures. Single precision is used in all experiments throughout the entire chapter.

We have carefully chosen four triangular meshes with increasing complexity to

compare the performance of each method. In addition, we used two different

speed functions, a constant and correlated random speed, to elaborate how the

heterogeneity of the speed function affects the performance of each method.

The meshes for the experiments in this section are:

Mesh 1: A regularly triangulated flat square mesh with 1,048,576 vertices (1024

by 1024 regular grid),

Mesh 2: An irregularly triangulated flat square mesh with 1,181,697 vertices

and 2,359,296 triangles,

Mesh3: Aspherewith 1,023,260 vertices and 2,046,488 triangles (Figure 3.5-left),

and

Mesh 4: Stanford dragon with 631,187 vertices and 1,262,374 triangles (Fig-

ure 3.5-right).

The speed functions f (x) are: Speed 1 — a constant speed of one, and Speed 2

— correlated random noise.

3.3.1 Serial CPU Results

Wehave tested our CPU implementation on aWindowsVista PC equippedwith

an Intel i7 920 CPU running at 2.66 GHz. First, we focus only on the performance

of FMM and the single-threaded implementation of our method (meshFIM-ST) on

different meshes with a constant speed (Speed 1). Rows 1 and 2 of Table 3.2 show

the experimental results for the serial implementations.
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Figure 3.5. Sphere and Stanford dragon meshes

Table 3.2. Running time (millisecond)of FMM, single-threadedFIM(meshFIM-ST),
and multithreaded FIM (meshFIM-MT) on Meshes 1, 2, 3, and 4 with a constant
speed (Speed 1).

Mesh 1 Mesh 2 Mesh 3 Mesh 4
FMM 5092 7063 6362 3612

meshFIM-ST 6562 9354 8591 4331
meshFIM-MT 2198 3151 2846 1487

The eikonal equation with the speed function of constant one ( f (x) = 1) is the

simplest test, and the easiest to perform well. However, it is useful in real-world

applications because the solution is the geodesic distance on a surface to the initial

source boundary. In this experiment, we use a single point as the source for all

four meshes so that the r-level set of the solution Φ is a curve that is a collection

of all points on the surface whose distance to the source point is r. As shown in

Table 3.2, FMM outperforms the single-threaded meshFIM slightly on all the test

cases. Although FMM has the overhead of managing the heap data structure, the

cost related to computing distance becomes the major bottleneck for the eikonal

equation on the mesh. Because meshFIM usually requires more iterations per

vertex than FMM (which is optimal in this respect), meshFIM runs slower than

FMM for serial execution.

To further elaborate the difference of two methods, we conducted the ex-

periment on Mesh 3 using both speed functions. As shown in Table 3.3, the
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Table 3.3. Running time (millisecond) of FMM and meshFIM (single and multi-
threaded) on Mesh 3 and both speed functions (Speed 1 and 2).

Speed 1 Speed 2
FMM 6362 6435

meshFIM-ST 8591 11960
meshFIM-MT 2846 4362

performance of FMM is not affected by the choice of the speed functions, which

clearly demonstrates the advantage of the worst-case-optimal algorithm. On the

other hand, the running time for meshFIM increased significantly from Speed 1

to Speed 2 because the total number of iterations (vertex updates) is significantly

increased for Speed 2 due to the huge variance of the speed.

The meshFIM algorithm is designed for parallelism, and the results on the

multithreaded system bear this out. The third row in Table 3.3 shows the running

time of multithreaded meshFIM using four CPU cores. Because FMM is a serial

algorithm (a strict ordering of the updates on vertices requires this), there is no

benefit of using multiple threads. In contrast, meshFIM scales well on multicore

systems. On a quad-core processor, we observed a nearly three times speedup from

meshFIM-ST to meshFIM-MT on all cases. This result suggests that meshFIM is a

preferred choice for such shared memory systems.

3.3.2 GPU Implementation Result

To show the performance of meshFIM on SIMD parallel architectures, we have

implemented and tested patchFIM (Algorithm 3.2) on an NVIDIA GT200 GPU

using NVIDIA CUDA API [68]. The NVIDIA GeForce GTX 275 graphics card

is equipped with 896 MBytes of memory and 30 microprocessors, where each

microprocessor consists of eight SIMD computing cores that run at 1404MHz. Each

computing core has 16 KBytes of on-chip shared memory for fast access to local

data. The 240 cores run in parallel, but the preferred number of threads running

on a GPU is much larger because cores are time-shared by multiple threads to

maximize the throughput and increase computational intensity. Computation on

the GPU entails running a kernel with a batch process of a large group of fixed size
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thread blocks, which maps well to the patchFIM algorithm that uses patch-based

update methods. A single patch is assigned to a CUDA thread block, and each

triangle in the patch is assigned to a single thread in the block. In order to balance

the GPU resource usage, e.g., registers and shared memory, and the number of

threads running in parallel, we fix the thread block size to result in the maximum

occupancy [1] and adjust the maximum number of triangles among all patches to

conform that.

Table 3.4 shows the performance comparison of patchFIM with two single-

threaded CPU implementations (i.e., FMM and meshFIM) on the same meshes

and speed functions, and shows the speedup factors of patchFIM over the CPU

methods. Communication times between CPU and GPU, which are only about

one tenth of the running times in our experiments, are not included for patchFIM

to give a more accurate comparison of the methods . As shown in this result, the

patchFIM algorithm maps very well to the GPU and achieves a good performance

gain over both the serial and multithreaded CPU solvers. On a simple case such

as Mesh 1 with Speed 1, patchFIM runs about 33 times faster than meshFIM-ST

and 25 times faster than FMM. On other more complex cases, patchFIM runs up to

15 times faster than FMM. In addition, on the heterogeneous media using Mesh 3

with Speed 2, where meshFIM-ST runs roughly half as fast as FMM on the CPU,

patchFIM still runs about 14 times faster than FMM.

As shown in this result, SIMD efficiency of the meshFIM algorithm depends on

the input mesh configuration, more specifically, the average vertex valence relative

to the highest valence. Thus, Mesh 1 is the most efficient set up because almost all

vertices have valence six. In contrast, Mesh 2 shows the worst performance due

to the highest vertex valence of 11. Meshes 3 and 4 have a maximum valence of

8. Moreover, Mesh 2 has the largest percentage of high valence (greater than 6)

vertices. Mesh 3 and 4 are commonly found set up where valences follow a tight,

symmetric distribution centered valence six. In summary, patchFIM implemented

on the GPU runs faster than any existing CPU-based solver on all examples we

tested, with the effectiveness depending on mesh configuration and distribution of

valences of vertices. Many applications based on time-consuming eikonal equation
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Table 3.4. Running times (milliseconds) and speedups (factor) for different
algorithms and architectures.

Mesh 1 with Mesh 2 with Mesh 3 with Mesh 4 with Mesh 3 with
Speed 1 Speed 1 Speed 1 Speed 1 Speed 2

FMM 5092 7063 6362 3612 6435
meshFIM-ST 6562 9354 8591 4331 11960
patchFIM 201 910 415 287 459

Speedup over FMM 25× 8× 15× 13× 14×
Speedup over meshFIM-ST 33× 10× 21× 15× 28×

solvers can run at real-time or interactive rates using the proposed method.

In patchFIM, there are two user-defined parameters: the size of patch and the

iterationnumberwithin an active patchupdate. In our experiments, the empirically

optimal patch size is 64 vertices, which means the maximum number of vertices

among all patches is 64. There is a trade-off here. On the one hand, the smaller

patch sizes efficiently concentrate vertex updates on the wavefront. This is because

we update all the vertices of a patch each iteration, while only the updates for the

vertices on the wavefront are useful. For smaller patch sizes, the average ratio of

number of vertices inside thewave front to the total number of vertices in this patch

is higher; hence, there is less percentage of useless computation. On the other hand,

the SIMD architecture requires the patch size to be large enough to take advantage

of the large number of processors and to hide the hardware latency [68] associated

withmemory transfers. A small parameter study of different patch sizes showed 64

vertices to be an effective compromise and that this parameter is consistent across

different meshes.

3.3.3 Analysis of Results

In the previous section, the performance of the eikonal solvers are compared

based on the running time on different architectures. Because running time

can be affected by many factors, such as implementation schemes and hardware

performance, we measure the number of local solver calls for a more precise

performance analysis in this section. We also briefly discuss the accuracy of

the proposed method, and introduce parameter optimization techniques for GPU

implementation.
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3.3.3.1 Asymptotical Cost Analysis

The most time-consuming operation for the eikonal equation solver is the

update of the solution on a vertex with its one-ring triangles, and each update

includes N local solver calls where N is the valence of this vertex. Table 3.5

compares the average number of local solver calls per vertex on different meshes

with different speed functions.

As can be seen from Table 3.5, FMM requires approximately 18 local solver

calls in all cases. This can be explained as follows. For FMM, the solutions of

the vertices on the wavefront may be computed multiple times. Each vertex has

six neighbors on the average, and statistically half of the neighbors are potentially

upwind. Thus, each vertex is updated roughly three times, and each time requires

a solve for the six triangles in the one-ring. This explains the characteristic 18

solves per vertex, independent of the meshes and speed functions. In comparison,

the average number of local solver calls for meshFIM depends largely on the

speed function, which can be noticed when comparing Speed 2 with Speed 1. In

addition, the average number of local solver calls for meshFIM-ST is more than

that of FMM on all the experiment settings. This difference in number of calls is

offset, but only slightly, by the extra work of FMM in maintaining the heap. The

multithreaded CPU version (meshFIM-MT) needs more updates because of the

extra computation associated with simultaneous updates in the red-black Gauss-

Seidel iteration scheme. This explains, to some extent, whywe get about three times

speedup on a quad-core CPU. The patchFIM method incurs an extra computation

associated with patch-based updates. This factor of 5–20 is consistent with the

run times we see. Roughly, if we have 200 processors operating at approximately

Table 3.5. Average number of local solver calls per vertex for different algorithms.
Mesh 1 with Mesh 2 with Mesh 3 with Mesh 4 with Mesh 3 with

Speed 1 Speed 1 Speed 1 Speed 1 Speed 2
FMM 17.9 19.5 18.1 18.3 18.1

meshFIM-ST 18.0 23.3 24.4 19.6 59.2
meshFIM-MT 18.0 26.6 46.1 23.1 83.1

patchFIM (GPU) 105.0 595.5 290.9 251.2 334.1
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half the clock rate, we would expect, ideally, a 100× advantage. However, with

the efficiencies shown in Table 3.5, we would expect a 5–20× speed advantage on

the GPU (relative to FMM), which is consistent with data in Table 3.4. This result

also provides evidence that the CUDA implementation achieves a computational

density that is high enough to offset latency and memory management overhead.

We can asymptotically compare the computational costs of the FMM and

meshFIM algorithms as follows [52]. Let k1 and k2 be the costs for a local solver and

a heap updating operation, respectively. Suppose PFMM and PFIM are the average

number of local solver calls per vertex in FMMandmeshFIM-ST, respectively (as in

Table 3.5). Let h be the average heap size. The total costs for FMMandmeshFIM-ST

on a mesh with N vertices can be defined asymptotically as follows:
⎧⎪⎪⎪⎨⎪⎪⎪⎩
CFMM =N(k1PFMM+ k2PFMMlog2h) =Nk1PFMM(1+

k2
k1
log2h)

CFIM =Nk1PFIM.

The value k2
k1
is empirically measured to be about 0.02. Hence, the ratio for the costs

of meshFIM and FMM is: CFIM
CFMM

=
PFIM

PFMM(1+0.02log2h)
.

For the setting with Mesh 1 and Speed 1, the average heap size h (which is

proportional to the arc length of the expanding wavefront) is 1302 for FMM and
PFIM
PFMM

is approximately 1.67, as can be derived from Table 3.5. Therefore, CFIM
CFIM

≈ 1.38

in this case, which is consistent with the experimental results in Table 3.4.

As shown in the above analysis, k1 >> k2 in CFMM, so the impact of the update

operations on the performance of FMM is much more significant than that of

the heap operations for moderately sized meshes. This is juxtaposed with the

lower cost of computing node updates on regular grids, which makes FIM more

competitive with FMM in that circumstance, even for serial implementations [52].

It can also be seen that, with a larger mesh (which means larger h), the performance

difference between single-threaded meshFIM (CFIM) and FMM (CFMM) will be

less. Of course the design goal of meshFIM is that it can be mapped well to

parallel architectures. Evenwith someperformancedegradation fromGauss-Seidel

iteration in meshFIM-ST to red-black Gauss-Seidel in meshFIM-MT, we can still

get large performance gain from running on multiple core CPUs.
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The performance of meshFIM is determined by the number of updates (or

the number of local solver calls), which depends heavily on the heterogeneity of

the speed function. The following experiment systematically characterizes how the

speed function affects the performance of these algorithms. First, we generatewhite

noise for the initial speed function, and then apply amesh Laplacian operator [109]

N times to the initial speed function to make the speed function less heterogeneous

for increasing N. Figure 3.6 shows the result of this experiment. The x axis is the

number of total vertices in the mesh and the y axis is the number of local solver

calls. AsN becomes bigger, and the speed function more homogeneous or smooth,

the plot becomes less steep, and the results become closer to the meshFIM results

with a constant speed function. We also see that FMM increases linearly with

number of vertices, as expected.

3.3.3.2 Error Analysis

To show that the proposed algorithm achieves the first-order accuracy we

would expect from the linear elements introduced in the solver, we performed

a convergence analysis. We use seven regularly triangulated square meshes,

representing a 16×16 patch of�2, with the number of vertices ranging from 256 to

Figure 3.6. Laplacian experiment results



40

1,048,576. We considered two cases of boundary conditions. In the first case, we

used a pair of isolated points and in the second case, we used a pair of circles of

radius 3, where the domain is 16× 16. Boundary conditions were projected onto

the grid using the nearest vertices to the circles or points. We then solve for the

distances to these boundaries for the entire domain using the patchFIM eikonal

solver and compare against analytical results at the vertices using the average

squared error (L2)—similar plots result from sup error. Figure 3.7(a) shows the

level sets of a solution to the circular boundary conditions. Finally, we can plot

these errors against the size of triangles, as shown in Figure 3.7(b). For the circular

boundary conditions, the slope of this graph is 1.0, which is consistent to our claim

that meshFIM is first-order accurate. For the point boundary conditions, the slope

is less—showing the method is not first-order accurate for nonsmooth boundaries,

which are inconsistent with the governing equations.

3.3.3.3 Parameter Optimization

As for the iteration number within an active patch update, every active patch

is updated multiple times before its convergence is checked. There are two

motivations. First, not all the vertices in a patch reach a consistent configuration

(a) (b)

Figure 3.7. Results for different boundaries: a) The level sets of the solution of
the eikonal equation which represents distance to two circular boundaries. b)
The error as a function of resolution shows first-order convergence for smooth
boundary conditions.
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with a single update. This is clear if we imagine a wavefront of active vertices

initiated at one side of a patch propagating to the other side. The check for

convergence requires communication with the CPU, and we would like to make

maximum use of the fast on-chip shared memory space without communicating

with the main memory. However, if the number of iterations per patch n is too

large, the algorithm executes useless extra updates after reaching a consistent

configuration. Generally, n is proportional to the patch diameter, which is related

to the number of iterations it takes for a wavefront to propagate across a patch.

The optimal choice of n depends not only on the size of the patch but also on the

input speed function. In general, according to our experiments, the best n can be

around 7 for most cases for patches of approximately 64 vertices. The running

times for n < 7 can be quite good, but are not stable across different data sets and

speed functions. However, for n> 7 the running time becomes stable and gradually

increases as n increases. This is because patches with 64 vertices usually converge

in about seven updates, and therefore, wavefront propagation is almost identical

with n > 7 iterations.

3.4 Conclusions
In this chapter, we propose a fast and easily parallelizable algorithm to solve

the eikonal equation on unstructured triangular meshes on a single-core CPU

and on parallel, streaming architectures with restrictions on local memory. The

proposed algorithms are based on the fast iterative method with modifications to

accommodate unstructured triangular grids. The method employs a narrow band

method to keep track of the mesh vertices to be updated and iteratively updates

vertex values until they converge. Instead of using an expensive sorting data

structure to ensure the causality, the proposed method uses a simple list to store

active vertices and updates them asynchronously, using an ad-hoc ordering, which

can be determined by the hardware. The vertices in the list are removed from or

added to the list based on the convergence, which is a measure of consistency with

neighboring vertices. Themethod is easily portable to parallel architectures, which

is difficult or infeasible with many existing methods.



CHAPTER 4

A FAST ITERATIVEMETHOD FOR SOLVING

THE EIKONAL EQUATIONON

TETRAHEDRAL DOMAINS

4.1 Introduction
The eikonal equation and its variations (forms of the static Hamilton-Jacobi and

levelset equations) are used as models in a variety of applications, ranging from

robotics and seismology to geometric optics. These applications include virtually

any problem that entails the finding of shortest paths, possibly with inhomoge-

neous or anisotropic metrics (e.g., due to material properties). In seismology, for

example, the eikonal equation describes the travel time of the optimal trajectories

of seismic waves traveling through inhomogeneous anisotropic media [81]. In

cardiac electrophysiology [74], action potentials on the heart can be represented

as moving interfaces that can be modeled with certain forms for the eikonal

equation [26, 56]. The eikonal equation also describes the limiting behavior of

Maxwell’s equations [43], and is therefore useful in geometric optics (e.g., [25, 72]).

As described in [10], many of these cases present a clear need to solve such

problems on fully unstructured meshes. In particular, in this work, the use of

unstructured meshes is motivated by the need for body-fitting meshes. In certain

problems, such as cardiac simulations, the domain is a volume bounded by a

smooth, curved surface, and triangle meshing strategies for surfaces combined

with tetrahedralmeshing of the interior can accurately and efficiently capture these

irregular domains (e.g., see Figure 1.1-left). In other problems, such as in the case of

geometric optics (Figure 1.1-right) or in geophysics applications, irregular unstruc-

tured meshes allow for accurate, efficient modeling of material discontinuities that

are represented as triangulated surfaces embedded in a tetrahedral mesh.
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While solutions of the eikonal equation are used in their own right in many

physical problems, such solutions are also used as building blocks in more general

computational schemes such as in remeshing and in image/volume analysis (e.g.,

[3, 5, 23, 87]). When used as part of a more general computational pipeline, it

is essential that effort be expended to minimize the computational cost of this

component in an attempt to optimize the time of employing the pipeline. There is

a clear need for the development of fast algorithms that provide solutions of the

eikonal equation on unstructured 3D meshes.

Recent developments in computer hardware show that performance improve-

ments will no longer be driven primarily by increased clock speeds, but by paral-

lelism and hardware specialization. Single-core performance is leveling off, while

hex-core CPUs are available as commodities; soon, conventional CPUs will have

tens of parallel cores. Commodity multimedia processors such as the IBM Cell

and graphics processing units (GPUs) are considered forerunners of this trend. To

obtain solutions in an efficient manner on these state-of-the-art Single-Instruction-

Multiple-Data (SIMD) type computer architectures places particular constraints on

the data dependencies, memory access, and scale of logical operations for such

algorithms.

Building an efficient three-dimensional tetrahedral eikonal solver for multicore

and SIMD architectures poses many challenges, some unique to working with

three-dimensional data. First of all, as in two dimensions, the update scheme of the

solver needs to be easily parallelizable andpose no data dependencies for the active

computational domain, which will change as the solution progresses. Secondly,

representing the topology of an unstructured 3D mesh imposes a significant mem-

ory footprint compared to its two-dimensional counterpart, creating challenges in

achieving the computational density necessary to make use of the limited memory,

registers, and bandwidth onmassively parallel SIMDmachines. Thirdly, the vertex

valences of the three-dimensional unstructured meshes can be both quite high and

can be highly variable across the mesh, posing additional challenges in SIMD

efficiency.

In the past several decades, many methods have been proposed to efficiently
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solve the eikonal equations on regular and unstructured grids. The fast marching

method (FMM) by Sethian [57] (a triangular mesh extension of [88]) is often con-

sidered the de facto state-of-the-art for solving the eikonal equation; its asymptotic

worse case complexity, O(N logN), was shown to be optimal. It attains optimality

by maintaining a heap data structure with a list of active nodes, on a moving

front, that are candidates for updating. The node with the shortest travel time

is considered to be solved, removed from the list, and never visited again. This

active list contains only a (relatively small) subset of the nodes within the entire

mesh. Though it provides worst-case optimality for the serial case, the use of a

heap data structure greatly limits the parallelization of the approach. Zhao [110]

and Tsai et al. [100] introduced an alternative approach, the fast sweeping method

(FSM), which uses a Gauss-Seidel style update strategy to progress across the

domain in an incremental grid-aligned sweep. This method does not employ

the sorting strategy found in FMM, and hence is amenable to coarse-grained

parallelization [46, 101, 111]. The Gauss-Seidel style sweeping approach of

FSM, however, is a significant limitation when attempting to build a general,

efficient fine-grained parallel eikonal solver over tetrahedral meshes. Although

one can do as is traditionally done in parallel computing and employ coloring

techniques (e.g., red-black) to attempt to mitigate this issue [93], one cannot push

this strategy to the levels needed for the fine-grain parallelization required on

current streaming architectures. Furthermore, any gains through parallelism must

offset any suboptimal behavior; previous work has shown that FSM introduces a

large amount of excess computation for certain classes of realistic input data [52].

In this chapter, we put forward a new local solver specially designed for

tetrahedral meshes and anisotropic speed functions, propose a data compaction

strategy to reduce the memory footprint (and hence reduce costly memory loads)

of the local solver, design new data structures to better suit the high valence

numbers typically experienced in three-dimensional meshes, and also propose

a GPU-suitable sorting-based method to generate the gather-lists to enable a

lock-free update. We also propose a new computational method to solve the

eikonal equation on three-dimensional tetrahedral meshes efficiently on parallel
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streaming architectures; we call our method the tetrahedral fast iterative method

(tetFIM). The framework is conceptually similar to the previously proposed FIM

methodology [37, 52] for triangle meshes, but the move to three-dimensions for

solving realistic physics-based problems requires two significant extensions. First

is a principles-based local solver which handles anisotropic material (which is

needed for realistic three-dimensional physics-based simulations such as in ge-

ometric optics and seismology). Second is the corresponding re-evaluation and

redesign of the computational methodology for triangles in order to fully exploit

streaming hardware in light of the additional mathematical complexities required

for solving the eikonal equation in inhomogeneous, anisotropic media on fully

three-dimensional tetrahedralizations. This chapter also provides algorithmic

and implementation details, as well as a comparative evaluation, for two data

structures designed to efficiently manage three-dimensional unstructured meshes

on GPUs. The data-structure issue is particularly important in 3D, because of the

increased connectivity of the mesh and the need to mitigate the cost of loading

three-dimensional data to processor cores in order to keep the computational

density high.

The remainder of the chapter proceeds as follows. In Section 4.2, we present the

mathematical and algorithmic description of the fast iterative method for solving

the inhomogeneous anisotropic eikonal equation on fully unstructured tetrahedral

domains. We then in Section 4.3 describe how the proposed algorithm can be

efficientlymapped to serial andmultithreadedCPUsand to streamingarchitectures

such as the GPU. In Section 4.4, we provide results that compare both our CPU and

GPU implementations against other widely-usedmethods and discuss the benefits

of our method. We present conclusions and future work in Section 4.4.6.

4.2 Mathematical and Algorithmic Description
In this section,wedescribe themathematics associatedwith the eikonal equation

and the corresponding algorithm we propose for its solution. The main building

blocks of the method are a new local solver and the active list update scheme. The

local solver, upon being given a proposed solution of the eikonal equation on three
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of the four vertices of a tetrahedron, updates the fourth vertex value in manner

that is consistent with the characteristics of the solution. The update scheme is the

management strategy for the active list, consisting of the rules for when vertices

are to be added, removed, or remain on the list. We refer to the combination of

these two building blocks as tetFIM.

4.2.1 Notation and Definitions

The eikonal equation is a special case of the nonlinear Hamilton-Jacobi partial

differential equations (PDEs). In this chapter, we consider the numerical solution of

this equation on a 3D domain with an inhomogeneous, anisotropic speed function:
⎧⎪⎪⎪⎨⎪⎪⎪⎩
H(x,∇φ) =

√
(∇φ)TM(∇φ) = 1 ∀x ∈Ω ⊂R3

φ(x) = B(x) ∀x ∈ B ⊂Ω
(4.1)

where Ω is a 3D domain, φ(x) is the travel time at position x from a collection

of given (known) sources within the domain, M(x) is a 3× 3 symmetric positive-

definite matrix encoding the speed information on Ω, and B is a set of smooth

boundary conditions which adhere to the consistency requirements of the PDE.We

approximate the domain Ω by a planar-sided tetrahedralization denoted by ΩT.

Based upon this tetrahedralization, we form a piecewise linear approximation of

the solution bymaintaining the values of the approximation on the set of verticesV

and employing linear interpolation within each tetrahedral element in ΩT. We let

M be constant per tetrahedral element, which is consistent with a model of linear

paths within each element. vi denotes the ith vertex inVwhose position is denoted

by a 3-tuple xi = (x, y,z)T where x, y,z ∈R. An edge is a line segment connecting two

vertices (vi, vj) in R3 and is denoted by ei, j. Two vertices that are connected by an

edge are neighbors of each other. ei, j denotes the vector from vertex vi to vertex vj

and ei, j = x j−xi. The angle between ei, j and ei,k is denoted by ∠i or ∠ j,i,k.

A tetrahedron, denoted Ti, j,k,l, is a set of four vertices vi, vj, vk, vl that are each

connected to the others by an edge. A tetrahedral face, the triangle defined by

vertices vi, vj and vk of Ti, j,k,l, is denoted Δi, j,k. The solid angle ωi at vertex vi

subtended by the tetrahedral face vj, vk, vl is given by ωi = ξ j,k+ξk,l+ξl, j, where ξ j,k

is the dihedral angle between the planes that contain the tetrahedral faces Δi, j,l and
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Δi,k,l and define ξk,l and ξl, j correspondingly. We define a tetrahedron as an acute

tetrahedron when all its solid angles are smaller than 90 degrees while we define

an obtuse tetrahedron as one in which one or more of its solid angles is larger than

90 degrees. We note that one can define both an acute and obtuse tetrahedron

in terms of dihedral angle, which is equivalent to the proposed definition. We call

the vertices connected to vertex vi by an edge the one-ring neighbors of vi, and the

tetrahedra sharing vertex vi are called the one-ring tetrahedra of vi. We denote the

discrete approximation to the true solution φ at vertex vi by Φi.

4.2.2 Definition of the Local Solver

One of the main building blocks of the proposed algorithm is the local solver, a

method for determining the arrival time at a vertex assuming a linear characteristic

across a tetrahedron emanating from the planar face defined by the other three

vertices—whose solution values are presumed known. In this section, we define

the actions of the local solver for both acute and obtuse tetrahedron.

Given a tetrahedralization ΩT of the domain, the numerical approximation,

which is linearwithin each tetrahedron, is givenbyΦ(x) and isdefinedbyspecifying

the values of the approximation at the vertices of the tetrahedra. The solution

(travel time) at each vertex is computed from the linear approximations on its

one-ring tetrahedra. From the computational point-of-view, the bulk of the work

is in the computation of the approximations from the adjacent tetrahedra of each

vertex—work accomplished by the local solver.

Because acute tetrahedra are essential for proper numerical consistency [57],

we consider the case of acute tetrahedra first and then discuss obtuse tetrahedra

subsequently. The specific calculation on each acute tetrahedron is as follows.

Considering the tetrahedron T1,2,3,4 depicted in Figure 4.1, we use an upwind

scheme to compute the solution Φ4, assuming the values Φ1, Φ2, and Φ3 comply

with the causality property of the eikonal solutions [79]. The speed function within

each tetrahedron is constant, so the travel time to v4 is determined by the time/cost

associated with a line segment lying within the tetrahedron T1,2,3,4, and this line

segment is along the wave front normal direction that minimizes the value at v4.

The key step is to determine the normal direction n of the wavefront and establish
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Figure 4.1. Diagram denoting components of the local solver. We compute the
value of the approximation at the vertex v4 from the values at vertices v1, v2, and
v3. The vector n denotes the wave propagation direction that intersects with the
triangle Δ1,2,3 at v5.

whether or not the causality condition is satisfied. The ray that has a direction n

and passes through the vertex v4 must fall inside the tetrahedron T1,2,3,4 in order to

satisfy the causality condition. To check such a causality condition numerically, we

first compute the coordinates of the point v5 at which the ray passing through v4

with direction n intersects the plane spanned by v1, v2, and v3 and then then check

to see whether or not v5 is inside the triangle Δ1,2,3.

We denote the travel time for wave to propagate from the vertex vi to the

vertex vj as Φi, j = Φ j −Φi, and therefore, the travel time from v5 to v4 is given

by Φ5,4 = Φ4 −Φ5 =
√
eT5,4Me5,4, according to the Fermat principle as it applies

to Hamilton-Jacobi equations [100]. An alternative derivation of this principle

from the perspective of geometric mechanics is given in [47]. Using the linear

modelwithin each cell andbarycentric coordinates (λ1,λ2,λ3) todenote the position

of v5 on the tetrahedral face, we can express the approximate solution at v5 as

Φ5 = λ1Φ1 +λ2Φ2 +λ3Φ3, where the position is given by x5 = λ1x1 +λ2x2 +λ3x3.

Here, λ1, λ2, λ3 satisfy that λ1+λ2+λ3 = 1. This gives the following expression for

Φ4:

Φ4 = λ1Φ1+λ2Φ2+ (1−λ1−λ2)Φ3+

√
eT5,4Me5,4. (4.2)

The goal is to find the location of v5 that minimizes Φ4. Thus, we take the partial

derivatives of Equation 4.2 with respect to λ1 and λ2 and equate them with zero to

obtain the conditions on the interaction of the characteristic and the opposite face:
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Φ1,3

√
eT5,4Me5,4 = eT5,4Me1,3

Φ2,3

√
eT5,4Me5,4 = eT5,4Me2,3.

(4.3)

If Φ1,3 and Φ2,3 are not both zero, we have the following linear equation:

Φ2,3(eT5,4Me1,3) = Φ1,3(eT5,4Me2,3). (4.4)

Wemust now solve Equation 4.4 and either one of Equation 4.3 for λ1 and λ2. If no

root exists, or if λ1 or λ2 falls outside the range of [0,1] (that is, the characteristic

direction does not reside within the tetrahedron), we then apply the 2D local solver

used in [37] to the faces Δ1,2,4, Δ1,3,4, and Δ2,3,4 and select the minimal solution from

among the three. The surface solutions allow for the same constraint, and if the

minimal solutions falls outside of the tetrahedral face, we consider the solutions

along the edges for which we are guaranteed a minimum solution exists. Because

the quantity being minimized, there can be only one minimum, and the optimal

solution associated with that element must pass through the tetrahedron or along

one of its faces/edges.

In the case of parallel architectures with limited high-bandwidth memory, the

memory footprint of the local solver becomes a bottleneck to performance. The

smaller the memory footprint of the local solver, the higher the computational

density one can achieve on the streaming processors, and the closer one gets to the

100-200× raw improvement in processing power (relative to a conventional CPU).

Here we explore the algebra a little more carefully to reduce these computations to

their fundamental degrees of freedom. Solving Equations 4.3–4.4 directly requires

storing all the coordinates of the vertices and the components of M, which is

18 floating point values in total. In practice, we can reduce the computations

and memory storage based on the observation that e5,4 can be reformatted as:

e5,4 = x4 − x5 = x4 − (λ1x1 +λ2x2 + λ3x3) = [e1,3 e2,3 e3,4]λ, where λ = [λ1 λ2 1]T.

Hence, we obtain

eT5,4Me5,4 = λT[eT1,3 e
T
2,3 e

T
3,4]

TM[e1,3 e2,3 e3,4]λ = λTM′λ (4.5)

where M′ = [α β θ] with



50

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

α = [eT1,3Me1,3 eT2,3Me1,3 eT3,4Me1,3]T

β = [eT1,3Me2,3 eT2,3Me2,3 eT3,4Me2,3]T

θ = [eT1,3Me3,4 eT2,3Me3,4 eT3,4Me3,4]T

(4.6)

and ⎧⎪⎪⎨⎪⎪⎩
eT5,4Me1,3 = λTα

eT5,4Me2,3 = λTβ.
(4.7)

Plugging Equation 4.5, 4.6, and 4.7 into Equations 4.3 and 4.4, we obtain
⎧⎪⎪⎪⎨⎪⎪⎪⎩
Φ1,3

√
λTM′λ = λTα

Φ2,3λ
Tβ = Φ1,3λ

Tα.
(4.8)

Solving Equation 4.8 only requires storingM′, which is symmetric so only requires

six floats per tetrahedron.

Having defined the acute tetrahedron local solver, we now discuss the case of

obtuse tetrahedra. The computation of the solution for linear approximations on

tetrahedral elements has poor approximation properties when applied to obtuse

tetrahedra [82]. The issue of dealing with good versus bad meshes is not the main

focus of this chapter or the proposed algorithm, but limited incidences of obtuse

tetrahedron can be addressedwithin the local solver. To accomplish this, we extend

the method proposed in [57], originally designed for triangular meshes to work for

tetrahedralmeshes. As shown in Figure 4.2whereω4 is obtuse, we connect v4 to the

vertex v5 of a neighboring tetrahedron and thereby cut the obtuse solid angle into

three smaller solid angles. If these three solid angles are all acute, then the process

stops, as shown in the left images of Figure 4.2; otherwise, if one of the smaller solid

angles is still obtuse, then we connect v4 to the vertex v6 of another neighboring

tetrahedron. This process is performed recursively until all new solid angles at

v4 are acute as shown in the right image of Figure 4.2, or the opposite triangular

faces coincides with a boundary. Note that algorithmically, these added edges

and tetrahedra are not considered part of the mesh; they are considered virtual

and only used within the local solver for updating the solution at v4. We cannot

prove the convergence of this refinement algorithm, and the above recursion could

propagate extensively throughout the mesh in extraordinary cases. In practice, the



51

Figure 4.2. Diagram denoting the strategy used to deal with obtuse tetrahedra.
We split the obtuse angle ω4 to create three virtual tetrahedra used within the local
solver.

algorithm would be forced to terminate after a fixed number of splits emanating

from a single vertex — in all of the meshes in this chapter, the algorithm recursed

no more than once.

4.2.3 Active List Update Scheme

The proposed algorithm uses a modification of the active list update scheme

as presented in [37, 52] combined with the new local solver described above

designed for unstructured tetrahedral meshes with inhomogeneous anisotropic

speed functions.

The algorithm is iterative, but for efficiency, the updates are limited to a rela-

tively small domain that forms a collection of narrowbands that formwavefronts of

values that require updating. This narrow banding scheme uses a data structure,

called active list, to store the vertices or tetrahedra slated for revision and these

vertices/tetrahedra are called active vertices/tetrahedra. During each iteration,

active vertices/tetrahedra can be updated in parallel and after the updates of all

the active vertices/tetrahedra, the active list is modified to eliminate vertices whose

solutions are consistent with their neighbors and to include vertices that could

be affected by the last set of updates. Convergence of the algorithm to a valid

approximation of the eikonal equation was proven in [52].
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4.3 TetFIM Serial and Parallel Implementations
In this section, we provide implementation details in terms ofmethods and data

structures necessary for the efficient instantiation of our local solver and active list

update scheme on serial CPUs, multithreaded CPUs, and streaming SIMD parallel

architectures.

4.3.1 Implementation on Serial and Multithreaded CPUs

The proposed method builds on the fast iterative method proposed for struc-

tured meshes [52], which operates as follows. Nodes on the active list are revised

individually, and the corresponding values remain consistent with their upwind

neighbors. Then, each updated value immediately overwrites the previous solu-

tion. The algorithm runs through the active list, constantly revising values, and

at the end of the list, it loops back to the beginning. As such, the list has no

real beginning or end. A vertex is removed from the active list when the difference

between its old and revised values is below apredetermined tolerance—effectively,

the value at the vertex does not change within the range of the prescribed tolerance

from the previous update. We specify a vertex whose value remains unchanged

(within some tolerance ε) as ε-converged. As each ε-converged vertex is removed

from the active list, all of its potentially downwind neighbors (neighbors with

larger value) are updated. If their values are not ε-converged (i.e., they deviate

significantly), they are included in the active list. The algorithm keeps updating

the vertices in the active list until the list is empty.

The update of an active vertex does not depend on the other updates; hence,

we can extend the single-threaded algorithm to shared memory multiprocessor

systems by simply partitioning arbitrarily, at each iteration, the active list into

N sublists and assigning the sublists to N threads. Each thread asynchronously

update the vertices within the sublist. These updates are done by applying the

updating step to each partition of the active list. In practice, we choose N to be

twice the number of CPU cores to take full advantage of Intel’s hyper-threading

technology. At the beginning of an iteration, if there are n nodes in the active

list, the sublist size M is given by M = 
 nN �. The active list is evenly divided into

N sublists, each containing M consecutive active nodes except for the last sublist
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which may contain fewer thanM active nodes. These N sublists are then assigned

to N threads.

4.3.2 Implementation on Streaming SIMD Parallel Architectures

To exploit the GPU performance advantage, we propose a variation of tet-

FIM, called tetFIM-A, that adapts well on SIMD architectures by combining an

agglomeration-based update strategy that is divided across blocks and carefully de-

signeddata structures for 3D tetrahedralmeshes. In thismethod, the computational

domain (mesh) is split into minimally overlapping agglomerates (sharing only one

layer of tetrahedra) and each agglomerate is treated with logical correspondence

to a vertex in the original tetFIM. The vertices in each agglomerate are updated

in a SIMD fashion on a block, and the on-chip cache is employed to store the

agglomerate data and the intermediate results. Similar to the CPU variants of

tetFIM, a narrow banding scheme is used to focus the computation in terms of

the necessary computational region. The active list consists of a set of active

agglomerates instead of active vertices.

In an iteration, each active agglomerate is loaded from the global memory to a

block, and the values of all vertices in this agglomerate are updated by a sequence

of SIMD iterationswhichwe call internal iterations. The agglomerate data are copied

to the on-chip memory space, and the internal iterations are performed to revise

the solutions of the vertices in that agglomerate. In general, thewhole computation

consists of two steps: the preprocessing and the iteration.

4.3.2.1 Preprocessing

The tetFIM-A requires setup or preprocessing before the computation of the

solution. First, we divide the mesh into agglomerations through a multilevel

partitioning scheme described in [55]. The specific algorithm for mesh partitioning

is not essential to the suggested algorithm, except that efficiency is achieved for

agglomerates with matching numbers of vertices/tetrahedra and relatively few

vertices on the agglomerate boundaries. We also precompute the static mesh

information, including the extra information associatedwith the obtuse tetrahedra,

and prepare the necessary data for the iteration step, including compaction of the
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speed and geometric data and generation of the gather-listswhich will be described

below.

4.3.2.2 Iteration step

In this step, each agglomerate is treated just like a vertex in tetFIM, and the

main iteration continues until the active list becomes empty. The main iteration

consists of three stages as outlined below. First, each agglomerate in the active list is

assigned to a SIMD computing unit. Second, once the agglomerate is updated, we

check to see if the agglomerate is ε-converged, i.e., all vertices in an agglomerate are

ε-converged. Checking the agglomerate convergence entails updating the entire

agglomerate once and seeing if there exists a vertex with a changed solution. This

is done with a reduction operation, which is commonly employed in the streaming

programming model to efficiently produce aggregate measures (sum, max, etc.)

from a stream of data [75]. Finally, we deal with the effects of an update on the

active list. If an agglomerate is not ε-converged, we add it into the active list;

otherwise, we add its neighboring agglomerates to the active list and then go to

the first stage and repeat the update again (see Algorithm 4.1).

This agglomeration strategy ismeant to exploit the high computing power from

modern SIMDprocessors. However, the 3D tetrahedral mesh and anisotropy of the

speed function pose some challenges for this strategy to achieve good performance.

First, representing the topology of an unstructured 3D mesh and storing the speed

matrices imposes a large memory footprint. In juxtaposition to this, high local

memory residency and sufficient computational density are desired to hide the

memory access latency. Due to the large memory footprint, the agglomerate size

must be small enough so that the limited on-chip fast memory space of the SIMD

processor can accommodate all the agglomerate data. However, small agglomerate

sizes leads to a larger boundary and more global communication which is slow for

SIMD architectures. In addition, unstructured 3D meshes can have large and

highly variant vertex valances which result in uneven workload for the threads

and an incoherent memory access pattern that affects the achieved bandwidth. To

address all these challenges, it is essential to carefully design the data structure
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Algorithm 4.1meshFIM(A,L) (A: set of agglomerates, L: active agglomerate list)
comment: initialize the active list L
for all a ∈ A do
for all v ∈ a do
if any v ∈ S then
add a to L

end if
end for

end for
comment: iterate until L is empty
while L is not empty do
for all a ∈ L do
update the values of the node in each a

end for
for all a ∈ L do
check if a is converged with reduction operation

end for
for all a ∈ L do
if a is converged then
add neighboring agglomerates of a into a temporary list Ltemp

end if
end for
clear active list L
for all a ∈ Ltemp do
perform 1 internal iteration for a

end for
for all a ∈ Ltemp do
check if a is converged with reduction operation

end for
for all a ∈ Ltemp do
if a is converged then
add a into active list L

end if
end for

end while

used for the agglomeration strategy so that the data structure is compact and

regular. We explore here two different data structures for representing tetrahedral

agglomeration yielding high computational density for the SIMD processing of

tetrahedral meshes on blocks. We call these two representations the one-ring-strip

and the cell-assembly data structures.
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4.3.2.3 Description of One-ring-strip Data Structure

The one-ring-strip data structure is efficient only for the case of isotropic speed

functions because its run-time effectiveness is offset by the memory footprint of the

geometric and speed information in the anisotropic case. We discuss it here as it

provides better performance for this very important special case. As in tetFIM, the

update for one vertex includes computing solutions from its one-ring tetrahedra

and taking the minimum solution as the new updated value. In order to minimize

memory usage, we store for each vertex its one-ring tetrahedra by storing the

outer-facing triangles on the polyhedron formed by the union of the one-ring

tetrahedra. To further improvememory usage, these triangles are stored in “strips”

as commonly used in computer graphics [14]. Specifically, for a given vertexwithin

the mesh, the faces of its one-ring tetrahedra that are opposite of the vertex form

a triangular surface (see Figure 4.3) from which we generate a triangular strip and

store this strip instead of storing the entire one-ring tetrahedra list.

In practice, the one-ring-strip data structure consists of four arrays: VAL,

STRIP, GEO, and SPEED. GEO is the array storing the per-vertex geometry

information required to solve the eikonal equation. It is divided into subsegments

with apredefined size that is determinedby the largest agglomeration amongall the

agglomerates. Each subsegment stores a set of three floating point variables (floats)

for the vertex coordinates of each vertex. VAL is the array storing the per-vertex

values of the solution of the eikonal equation. It is also divided into subsegments,

Figure 4.3. 2D representation of the outer surface of vertex v formed by the one-ring
tetrahedra: the polygon formed by the bold line segments is analogous to the outer
triangular surface in tetrahedral mesh.
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and solutions on the vertex are stored. The algorithm requires twoVAL arrays, one

for the input and the other for the output, in order to avoid memory conflicts.

Vertices on the boundaries between agglomerates are duplicated so that each

agglomerate has access to vertices on neighboring agglomerates, which are treated

as fixed boundary conditions for each agglomerate iteration. The STRIP array

stores both indices to GEO and VAL, respectively, for the geometric information

and the current solution at each vertex within the strip. The SPEED array stores

per-tetrahedron speed values corresponding to the tetrahedral strip of a vertex.

This data structure is not suited for the anisotropic case since the speed matrix

requires significant memory. Anisotropic speed functions require that six floating

point numbers of the speedmatrix be stored for each adjacent tetrahedronof a node,

while isotropic speed functions require only one floating point number per adjacent

tetrahedron. Figure 4.4 depicts the data structure introduced above. In a single

internal iteration on an agglomerate, the one-ring-strip data structure employs a

vertex-based parallelism, i.e., each thread in a block is in charge of the update of a

vertex which includes computing the potential values from the one-ring tetrahedra

of this vertex and then taking the minimum as the final result.

4.3.2.4 Description of Cell-assembly Data Structure

The cell-assembly data structure is an extension of the data structure described

in [37] for triangular meshes. However, especially for the tetrahedral meshes, we

have designed a new data compaction scheme to combine the anisotropic speed

matrices with the geometric information. In addition, instead of using a fixed

length array NBH to store the memory locations for a thread to gather data, we

use a more compact data structure to store these locations. Also, we propose a

lock-free strategy to generate the gather-lists which are needed in the computation

to find the minimum of the potential values of each node. The cell-assemblyworks

for both the isotropic and anisotropic cases, although it is slightly less efficient in

terms of run-time performance for some isotropic cases than the one-ring-strip data

structure.

The cell-assembly data structure includes four arrays, labeledGEO,VAL,OFF-
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Figure 4.4. One-ring-strip data structure: in this figure, Ti is a tetrahedron, xi, yi,
and zi represent the coordinates of the ith vertex, fi is the inverse of speed on a
vertex. Φi denotes the value of the solution at the ith vertex. Ii in STRIP represents
the data structure for the one-ring-strip of the ith vertex each of which has q indices
pointing (shown as arrows) to the value array.

SETS, andGATHER.GEO stores compacted geometry and speed information, and

the compaction scheme is described below. This is different from the cell-assembly

for the 2Dmeshes described in [37] which stores the speed and geometric informa-

tion separately. GEO is also divided into subsegments with a predefined size that

is determined by the largest agglomeration. VAL stores per-tetrahedron values of

solution of the eikonal equation. As with the one-ring-strip, we simply duplicate

and store the exterior boundary vertices for each agglomeration and treat the

data on those vertices as fixed boundary conditions for each agglomerate iteration

to deal with agglomerate boundaries. The GATHER array stores concatenated

per-vertex gather-lists which are the indices to VAL for the per-vertex solution,

and the OFFSETS array indicates the starting and ending of the gather-list of

each node in the GATHER array. These gather-lists are stored differently because

a tetrahedral mesh may have very various valence, and the fixed length data

structure used in [37] may waste a lot of memory space and bandwidth for the

sentinel values.

For cell-assembly, the updates of the intermediate (potential) vertex values in

an agglomerate employ tetrahedron-based parallelism. Each thread of a block
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is responsible for updating all four vertex values of a tetrahedron, and the in-

termediate results are stored in the VAL array. Then we need to find the final

value of a node, which is the minimum of its potential values which are stored in

the per-tetrahedron VAL array. Typically, an atomic minimum operation is then

needed to find theminimum for each node in parallel. However, atomic operations

are costly on GPUs, and we avoid them by switching to a vertex-based parallelism

strategy using gather-lists. A gather-list stores indices to VAL and tells the thread

where to fetch potential values in the VAL array for a node. A gather-then-scatter

like operation is then used to find the minimum value of a vertex from its one-ring

tetrahedra and reconcile all the values of this vertex according to the gather-lists.

Generating the gather-lists efficiently on GPUs is not a trivial task, given only the

geometric information of the mesh— the element list and the node coordinate list.

We use a sorting strategy to achieve this. Given a copy of the element list ELE

which stores the vertex indices of each tetrahedron, we create an auxiliary array

AUX of the same size and fill it with an integer sequence. Specifically, if the size

of ELE is n, AUX is initialized to {0, 1, 2, ... n− 1}. We sort ELE and permute

AUX according to the sorting. Now AUX stores the concatenated gather-lists all

the nodes, but we need to know the starting and ending positions of the gather-list

of each node, which is achieved by a reduction and a scan operation on the ELE

array. These operations – sorting, reduction, and scan – are all very efficient on

GPUs, and we use the CUDA thrust library [67] in our implementation. Now ELE

and AUX are respectively the OFFSETS andGATHER arrays we need.

Next, we describe howwe combine the speedmatrix and geometric information

in practice. As shown in Section 4.2.2, the local solver for updating a vertex requires

six floats to store the symmetric speed matrix M′, so a total of 24 floats are needed

to update all four vertices on a tetrahedron. However, based on the topology of

the tetrahedron and some algebra reductions, we have:

ei, j = ei,k+ek, j, (4.9)

v1TMv2 = v2TMv1 and (4.10)

v1TMv2+v1TMv3 = v1TM(v1+v2) (4.11)
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where v1, v2, and v3 are arbitrary vectors. According to these properties, we

can calculate all the four M′ elements from the six values: eT1,3M
′e2,3, eT2,3M

′e3,4,

eT1,3M
′e3,4, eT1,4M

′e2,4, eT1,3M
′e1,4, and eT2,3M

′e2,4. Precomputing these values, we

need only store six floats for each tetrahedron which are stored in the GEO array.

Compared to the one-ring-strip data structure, the advantage of cell-assembly is

that the computational work is almost the same for each SIMD thread independent

of the valances of the vertices, while for one-ring-strip, the computational work

per thread is determined by the valences of the vertices. More homogeneity in the

valances of the vertices results in better load balancing for the different threads.

However, the one-ring-strip data structure has a smaller memory footprint and

higher computation density since each SIMD thread computes the local solver

on each tetrahedron of a one-ring-strip. We evaluate the performance each data

structure empirically in the next section.

4.4 Results and Discussion
In this section, we discuss the performance of the proposed algorithms in real-

istic settings compared to two widely-used competing methods: the fast marching

method (FMM) and the fast sweeping method (FSM). Serial CPU implementations

were generated which strictly follow the algorithms as articulated in the (previ-

ously) cited references. We rely on a collection of unstructured meshes having

variable complexities to illustrate the performance of each method. For this set

of meshes, we examine how the performance of these methods is affected by

four different speed functions—a homogeneous isotropic speed, a homogeneous

anisotropic speed, a heterogeneous anisotropic randomspeed, and a speed function

for the geometric optics/lens example. We first show the error analysis of the

proposed first-order numerical scheme. Next, we show the results of the single-

threaded (serial) CPU implementation of tetFIM, FMM, and FSM, and review the

typical performance characteristics of the existing algorithms. We then detail the

results of our multithreaded CPU implementation and discuss the scalability of the

proposed algorithm on sharedmemory multiprocessor computer systems. Finally,

we present the results of our GPU implementation to demonstrate the performance
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of the proposed method on massively SIMD streaming parallel architectures. For

consistency of evaluation, single precision was used in all algorithms and for all

experiments presented herein.

The meshes and speed functions for the experiments in this section 1 are as

follows:

Mesh 1: A regularly tetrahedralized cube with 1,500,282 tetrahedra (63×63×63

regular grid) whose maximum valence is 24;

Mesh 2: An irregularly tetrahedralized cubewith 197,561 vertices and 1,122,304

tetrahedra whose maximum valence is 54;

Mesh 3: A heart model with 437,355 vertices and 2,306,717 tetrahedra whose

maximum valence is 68 (Figure 1.1-left);

Mesh 4: A lens model with 260,908 vertices and 1,561,642 tetrahedra whose

maximum valence is 58 (Figure 1.1-right);

Mesh 5: A 3-D model with irregular geometries, which we call blobs, with

437,355vertices and2,306,717 tetrahedrawhosemaximumvalence is 88 (Figure 4.5).

Speed 1: A homogeneous isotropic speed of constant 1.0,

Speed 2: A homogeneous anisotropic diagonal speed tensor with diagonal

entries 1.0, 4.0, and 9.0,

Speed 3: A heterogeneous anisotropic correlated random symmetric positive-

definite speed tensor,

Speed 4: A heterogeneous isotropic speed for lens model, and

Speed 5: A heterogeneous isotropic speed for lava lamp model.

4.4.1 Error Analysis

To show that the proposed algorithm achieves the first-order accuracy we

would expect from the piecewise linear approximation used within the solver,

we performed a convergence analysis on a problem with a known solution. We

use six regularly tetrahedralized cube meshes, representing a 256×256×256 block

withinR3, with the number of vertices on each side ranging from 17 to 513. We use

an ellipse octant (placing the center of the ellipse at the corner of the cube domain)

1Files containing the mesh and speed function definitions can be found at:
http://www.sci.utah.edu/people/zhisong.html
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Figure 4.5. Blobsmesh and its cross section. The different colors in the cross section
represent different materials indices of refraction (speed functions).

of the form x2+ 4y2+ 9z2 = R2, where R = 40 as the source. Boundary conditions

were projected onto the vertices using the nearest vertices to the sphere. We then

solve for the distances to these boundaries for the entire domain using the tetFIM

eikonal solver with an anisotropic diagonal speed matrix with diagonal numbers

1, 4, and 9 and compare against analytical results at the vertices using the L1 error.

L1 errors are computed in this way. First, for each tetrahedron, take the average

of the errors at the vertices and multiply by the volume of the tetrahedron. We

then sum up the products over all tetrahedra and divide the sum by the volume

of the whole domain. Finally, we calculate the error orders of any two consecutive

meshes. The results are presented in Table 4.1. The table shows that the order of

the error is approaching 1.0 with increasing resolution, which is consistent to our

claim that tetFIM is asymptotically first-order accurate.

4.4.2 CPU Implementation Results and Performance Comparison

We have tested our CPU implementation on aWindows 7 PC equippedwith an

Intel i7 965 Extreme CPU running at 3.2 GHz. All codes were compiled with Visual

Studio 2010using compiler options /O2and /arch:SSE2 to enable SIMD instructions.

(we accomplished a comparison using the Intel Sandy Bridge CPU to run some of

the tests. The results show the Sandy bridge CPU is around twice as fast as the i7

965. All results presented herein can be scaled appropriately to interpret the results

against the Sandy Bridge processor). First, we focus on the performance the CPU
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Table 4.1. Table presenting our convergence results (L1 error) and the order of
convergence as computed from subsequent levels of refinement.

Speed 1 Speed 2
Mesh sizes L1 Error Order L1 Error Order

17 8.073934 — 15.399447 —
33 4.688324 0.78 9.232588 0.74
65 2.606537 0.85 5.347424 0.79
129 1.396091 0.90 2.967363 0.85
257 0.721630 0.95 1.558972 0.93
513 0.362584 0.99 0.789725 0.98

implementations of our tetFIM method compared against serial FMM and FSM on

three different meshes with differing complexities (Mesh 1, Mesh 2, and Mesh 3)

using various speed functions. The anisotropic version of FMM [90] is no longer

local in nature (as it requires a larger multi-element upwind stencil) and hence, we

did not include anisotropic FMM in our comparisons. We call the serial version

of our method CPU method tetFIM-ST and the multithreaded version tetFIM-MT

(in all cases, we use four threads). In all these experiments, a single source point

is selected at around the center of the cube. For the FSM, we select the reference

points to be the eight corners of the cube and the run-time for FSM does not include

the sorting time required to sort vertices according to their Euclidean distances to

the reference points. Tables 4.2, 4.3, and 4.4 show the computational results for this

set of experiments.

As shown in Tables 4.2, 4.3, and 4.4, FMM outperforms both tetFIM and FSM on

all isotropic cases. This is to be expected as FMM is a worst-case optimal method

Table 4.2. Run-time (in seconds) of FMM, FSM, single-threaded tetFIM (tetFIM-ST),
andmultithreaded tetFIMwith four threads (tetFIM-MT) onMeshes 1 with Speeds
1, 2, and 3.

Speed 1 Speed 2 Speed 3
FMM 69 — —
FSM 213 216 680

tetFIM-ST 80 81 107
tetFIM-MT 27 28 41
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Table 4.3. Run-time (in seconds) of FMM, FSM, tetFIM-ST, and tetFIM-MT onMesh
2 with Speeds 1, 2, and 3.

Speed 1 Speed 2 Speed 3
FMM 42 — —
FSM 407 409 674

tetFIM-ST 60 59 175
tetFIM-MT 22 23 55

Table 4.4. Run-time (in seconds) of FMM, FSM, tetFIM-ST, and tetFIM-MT onMesh
3 with Speeds 1, 2, and 3.

Speed 1 Speed 2 Speed 3
FMM 71 — —
FSM 807 823 1307

tetFIM-ST 113 122 173
tetFIM-MT 46 48 56

and its performance is not significantly impacted by the complexity of the mesh

or the speed function, as observed previously in [52] and [37]. FIM outperforms

the FSM on all the test cases. For simpler speed functions like Speeds 1 and 2, the

FSM requires only two iterations to converge, because the characteristics are well

captured thanks to the reference point choice. FSM, however, requires the update

of all the vertices in the mesh according to their distance to each reference point

in both ascending order and descending order. So for the eight reference points

in these experiments, FSM needs to update all vertices 16 times in one iteration,

which amount to 32 total updates for each vertex. On the other hand, tetFIM needs

less updates for the mesh vertices when the wavefront passes through the whole

domain from the source in the direction of the characteristics. Indeed, the average

valance of the mesh is 24, and assuming that half of the neighbors of a vertex

are fixed when a vertex is being updated, each vertex needs to be updated only

12 times on average. As pointed out in [51], when the speed function becomes

more complex (i.e., characteristics change frequently), FSM performs even worse

when compared to FIM, which can be shown in our Speed 3 case where FSM needs

six iterations to converge and tetFIM runs about seven times faster. Moving to
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the more complex Mesh 2, FSM’s performance is dramatically degraded, needing

five iterations for simpler Speeds 1 and 2 and eight iterations for Speed 3. The

tetFIM’s performance, however, is inconsequentially impacted by the complexity

of the mesh.

The tetFIM algorithm is designed for parallelism, and the results on the mul-

tithreaded system bear this out. The fourth rows in Tables 4.2, 4.3, and 4.4 show

the run-times of multithreaded tetFIM using four CPU cores. Note that tetFIM

scales well on multicore systems. On a quad-core processor, we observe a nearly

three times speedup from tetFIM-ST to tetFIM-MT on all cases. The reduction from

perfect scaling can be attributed to the fact that due to the partitioning of the active

list at each time step, the multithreaded version accomplishes more updates per

vertex than the serial version. In the single-threaded version, a single active list

implies that updated information is available immediately once a computation is

done, analogous to a Gauss-Seidel iteration; in the multithreaded case, the active

list partitioning enforces a synchronization in terms of exchange of information

between threads, analogous to a red-black Gauss-Seidel iteration.

4.4.3 GPU Implementation Results

To demonstrate the performance of tetFIM on SIMD parallel architectures, we

have implemented and tested tetFIM-A on an NVIDIA Fermi GPU using the

NVIDIA CUDA API [68]. The NVIDIA GeForce GTX 580 graphics card is has

1.5 GBytes of global memory and 16 microprocessors, where each microprocessor

consists of 32 SIMD computing cores that run at 1.544 GHz. Each computing core

has configurable 16 or 48KBytes of on-chip sharedmemory, for quick access to local

data. Computation on the GPU entails running a kernel with a batch process of a

large group of fixed size thread blocks, which maps well to the tetFIM-A algorithm

that employs agglomeration-based update methods. A single agglomerate is

assigned to a CUDA thread block. For the one-ring-strip data structure, each vertex

in the agglomerate is assigned to a single thread in the block, while in cell-assembly

data structures, each tetrahedron is assigned to a thread. These two variants of the

tetFIM-A algorithm are called tetFIM-A-ORS and tetFIM-A-CA, respectively.

The agglomerate scheme seeks to place the agglomerated data into the GPU
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cache (registers and sharedmemory). However, the GPU cache size is very limited,

and hence, we have to use agglomerates with smaller diameters compared to what

can be used in triangular mesh cases. This implies that we perform fewer internal

iterations in the 3D case versus the 2D case, which leads to lower computational

density. On the other hand, performing fewer internal iterations reduces the

number of redundant internal iterations causedbyoutdatedboundary information.

In addition, the local solver for tetrahedral mesh requires more computations.

Table 4.5 demonstrates that our agglomerate scheme balances the trade-off between

the agglomerate size, the number of internal iterations and computational density

verywell on the GPU; the speedup values increase in 3D over previously published

2D results [37]. In addition, ourGPU implementationsperformmuchbetter than all

theCPU implementations. Section 4.4.5 provides detailed analysis of the parameter

choice.

Table 4.5 also shows the performance comparison of the two tetFIM-A variants,

tetFIM-A-ORS, and tetFIM-A-CA with the single-threaded CPU implementation

(tetFIM) on the same meshes and the isotropic speed function, and shows the

speedup factors of tetFIM-A over the CPUmethod. Communication times between

CPU andGPU, which are only about one tenth of the run-times in our experiments,

are not included for tetFIM-A to give a more accurate comparison of the methods.

As shown in this result, tetFIM-A-ORS performs better than tetFIM-A-CA forMesh

1, which is a regularly tetrahedralized cube. This is because one-ring-strip data

structure consumes less shared memory so as to allow larger agglomerates. Large

agglomerates need more inside iterations to converge; hence, the computational

density is increaseddue to fast sharedmemoryusage for inside iterations. While for

the more complex irregular meshes like Mesh 3 in this comparison, tetFIM-A-CA

has a performance advantage. The reason is that for irregular meshes, the valence

of the vertices vary greatly; hence, the computational density of tetFIM-A-ORS

for each thread is sufficiently unbalanced that computing power is wasted when

faster threads are waiting for the slower ones to finish. On the other hand, the

two tetFIM-A algorithms achieve a good performance gain over both the serial

and multithreaded CPU solvers. On a simple case such as Mesh 1 with Speed
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1, tetFIM-A-ORS runs about 201 times faster than tetFIM-ST while tetFIM-A-CA

runs about 131 times faster than tetFIM-ST. On the other more complex cases,

tetFIM-A-ORS runs up 23 times faster than tetFIM-ST while tetFIM-A-CA is 37

times faster. See Figure 4.6 for visualizations of the resulting solutions.

We also observe that SIMD efficiency of the tetFIM algorithm depends on the

input mesh configuration (i.e., the average vertex valence relative to the highest

valence). As seen from Table 4.5, both GPU implementations achieve the highest

speedups on Mesh 1 compared to the CPU implementation while achieving the

lowest speedups on Mesh 3 which has much greater maximum vertex valance.

This is because the highly unstructured mesh, e.g., Mesh 3, leads to unbalanced

word load and waste of memory bandwidth on SIMD architectures.

Next, we show the tetFIM-A applied to the anisotropic cases. Because the

one-ring-strip data structure is not suitable for this case, we include only the

performance result of cell-assembly data structure variant tetFIM-A-CA. Table 4.6

clearly shows that the tetFIM-A which is implemented on the GPU performs

much better than the CPU implementation on all the examples we experimented,

Figure 4.6. Color maps and level curves of the solutions on the cube and heart
meshes. Left: the ellipse speed function (Speed 2). Right: the isotropic constant
function (Speed 1).
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Table 4.5. Run-times (in seconds) and speed-up factors (against tetFIM-ST) for the
different algorithms and architectures on all meshes with Speed 1. Data in first row
are from Tables 4.2, 4.3, and 4.4.

Mesh 1 Mesh 2 Mesh 3
tetFIM-ST 80 60 113
tetFIM-MT 27 22 46

tetFIM-A-ORS 0.396 1.412 2.694
tetFIM-A-CA 0.587 0.939 1.911
Speedup 1 202× 42× 42×
Speedup 2 136× 64× 59×

Table 4.6. Run-times (in seconds) and speed-up factors for the different algorithms
and architectures. Data in first row are from Tables 4.2, 4.3, and 4.4.

Mesh 1 Mesh 2 Mesh 3 Mesh 1 Mesh 2 Mesh 3
Speed 2 Speed 2 Speed 2 Speed 3 Speed 3 Speed 3

tetFIM-ST 81 59 113 107 175 173
tetFIM-A-CA 0.580 0.958 1.986 1.356 2.079 2.413
Speedup 140× 62× 57× 79× 84× 72×

regardless of the mesh configuration and speed function.

Finally, Table 4.7 shows the preprocessing time for Meshes 1, 2, and 3. The

preprocessing is performed on the GPU and includes permuting the geometric

information (element list and vertex coordinate list) according to themesh partition

using METIS and generating the gather-lists for the cell-assembly data structure.

The graph partitioning and triangle strip generation time are not included since

they are not essential parts of our algorithm.

4.4.4 Meshes for Complex Surfaces

We have also tested this method on meshes with more complex conformal

surfaces (Meshes 4 and 5) to show that the proposed method works correctly

Table 4.7. Run-times (in seconds) of the preprocessing step for Mesh 1, 2, and 3.
Mesh 1 Mesh 2 Mesh 3
0.150 0.120 0.209
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when applied to scenarios that resemble physical simulation associated with target

applications. Figures 4.7 and 4.8 show the results of the simulation on the lens

model and the blobs model. The green region in the lens model (Figure 1.1-right)

has a speed function of 1.0, which represents the refractive index of air, and the red

regionmodels a lenswith refractive index of 2.419. Similarly, in the blobsmodel, the

red and green regions have constant speed functions of 1.0 and 10.0, respectively.

Table 4.8 shows the performance of all the methods for Meshes 4 and 5.

4.4.5 Analysis of Results

In this section, we discuss the analysis of our results in terms of asymptotic cost

and parameter optimization choices.

Figure 4.7. Color maps and level curves of the solutions on the lens model with
boundary as given by the figure in the left-side image.

Figure 4.8. Color maps and level curves of the solutions on the blobs model with
boundary as given by the figure in the left-side image.
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Table 4.8. Run-time (in seconds) of all methods on Meshes 4 and 5. The “Speedup
VS. FMM”column lists the speedupof allmethods compared toFMMwithnegative
numbers denoting that the method is slower than FMM.

Mesh 4 Speedup VS. FMM Mesh 5 Speed-up VS. FMM
FMM 43 1 51 1
FSM 378 -8.8 517 -10.1

tetFIM-ST 74 -1.7 62 -1.2
tetFIM-MT 22 2.0 21 2.4

tetFIM-A-ORS 2.372 18.1 2.032 25.1
tetFIM-A-CA 1.801 23.9 1.538 33.2

4.4.5.1 Asymptotic Cost Analysis

We accomplished an asymptotic cost analysis that measures the number of

iterations and number of updates per vertex for our proposed serial CPU version

tetFIM-ST and GPU version tetFIM-A. We used four meshes with different sizes to

show that our method scales verywell against mesh size for a given speed function

(see Table 4.9).

4.4.5.2 Parameter Optimization

In tetFIM-A, there are two parameters that need to be specified: the agglomerate

size and the internal iteration number. The agglomeration scheme provides fine-

grained parallelism that is suitable for SIMD architectures by partitioning themesh

into agglomerates that are mapped to different computational blocks. During

the internal iterations on the agglomerate accomplished per block, the boundary

Table 4.9. Asymptotic cost analysis: # iter is the number of iterations needed to
converge and # up is the average number of updates per vertex.

tetFIM-ST tetFIM-A
Speed 2 Speed 3 Speed 2 Speed 3

Mesh sizes # iter # up # iter # up # iter # up # iter # up
17 37 11 44 13 48 29 69 51
33 70 12 81 15 103 29 119 49
65 139 12 170 16 206 32 265 51
129 276 11 326 15 403 31 510 50
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conditions are lagged. Hence, taking an excessive number of internal iteration is

wasteful as it merely drives the local solution to an incorrect fixed-point (in the

absence of boundary condition updates). For this reason, it may seem ideal to

have smaller agglomerate sizes which tend to need fewer internal iterations for the

agglomerate to converge (and thus less computation is wasted). However, smaller

agglomerates result in a large boundary and more global communication among

blocks. In addition, we need also take into account the size of the limited hardware

resources, e.g., GPU shared memory and registers. We want to fit the agglomerate

into the fast on-chip (shared) memory space to increase the computational density.

Based upon our experiments, the best agglomerate size is around 64 vertices.

For the internal iteration number, our experiments show that the ideal number is

approximately three when agglomerates are of this size.

4.4.6 Conclusions

In this chapter, we have presented a variant of the fast iterative method ap-

propriate for solving the inhomogeneous anisotropic eikonal equation over fully

unstructured tetrahedral meshes. Two building blocks are required for such

an extension: the design and implementation of a local solver appropriate for

tetrahedra with anisotropic speed information, and algorithmic extensions that

allow for rapid updating of the active list used within the FIM method in the

presence of the increased data footprint generated when attempting to solve PDEs

on three-dimensional domains. After describing these two building blocks, we

make the following computational contributions. First, we introduce our tetFIM

algorithms for both single processor and shared memory parallel processors and

perform a careful empirical analysis by comparing them to two widely-used

CPU-basedmethods, the state-of-the-art fast marching method (FMM) and the fast

sweepingmethod (FSM), in order to understand the benefits and limitations of each

method. Second, we propose an agglomeration-based tetFIM solver, specifically

for more efficient implementation of the proposed method on massively parallel

SIMDarchitectures. We then described the detailed data structures and algorithms,

present the experimental results of the agglomeration-based tetFIM, and compare
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them to the results of the CPU-based methods to illustrate how well the proposed

method scales on state-of-the-art SIMD architectures. In comparison to [37], we

have demonstrated that careful management of data allows us to maintain high

computational density on streaming SIMD architectures – yielding significantly

greater speedup factors than seenwhen solving two-dimensional eikonal problems

on GPUs.

In futurework, weenvisage extending this technique to time-dependentHamilton-

Jacobi problems in 2D and 3D. Specifically, we will seek to address how one might

solve the level-set equations over unstructured meshes on current streaming GPU

hardware.



CHAPTER 5

ARCHITECTING THE FINITE ELEMENT

METHOD PIPELINE FOR THE GPU

5.1 Introduction
The finite element method (FEM) is a numerical technique for finding approx-

imate solutions of partial differential equations (PDEs). FEM naturally handles

complex geometries through the use of unstructured meshes and because of this

and other provable numerical properties, FEM is widely used for the simulation

of physical phenomena in many disciplines such as continuum mechanics, fluid

dynamics, and biophyisics. In general, the FEM is implemented as a pipeline

consisting of three computationally intensive tasks: computation of the elemental

local operators, assembly of the local operators into a system of linear equations

for the global unknown degrees of freedom, and solving of the system of equations

[49, 54]. In this chapter, we refer to these tasks as the element computation

step, the assembly step, and the linear solve step, respectively. The element

computation step is applicationdependent and, in general, embarrassinglyparallel.

Correspondingly, this step will be mentioned but not highlighted in this chapter.

The other two steps, however, require careful consideration when attempting to

optimize their corresponding algorithms for parallel architectures. The assembly

step uses the mesh topology information to gather information from multiple

elements to form the FEM linear system representing the relationship between the

global degrees of freedom. This system is then solved using computational linear

algebra techniques that are appropriate for the type of the matrix formed.

Inmany of FEM applications, the FEMmethod is part of amuch larger scientific

or engineeringundertaking. Inmanycases, theFEMsolve isdonemultiple timeson

very largedatasets in order to explore parameters spaces, fitmeasureddata, or solve

an inverse problem. One way to accelerate the FEM pipeline is by exploiting ad-
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vances inmodern computational hardware. In recent years, the rapid advancement

of many-core processors, and in particular graphical processing units (GPUs), has

sparkedabroad interest inportingnumericalmethods to these architectures, thanks

to their low cost and very high computing capacity. With appropriate numerical

algorithms, modern GPUs demonstrate very strong computational performance

comparable to supercomputers of just a few years ago.

The single instruction multiple thread (SIMT) architecture used in GPUs places

particular constraints on both the design and implementation of algorithms and

data structures, making the porting of existing numerical strategies often difficult,

inefficient, or even impossible. The architecture provides a large number of parallel

computing units (up to several hundred cores) with a hierarchical data-sharing

structure. For example, current NVIDIAGPUs are composed of up to 16 streaming

multiprocessors (SMs) each containing a number of streaming processor cores

(SPs) and on-chip memory. All SMs have access to global memory, the off-chip

memory (DRAM),whichhas a high latencyof several hundred clock cycles. The on-

chip memory of each SM includes a space partitioned into registers for individual

threads, shared memory which can be accessed by multiple threads and general

data cache which is not user controllable. The on-chip memory has very low

latencies of only 20-30 clock cycles [68]. These architectural features place important

restrictions on algorithms if one wants them to run efficiently on such hardware.

Addressing these constraints in the context of the finite element method is one

important aspect of this chapter.

Another reason for the increasing popularity of GPU computing is the emer-

gence of consistent, relatively simple GPU computing models, such as the Com-

pute Unified Device Architecture (CUDA) and the Open Computing Language

(OpenCL), and associated APIs compatible with several general purpose pro-

graming languages. In this chapter, we use CUDA extensions to C for our GPU

implementation. In CUDA, a CPU program instantiates a collection of kernels,

each of which runs as a SIMT computation that is executed in parallel. Kernels

are organized into blocks, and each block of threads in the grid is executed on

a single streaming multiprocessor on the GPU. Threads in the same block may
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communicate via shared memory and synchronization primitives, with low latency.

Alternatively, threads between blocks must communicate via global memory, which

has high latency. When sequentially numbered threads access sequential data in

global memory, the memory access of up to 128 bytes may be performed as a single

transaction, a process referred to as coalescing. Since global memory accesses have

high latency, global memory coalescing is important for performance optimization

if the kernel is memory bound. Access to shared memory is banked, and if two

threads executing the same instruction attempt to access different words of data

from the same bank, a conflict will occur and the accesses must be performed

sequentially in conflict-free subsets. In summary, the most optimized kernels

minimize global memory transactions, avoid shared memory bank conflicts, and

minimize register and shared memory usage to fully occupy the arithmetic logic

and floating point units.

For experimental results in this chapter, we use a standardized prototypical

problem—the elliptic Helmholtz equation solved over a nontrivial domain—to

demonstrate the algorithmic and data structure modifications that must be made

in order to gain efficiency of the FEM pipeline on the GPU. In particular, we focus

our attention on the two nontrivial tasks: the global assembly step and the global

linear solve step. Because the local matrices are already formed in the element

computation step, the global assembly step usually includes first allocating and

initializing a memory space for the global matrix, then finding the location in the

global matrix for each local matrix value and finally assembling (summing) these

values to the location in the global matrix. A number of strategies [64, 30, 31, 32, 24]

have been proposed to port this step to the GPU (e.g., graph coloring and reduction

lists) in a way that one gains the benefits of fine-grain parallelism. However, these

strategies need significant preprocessing that does not easily port to the GPU. We

propose an alternative method that minimizes the preprocessing and at the same

time achieves great performance on GPU.

For solving the global linear system that comes as a consequence of FEM

assembly, numerous methods have been proposed in the literature. The most

popular group of methods within the FEM community are the (iterative) Krylov
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subspace methods such as the conjugate gradient method [99, 27]. The number

of iterations of the method is bounded by the rank of the matrix; the particular

convergence rate with respect to a given linear system is determined by the

eigenspace structure of the operator (often expressed in terms of the condition

number of the matrix). Thus, a preconditioner that improves the structure of

the eigenspace often helps accelerate the convergence rate of these methods. The

global linear system that we seek to solve is both symmetric and positive definite.

Considering this and the need for a preconditioning method that maps effectively

to the GPU, we propose a solver that used the conjugate gradient method (CGM),

preconditioned with a geometry-informed, algebraic multigrid (AMG) method.

In this chapter, we present the algorithms and data structures necessary to

execute on the GPU the full FEM pipeline as a PDE solver over unstructured

tessellations. Our proposed GPU global assembly step requires very little pre-

processing and shows a significant performance boost compared to an optimized

CPU implementation. For the solving of the global linear system, we propose

a geometry-informed algebraic multigrid method and present novel fine-grained

parallelism strategies and corresponding data structures to suit GPU architecture.

GPU-based MG methods typically use the Jacobi or polynomial methods for

the relaxation as these are based on easily parallelizable sparse matrix vector

multiplication (SPMV) [11, 44]. However, these methods do not make full use

of GPU computing power, because SPMV is generally a memory-bound operation

with low computational density. In this chapter, we propose a relaxation method

that operates on a novel data structure and has higher computational density

and demonstrates better performance. We also analyze the performance of our

strategy and data structures in different problem scenarios, compared against

state-of-the-art GPU and CPU linear solvers. In our AMGmethod, the set-up stage

needs extra work compared to typical AMG implementations so its performance

is slightly worse than the setup of other state-of-the-art GPU implementations,

but our solving stage is significantly faster. This makes our method particularly

suitable for some applications, such as in bidomain problems [78], where the mesh

is fixed and the linear system solving needs to be performed many times or for
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ill-conditioned problems where linear solving takes a long time compared to the

assembly and AMG set-up.

The remainder of this chapter is organized as follows. In Section 5.2, we describe

the related previous work from the literature. In Section 5.3, we introduce the

problem definition that we have selected as the canonical problem for this work,

andwill present the basics of the finite elementmethoddiscretizationmethodology.

In Section 5.4, we present ourGPU-based computing strategy for the FEMassembly

step. In Section 5.5, we present the details of howwe solve the global linear system

on the GPU – namely, we present our GPU-focused mesh-informed algebraic

multigrid method used to precondition a conjugate gradient linear system solver.

In Section 5.6, we show numerical results related to several different engineering

scenarios. We analyze differentGPU implementation strategies and data structures

and explain the optimizations that were required to achieve performance under the

austere constraints of the GPU. For completeness, we compare our performance

against other alternativeGPUandCPU linear solvers. In Section 5.7, we summarize

the chapter and discuss future research directions related to this work.

5.2 Previous Work
In the past decade, there have been a multitude of studies that have the

explicit goal of porting part or all of the finite element pipeline to many-core

architectures. In our review, we will focus on the two compute-intense and

challenging components of the pipeline: the global linear system assembly step

and the global system solve step.

For the assembly step, early works [15, 83] present relatively simple assembly

strategies designed in light of their specific applications. They compute in par-

allel each nonzero value in the global linear system independently, which suits

many-core architectures very well. However, these methods are based on special

characteristics of their applications which allow them to derive simple expressions

for the nonzero values not available for use in the general FEM context.

Some more general, but more complicated, GPU assembly strategies have

recently been proposed. For instance, [59, 60] employ graph coloring to partition
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elements into nonoverlapping sets so that all elemental matrices of one set can be

accumulated to the global matrix in parallel without conflicts. Similarly, graph par-

titioning and reduction list strategies are proposed in [24] to optimize the assembly

performance on GPU. These strategies, however, need significant preprocessing

such as the generation of a graph coloring, graph partitioning, and/or a reduction

list based upon the graph induced by the mesh being used. Information derived

from this preprocessing is used in the generation of the data-structured used on

the GPU. Many of these preprocessing steps in and of themselves are not easily

parallelizable; in addition, their serial implementations take significant running

time.

Recently, Markall et al. [64] compare several different assembly strategies on

different architectures; they propose a local matrix approach for their assembly

and demonstrate that this approach is efficient on many-core architectures for 2D

meshes. Their method stores all the local matrices of the elements in a large

block matrix instead of storing an assembled global matrix. The matrix vector

multiplication is performed in three stages: a spreading operation, a local matrix

vector-multiplication, and a gather operation as done in high-order finite element

methods [104]. The local matrices typically have the same size and use the same

data structure for their storage, so the local matrix vector-multiplication has a

regular memory access pattern amenable to GPUs. In addition, this method

requires very little preprocessing to accomplish the assembly operation. The

authors in [58] introduce a similar approach for GPU-based FEM which computes

the local matrices on the fly. The local matrices, however, needmuchmorememory

space than the fully assembled global matrix, especially for 3D meshes. Our

experiment shows the matrix operations using this approach perform worse than

using assembled global matrix in 3D meshes, consistent with the CPU study in

[22]. Some recent studies [31, 32], conducted in parallel to this chapter, propose to

assembly the global matrix into a Coordinate list (COO) format and then convert

the matrix to compressed sparse row (CSR) format by removing duplicate nonzero

entries. Wepropose an agglomeration strategy for the assembly step. The proposed

strategy decreases the memory footprint by removing data duplication which,
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when combined with a novel compact sparse matrix data structure, enables the

method to avoid the preprocessing used by others, which rely on search operations

and atomic addition operations in the fast on-chip memory.

The linear system of equations that comes from the use of the finite element

methodology is often sparse, symmetric, and positive definite [49]. Consequently,

Krylov subspace methods such as the conjugate gradient method are amongst the

most widely used numerical linear algebra techniques used with FEM analysis. In

practice, the conjugate gradient methods are almost always preconditioned to help

improve their convergence rate [99, 27]. The simplest preconditioner is the diagonal

preconditioner which is very simple to apply but is usually of marginal benefit,

because it takes as the approximate inverse merely the inverse of the diagonal of

the original matrix.

Incomplete LU factorization (ILU) is a widely used preconditioning method

which computes a sparse lower triangular matrix L and sparse upper triangular

matrix U such that A = LU +R. When the system satisfies certain conditions,

the matrix M = LU can be used as an effective preconditioner for conjugate gra-

dient [85]. ILU, however, depends on triangular solves which are sequential in

nature and hence particularly difficult to parallelize/optimize for large sparse

matrices because of the fill-in of nonzero elements. Thus, ILU preconditioning

is not particularly well-suited to GPUs [62]. Another popular preconditioner is

the block Jacobi preconditioner, which is easy to parallelize and implement on

GPU. In the block Jacobi preconditioner, one partitions the domain into blocks on

which one does Jacobi iterations independent of the other blocks with some timed

synchronization strategy. The problem with this kind of preconditioner is that

it usually requires a large number of iterations to be effective (e.g., converge),

so the benefits of improved parallelism may be outweighed by the increased

work in iterations [62]. We have elected to use the a variant of the multigrid

method [65, 17] as the preconditioner for our conjugate gradient solver. The

multigrid method is a widely used preconditioner and has been shown to be

very effective on systems resulting from FEM. Multigrid methods, by employing

grids of different mesh sizes (levels), provide rapid convergence rates by reducing
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low frequency error through coarse grid correction and removing high frequency

error via fine grid smoothing. Research has shown that multigrid methods scale

very well when applied to parallel computing and are very fast for many practical

problems [15, 44, 45, 11, 103, 6, 8, 102].

Recently, some effort has beenmade to port the preconditionedKrylov subspace

method with multigrid preconditioner to many-core architectures. Representative

works include [44] and [11]. In [44], the authors present a GPU implementation

of a preconditioned conjugate gradient method with a multigrid preconditioner.

They use an algebraic multigrid similar to boomerAMG [45] and the interleaved

compressed sparse row (ICSR)data structure for sparsematrix storage in anattempt

to coalesce the global memory accesses. As pointed out in [12], however, ICSR (the

same as the Ellpack data structure described in [12]) is not suitable for unstructured

meshes where their nodes have highly variable valance. The authors of [11] also

presents a parallel algebraic multigrid method which exposes substantial fine-

grained parallelism in both the construction of the multigrid hierarchy as well as

the cycling or solve stage. In both works, the Jacobi method is used in the most

expensive multigrid step, the relaxation at each resolution. This method is easy

to parallelize but is not very effective as the relaxation step [8]. Additionally, the

Jacobimethoddependson the sparsematrix-vectormultiplication operation, which

has low computational density and is generally memory bandwidth bounded.

In [41, 28, 29], the authors introduce GPU-based linear solvers with multigrid

methods. The solvers use theELLpack sparsematrixdata structure for their specific

problems, which is not efficient when number of nonzero entries per row varies

largely. Their proposed approach also rely on sparse matrix-vector multiplication

whichhas lowcomputationaldensity aspreviouslymentioned. A recentwork [105]

proposes to use a auxiliary grid to construct the grids that dramatically speeds

up the setup stage and improves convergence rate. This work is developed in

parallel to our work. In this chapter, we propose to combine a geometry-informed

algebraic multigrid solver as the preconditioner to the Krylov-based conjugate

gradient method. To better exploit GPU hardware, we will employ block Jacobi

relaxation as part of our preconditioner.



81

5.3 Problem Definition and FEM Discretization
We use as our canonical problem the generalized elliptic Helmholtz problem,

given in the strong form as:

−∇ · (σ(x)∇u(x))+λu(x) = f (x) x ∈Ω (5.1)

with zero Neumann (i.e., natural) boundary conditions on the boundary of the

domain Ω. In Equation 5.1, u(x) is the solution over a domain Ω, f (x) is a (given)

right-hand side forcing function, σ(x) is a symmetric, positive definite matrix and λ

is a strictly positive constant. This problem has been chosen as it is representative

of the type of system found in many engineering applications such as solid and

fluid mechanics [49, 54]. Although Neumann conditions have been selected for

simplicity, nothing presented in this chapter strongly depends on this choice;

Dirichlet or mixed (Robin) conditions could equally have been chosen.

In traditional finite element analysis, the weak form of Equation 5.1 is formed

through integration by part and the resulting equation then discretized. Let us

defineour approximation spaceV baseduponapiecewise tessellationofΩdenoted

ΩT, which contains E elements and N nodes. We seek to find an approximation

ũ ∈V such that for all v ∈ V:

(∇v,σ∇u)+λ(v,u) = (v, f ) (5.2)

where (·, ·) denotes theL2 innerproduct over thedomain. Following [49],we express

our function space in terms of a basis of global piecewise linear tent functions

φi(x) where i denotes a vertex index within our triangulation of the computational

domain. With this choice of the discretizing trial and test functions, we arrive at

the following system of equations:

N∑
j=1

(∇φi,σ∇φ j)ũj+λ
N∑
j=1

(φi,φ j)ũj = (φi, f ), (5.3)

where ũj denotes the approximation of u on node vj and i ranges from 1, . . . ,N. We

can rewrite the above equation in matrix form:
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⎧⎪⎪⎨⎪⎪⎩
Au = b,

A = S+λM,
(5.4)

where b is the forcing vector formed from the right-hand side of Equation 5.3, S is

the stiffness matrix given by Sij = (∇φi,σ∇φ j) and M is the mass matrix given by

Mij = (φi,φ j). Given λ > 0, A is a symmetric, positive-definite matrix.

In practice, each entry Aij of the matrix A is assembled from all elements that

contain both nodes vi and vj and similarly, each entry bi of the vector b is assembled

from all elements that contain vi.

A standard approach used to form the global mass and stiffness matrices is

to form the local mass and stiffness matrices associated with each element and

to assemble them based upon the mesh topology. For a triangulated 2D domain

Ω ⊂ R2, considering a triangle e ∈ ΩT, the local matrix Ae is computed as Ae
lil j
=

Selil j +λM
e
lil j

where li and l j denote the local indices of the vertices vi and vj in

triangle e and the entries of Se and Me are computed by Selil j = (∇φi,∇φ j) and

Me
lil j
= (φi,φ j), respectively. The integrals are computed with numerical quadrature

over the triangle (using a mapping and Gaussian integration [54]). The matrix

entries Ae
lil j

can then be accumulated to the ith row and jth column of the global

matrix A, i.e., Aij+ =Ae
lil j
. The forcing vector can be computed in a similar manner.

The entry bi of b is the integral of the basis function at vi and the forcing function, i.e,

bi = (φi, f ). The integral over each element is computed first and then accumulated

to its corresponding location in b as done in the formation ofA. The serial algorithm

for the general assembly step to compute A is show in Algorithm 5.1.

Algorithm 5.1 Assembly(ΩT)
1: Initialize A to zeros;
2: for all element e ∈ΩT do
3: Compute Ae and be;
4: for all node vi ∈ e do
5: for all node vj ∈ e do
6: Aij + = Ae

lil j
;

7: end for
8: end for
9: end for
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Once the global matrix A and the forcing vector b are formed, a linear solver is

used to solve the systemAu= b for u. Of the three steps main steps within the finite

element method, the elemental computation step is embarrassingly parallel once

the data are ready. To save memory access, this step is combined with the assembly

step in our FEM pipeline. In the sections to follow, we focus on the details of our

assembly and linear system solution strategies and the elemental computation step

outlined above will be mentioned in the assembly step description.

5.4 FEM Assembly on the GPU
Generally, a parallel assembly algorithm would proceed as follows. First, one

forms the empty global matrix according to the given mesh, using a sparse matrix

representation, and sets all entries of the matrix to zeros. One then loads the

data needed for the elemental computation (node indices and coordinates) from

global memory and performs all elemental computations in parallel. Finally,

one accumulates the local matrix entry values to the proper locations in the

precomputed emptymatrix. To find the proper locations, one needs to perform the

searching operations before the accumulation.

This algorithm is simple and needs minimal preprocessing, but it is not, in this

direct form, well-suited to GPU architectures. This is because the global memory

accesses of the nodal coordinates and the loading of needed data for each element

are not coalesced. Also, each node’s coordinates are shared by multiple elements

so the coordinates, residing in global memory, are accessed redundantly. When a

thread is trying to accumulate the computed element matrix to the global matrix,

it needs to search for the memory location. This search operation is expensive

to accomplish using global memory. Finally, the accumulation operations are

done in parallel which can cause race conditions. This requires that atomic add

operation be used to do the accumulation; such operations are also expensivewhen

accomplished using global memory.

To address these challenges, we propose a patch-based hierarchical assembly

strategy. With the proposed strategy, global memory accesses are coalesced, redun-

dant global memory loads are avoided, and the global matrix entry accumulation
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is performed in a hierarchical way. Binary search and accumulation are done in

shared memory, and the accumulated values are written back to global memory as

a block. The details of the algorithm for this strategy are described as follows.

The algorithm begins with a data preparation step. Given a mesh including

a node coordinate list, an element list, and an adjacency (neighboring nodes)

information, we first partition the node set of the mesh into mutually disjoint

subsets that we call patches. We assign the elements to the patches based on the

patch assignments of their first nodes. In this way, each patch consists of a set

of elements that do not overlap with other patches. We then rearrange the node

coordinate list and element list according to this decomposition. The node indices

are changed after rearrangement so that the node indices of each element and

the adjacency information of the mesh are also changed accordingly. The x, y,

z coordinates of the node list are, in practice, stored in three separate arrays for

coalesced global memory access. For the same reason, the node indices of the

element list are also stored in separate arrays. For instance, we use four arrays to

store the node indices of the tetrahedral elements with array i storing the indices

of the ith node of each element. This decomposition operation does not add to the

total running time of the FEM solve, because this decomposition is also use by the

linear system solver in subsequent parts of the algoirthm.

Next, we form the global empty matrix from the adjacency information of the

mesh as the nonzero entry column indices of row i corresponds to the index of node

vi (diagonal entry) and the indices of vi’s neighbors. Because the global matrix is

symmetric, we build and store only the upper half (including the diagonal) of

the matrix. We choose to use the compressed sparse row (CSR) format to store

this matrix. CSR consists of three arrays: row o f f sets, column indices, and values

where values is an array of the (left-to-right, then top-to-bottom) nonzero values of

the matrix; column indices is the column indices corresponding to the values; and

row o f f sets is the list of indices where each row starts. We then fill the row o f f sets

and column indices arrays according to the mesh adjacency information and all

entries of the values with zero.

With the node coordinate list, the element list, and an empty global matrix
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prepared, the assembly process consists of the following six steps:

1. The coordinate data for each patch are loaded into shared memory. Specifi-

cally, assuming that patch i hasNi nodes, we use each of the first Ni threads to load

the coordinates of one node. By this procedure, the global memory accesses are

coalesced.

2. Assuming that patch i has Ei elements, each thread loads the coordinates

needed by an element and stores them into registers. For the elements on the

boundary of a patch, some of their nodes are outside of the patch. In this case,

the node indices are not available in shared memory so data has to be loaded from

global memory. Fortunately, the boundary node number takes a small portion of

the whole node set so the global memory access does not significantly affect the

performance.

3. Each thread executes the elemental computation to construct the local

(elemental) matrices.

4. The column indices and values arrays of the CSR global matrix are loaded into

shared memory, overwriting the shared memory space used for node coordinates

in the first step. Shared memory has a limited size, which is not enough to store all

the data (i.e., coordinates, column indices, and values) for our typical patch size so

the shared memory for coordinates is overwritten to save shared memory. In this

situation, preserving the ordering in which data are loaded into shared memory

is essential to guarantee correctness, i.e, the loading of column indices and values

must be accomplished after the coordinates are loaded into local storage (registers

or local memory) for all elements of this patch. The values array in shared memory

is initialized to zero.

5. Local matrix entries are accumulated (with atomic add being used) to

the proper location in the values array in shared memory. The proper location

is found by a binary search on the column indices array in the shared memory.

Specifically, considering an element e, Ae
lil j

must be accumulated to row i and

column j in the global matrix. Array segment column indices[row o f f sets[i]] to

column indices[row o f f sets[i+ 1]] contains all the column indices of the nonzero

entries of row i. However, it is not known where index j is inside this segment.
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We use a binary search to find the location of index j, which is also the location in

values where we should accumulate Ae
lil j

to. For patch boundary elements where

the element node is outside of the patch, a binary search and atomic adds have to

be used on global memory.

6. The values array in shared memory is written into global memory in a

coalescedmanner. Note that the sharedmemory values arraywrite back can conflict

with other patches that are processing boundary elements. Because of this, a

temporary values B array in global memory is used to store the boundary element

accumulation. After the whole assembly kernel function has completed, values B

is added to values array.

5.5 Solution of the FEM Linear System
In this section, we present our GPU-aware conjugate gradient solver precondi-

tioned with a geometry-informed algebraic multigrid solver used for the solution

of the linear system produced through the FEM method described previously.

5.5.1 Method Description

The matrix from our canonical problem, discretized using the finite element

method, produces a sparse, symmetric positive-definite matrix. Therefore, we

choose a preconditioned conjugate gradient (PCG) algorithm to solve the linear

system Au = b, as shown in Algorithm 5.2.

We use a geometry-informed algebraic multigrid (AMG) solver as a precon-

ditioner for the conjugate gradient method (PCG-AMG), in order to achieve an

efficient and robust linear system solver for finite element problems. In this section,

we describe in detail our parallelism scheme and data structures used to adapt our

PCG-AMG to the GPU architecture. The proposed AMG solver is based on the

smoothed aggregation multigrid (SAMG) method described in [103]. As in most

other AMG methods, SAMG constructs the graph corresponding to the intercon-

nectivity of the degrees of freedom from the matrix. The proposed AMG method

constructs the graph and corresponding meshes (the primary mesh and coarsened

structure) directly from the mesh, and therefore, we call it geometry-informed. In

this way, we can save the computation that converts a mesh to a graph and use the
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Algorithm 5.2 Preconditioned Conjugate Gradient(A, b, u0)
1: r0 ← b−Au0
2: z0 ←M−1r0
3: p0 ← z0
4: k← 0
5: while true do
6: αk ←

rTk zk
pTk Apk

7: uk+1 ← uk+αkpk
8: rk+1 ← rk−αkApk
9: if ‖rk+1‖ < ε then
10: exit loop
11: end if
12: zk+1 ←M−1rk+1
13: βk ←

zTk+1rk+1
zTk rk

14: pk+1 ← zk+1+βpk
15: k← k+1
16: end while
17: return uk+1

geometry information to measure the quality of the aggregation or patches that are

used in our AMG method.

The PCG-AMGmethod consists of two stages: the set-up stage and the iteration

stage. The set-up stage includes the following steps: grid construction, prolongator

generation, and coarse-level operator generation. This stage prepares the data for

the multigrid method and is executed only once. The iteration stage includes the

CG iteration, as shown in Algorithm 5.2. A multigrid V-cycle is performed once as

the preconditioner for each CG iteration. In the following subsections, we describe

in detail the proposed GPU-based PCG-AMG method.

5.5.1.1 Set-up Stage

The set-up stage begins with the construction of the AMG meshes from the

mesh. This construction starts with the decomposition of the nodes into small

mutually disjoint subsets. This decomposition process is called aggregation and the

node subsets are called aggregates. The aggregation, as in [6] and [102], relies on a

maximal independent set (MIS) of mesh nodes to define roots of aggregates and

then groups each root and its neighbors into one aggregate. After this process, any



88

ungrouped nodes are assigned to the nearest aggregate. After the aggregation of

one level, the algorithm builds an induced graph from the aggregation by treating

each aggregate as a node in the coarser level and adding an edge between two

aggregates (nodes in the coarser level) if any of their nodes are connected in the

finer level. Then the algorithm performs the aggregation again on the coarser

level graph. The algorithm continues until the number of nodes in the graph

is smaller than a certain threshold. In practice, because our relaxation method

requires the graphs of each level be partitioned into larger patches, we propose the

double partitioning strategywhich will be described in Section 5.5.2.

With the meshes constructed, the tentative prolongator at level l, P̃l, is given by:

P̃l
i j =

⎧⎪⎪⎨⎪⎪⎩
1 i f i ∈ Cl

j

0 otherwise,
(5.5)

where Cl
j denotes the aggregate to which node j belongs in level l. The actual

prolongator is a smoothed version of the P̃. We choose the weighted Jacobi method

as the smoother, thus yielding a prolongator matrix given by:

Pl = (I−ωD−1Al)P̃l, (5.6)

where ω is a positive constant (scaling), I is the identity matrix, D is the matrix

given by the diagonal of Al, which is the grid operator matrix of level l. Given

the prolongator at the level l, its coarser level l+ 1 operator (matrix) is formed

variationally. Firstly, we compute the restrictor which is the transpose of the

prolongator: Rl = PlT and then compute the coarser-level operator byAl+1 =RlAlPl.

5.5.1.2 Iteration Stage

The iteration stage includes the PCG-AMG iterations as shown in Algorithm

5.2. In each iteration, one AMG V-cycle is performed as the preconditioner. From

the computational point of view, in this stage, the AMG V-cycle is actually the bulk

of the work. Here, I describe our V-cycle algorithm in detail.

A V-cycle is generally composed of these steps: prerelaxation to smooth the

values, computation of the residual, restriction of the residual to a higher level,

recursively calling theV-cycleprocedure until the coarsest level is reached, solution
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of the coarsest level linear system, prolongation of the value to finer level and

postrelaxation to smooth the value again. The detailed algorithm is as follows:

Algorithm 5.3 V-cycle(Ak, Rk, Pk, bk, uk)
1: if level k is the coarsest level then
2: solve Akuk = bk and return uk

3: else
4: uk ← pre-relax(Ak,uk,bk)
5: rk ← bk−Akrk

6: rk+1 ← Rkrk

7: ek+1 ← V-cycle(Ak+1,Rk+1,Pk+1,rk+1)
8: ek ← Pkek+1

9: uk ← uk+ ek

10: uk ← post-relax(Ak,uk,bk)
11: end if

The relaxations are the most time-consuming part of all the V-cycle steps, so a

suitable relaxation method and optimized implementation are essential for overall

performance. In our case, a good relaxation method should effectively smooth

out the high-frequency errors and be easily parallelized for GPU. The relaxation is

usually implemented as a Jacobi smoothing (see Equation 5.7) since it is very easy

to implement for parallel architectures. Indeed, both [11] and [44] use this method

in their respective AMG GPU implementations.

u = u+ωD−1(b−Au). (5.7)

However, the Jacobi method is not ideal for multigrid relaxation in terms of

convergence rate [8]. Its implementation depends on the matrix-vector multiplica-

tion, which generally has low computational density and does not efficiently use

resources on theGPU. In this chapter, we propose to use a variant ofweighted block

Jacobi method for relaxation. This method gives significantly better convergence

rate than the Jacobi method and can achieve fine-grained parallelism and high

computational density by taking advantage of the hierarchical memory layout on

GPU.
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The standard weighted block Jacobi is defined as follows. Let N = {1, ...,n}

be the set of all the nodes in the domain and consider decomposing N into p

nonoverlapping patches,

N =

p⋃
1

Nk.

Let A be partitioned into blocks Aij of size ni ×nj where the rows of Aij are in Ni

and the columns are in N j. The weighted block Jacobi method takes the matrix

form:

u = u+ωM−1(b−Au), (5.8)

where ω is a positive constant (scaling), M is a block diagonal matrix with M =

diag{Akk}with diag{Akk} denoting the block diagonal matrix with blocks Akk.

Because M−1 = diag{A−1kk }, block Jacobi computes gk = A−1kk in parallel with each

processor solving for one of the gk either directly or iteratively. We do not precisely

computeM−1, but insteadweusemultipleweighed Jacobi iterations to approximate

gk. That is, we iterate g̃n+1k = g̃nk +ωD
−1
kk rk multiple times. Dkk is the diagonal matrix

of Akk and rk denotes the residual values corresponding to Nk. With this method,

we can use low-latency GPU memories (shared memory and registers) to store

the diagonal matrices and do the weighted Jacobi iterations on these fast memory

spaces to achieve high performance. Our experiments (see Section 5.6) show that

this method is very effective as the relaxation for multigrid in terms of overall

convergence rate.

5.5.2 Implementation and Data Structures

We now present the implementation details and data structures needed to

effectively use the GPU’s streaming multiprocessors.

5.5.2.1 Set-up Stage

The block Jacobi method requires that the domain be partitioned into patches

with each patch containing a group of connected nodes. This task is challenging for

the several reasons. First, wewant tomap the patches to theCUDAblocks; thus, the

patches should be small enough so that they can fit into limited hardware resources.

Second, the patches should be large enough so that patch partitioning does not
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result in too many edge cuts, because this increases interactions between patches

and undermines the effectiveness of the Jacobi updates. Third, the SAMG that we

are mimicking needs a finer partition of the mesh into aggregates as mentioned in

Section 5.5.1. It is important that the patchpartitiondoesnot cut through aggregates

in order to achieve the best convergence rate.

We propose the bottom-up double partitioning strategy to generate the ag-

gregates and patches. The double partitioning strategy includes three steps: (1)

generation of the aggregates (aggregate partition), (2) building an induced graph

from the aggregates, and (3) generation of the patches by partitioning the induced

graph again (patch partition).

Both of the partitions rely on maximal independent sets (MIS) or k-MIS, an

extension of MIS where k specifies the radius of independence of the set. An MIS

is a set of nodes in the graph no two of which are connected by an edge, a k-MIS

is a set of nodes in the graph no two of which are connected by a path of length

k or less. Both MIS and k-MIS have the property that no node in the graph can

be added to the set without violating the independence property. Since regularity

of aggregate size is important to the convergence of the solver, we have found it

necessary to take steps to control the aggregate sizes to improve the distribution.

Our partition method takes as input the graph representation of the mesh and

produces the permutation necessary to re-order the nodes of the input graph

according to their patch and aggregate membership, the indices for the start of

each aggregate and partition in the permuted graph, and the graph representation

of the next coarser mesh. The aggregate partition is performed as follows:

1. Find a k-MIS for the graph, where the value of k is chosen to control the

number and size of generated aggregates. Higher values of k result in sparser sets

of root nodes and therefore larger aggregates.

2. Number the nodes in the k-MIS sequentially to index the aggregates.

3. Add other nodes to aggregates iteratively. Each node in the graph checks

its neighbors to see which aggregate they are in. If all neighbors are in the same

aggregate, the current node will add itself to the same aggregate. If the neighbors

aremembers ofmore than one aggregate, the node selects the aggregate withwhich
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it shares the highest adjacency. This repeats until all nodes are allocated.

4. After the initial allocation is completed, find the number of nodes in each

aggregate, remove aggregates below a certain size by labeling all nodes in these

aggregates as unallocated, and then re-index the remaining aggregates.

5. Repeat the allocation process to add the nodes from eliminated aggregates to

remaining aggregates.

The patch partition consists of performing the partition defined above on the

induced graph, which includes a weight for each node that is the number of nodes

in the corresponding aggregate. The size control mechanisms applied therefore

use the total weight of nodes rather than their count.

To control the size of patches, we remove patches below a threshold weight

and re-allocate their aggregates as detailed above. Then we iteratively exchange

nodes between patches to improve the size distribution. The patches exchange

aggregates as follow:

1. Compute the weighted size for each patch.

2. Each aggregate that couldmove to another patch calculates themost desirable

exchange for itself.

3. Every patch for which it is desirable to give up a node(s) performs the most

desirable exchange (this limit is to damp oscillations of patch size that could be

caused by multiple exchanges).

4. Recalculate the weighted sizes for each patch, and if the largest patch

is smaller than the threshold value, the process terminates, otherwise another

iteration begins.

Our experiments show that for 3D tetrahedral meshes, k = 2 is best for the

aggregate partition and k = 1 for the patch partition, as the resulting aggregates

and patches generated are of the appropriate size. Our parallel k-MIS algorithm

is similar to [7, 102, 11] and implemented on GPU. We know of one other k-MIS

implementation in the publicly available CUSP library, which according to our

experiments has comparable performance (in terms of computing time) to our

implementation.

The partitions described above form a permutation array that maps the indices
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of the nodes in the original mesh (graph) to a re-ordered index list in which nodes

belonging to the same patch are grouped together and within each patch, nodes

belonging to the same aggregate are grouped together. Once the partitions are

done, we permute the matrix of each multigrid level according to the permutation

array and the tentative prolongator P̃ is constructed according to Equation 5.5.

Then P̃ is smoothed with one weighed Jacobi iteration as described in Equation

5.6. P̃ is a sparse matrix with a special sparse pattern that each row has only one

nonzero value which is set to one. We use a special version of parallel sparse

matrix-matrix multiplication as described in [11] to compute AP̃ needed in the

prolongator smoothing process. Lastly, the restrictor and the matrix for the next

level is computed as described in the previous section. We use thematrix transpose

and matrix-matrix multiplication functions in the CUSP library to compute the

restrictor and the matrix for next level.

5.5.2.2 Iteration Stage

The iteration stage performs the PCG iterations. As depicted in Algorithm

5.2, one iteration of PCG consists of a preconditioning step (one V-cycle), a matrix

vector multiplication, and some vector operations. Of all these operations, the

preconditioning step (V-cycle) is the most expensive. As mentioned above, the

V-cycle consists of prerelaxation, residual computation, restriction, coarsest level

solution, prolongation, error correction, and postrelaxation. The prerelaxation,

residual computation, and postrelaxation steps are the bulk of the work since each

of them needs to access the operator matrix of a level. Our proposed V-cycle

pipeline combines the prerelaxation and residual computation steps to save one

costly matrix access. Next, we will describe the data structures we propose for our

AMG preconditioner and the V-cycle pipeline in detail.

An appropriate data structure is essential to fully harness the potential comput-

ing power of the GPU. The GPU has limited fast memory space (shared memory

and registers) in addition to global memory. When local data of a kernel are too

large to fit in the fast memory space, the data spill over to the local memory, which

is as slow as global memory. So a compact data structure is desired to save storage
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and memory accesses. The data structure determines also the memory access

pattern, which is particularly important for global memory accesses because of

their high latency. Block Jacobi requires domain decomposition (patches) and the

matrix is permuted accordingly to bear a blocked pattern. Each edge in the domain

corresponds to a nonzero value in the matrix.

We propose a novel sparse matrix data structure specially designed for the

block Jacobi method, which we call patch sparse matrix format (patchSPM). This

proposed data structure is composed of three parts: the patch inside AI, the patch

boundary AB, and the diagonal AD. Thus, A = AI+AB+AD. AI is composed of all

the entries Aij of A such that i and j belong to the same patch. AB is defined as the

opposite and AD stores the diagonal values in an array. Matrix AI is a diagonally

blocked matrix, and all the matrix blocks are symmetric, sparse matrices. These

matrix blocks are concatenated in the GPU global memory with each of them in

a sparse matrix format. An integer array is used to store the beginning offset for

each matrix block.

The patch inside matrix AI is typically much denser than AB, and each of its

matrix blocks is loaded into shared memory and accessed many times during

the block Jacobi inner updates, as described in Section 5.5.1.2. Therefore, the

data format of its matrix blocks has a significant impact on the performance. We

considered three potentially appropriate sparse matrix formats: Ellpack (ELL),

CSR, and Symmetric Coordinate list (SymCOO). ELL format stores aM byNmatrix

nonzero values in a denseM by K array values, where K is the maximum number of

nonzeros entries per row. Similarly, the corresponding column indices are stored

in another M by K array indices. The rows that have fewer than K nonzero values

are padded with a sentinel value. ELL format is regular resulting in coalesced

global memory accesses, but it stores useless data to pad the unstructured matrix

to be rectangular, which wastes bandwidth and undermines GPU performance.

In addition, due to the useless padding data, ELL data structure is not compact

enough to fit into the fast memory space (shared memory and registers). For many

meshes where the maximum valance is high, the data spill over into slow local

memory and inner Jacobi iterations become very expensive. CSR, as described in



95

Section 5.4, is compact but irregular, which leads to uncoalesced global memory

access. The SymCOO format is a variant of COO for symmetric matrices. It

consists of three arrays: row indices, column indices, and values. The row indices and

column indices arrays store the row index and column index of each nonzero entry

of the upper half of the matrix. The values array stores the values of those nonzero

entries. SymCOO is the most compact data structure since it stores only half of

the matrix and it is regular. The drawback of SymCOO is that it typically requires

atomic operations in the relaxation step. We alleviate this drawback by performing

the atomic operation in the faster GPUmemory space (sharedmemory space). Our

experiments show that using SymCOO format for the matrix blocks of AI has the

best overall performance. The boundary matrix AB is very sparse and stored in

general COO format. Figure 5.1 shows the patchSPM data structure.

In our V-cycle pipeline, as mentioned before, we combine the prerelaxation

and residual steps, i.e, we use only one CUDA kernel function, which we call

prerelax-residual, for these two steps. We now describe this kernel in detail as

follows.

Figure 5.1. The patchSPM data structure consists of three parts: AI, AB, and AD. AI
includes a concatenated list of SymCOO formats and an integer array indicating
the beginning and ending of each matrix block in the list, AB is in COO format, and
AD is an array of diagonal values.
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1. Each CUDA block loads a segment of AD, b, and a matrix block of AI

(corresponding to a patch) into the shared memory and registers.

2. The kernel allocates two arrays s-Ax and s-u in sharedmemory and initializes

their elements to zeros. These arrays are used to store the block matrix vector

multiplication result and the temporary result after each inner Jacobi iteration,

respectively. The kernel synchronizes here to make sure the matrix block of AI

is loaded and s-Ax is initialized within a CUDA block before execution of next

instruction.

3. The kernel performs multiple inner Jacobi iterations in the shared memory

registers to obtain the final u result now in s-u and the final result is written back

to global memory after synchronization.

4. One more block matrix vector multiplication is performed to compute the

partial residual r̃.

Here, the computed residual is incomplete because the computation takes into

account only the values of the inside matrix AI and the diagonal matrix AD, i.e, the

computed residual from this kernel is r̃ = b− (AI +AD)u. The real residual should

be r = b−Au so after this kernel call, we need to “compensate” the residual by

subtracting ABx from r̃, and then the real residual is r = r̃−ABu. Similarly, before

the postrelaxation, ABx should be subtracted from b to get the real right-hand

side for the block Jacobi iteration, as described in Equation 5.8. The postrelax

kernel is quite similar to the prerelax-residual, but it does not have the residual

computation step. Since AB is relatively sparse compared to AI, the running time

needed to computeABu is relatively short. On thewhole, wehave adifferentV-cycle

pipeline (Algorithm 5.4) for our multigrid method from the typical pipeline shown

in Algorithm 5.3.

5.5.3 Mixed-Precision Computation

In numerical computing on the GPU, there is a fundamental performance ad-

vantage in using single precision floating point data format over double precision.

Due to a more compact representation, twice the number of single precision data

elements can be stored at each level of thememory hierarchy, including the register

file, caches, andmainmemory. By the same token, handling single precision values
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Algorithm 5.4 V-cycle-new(Ak
I , A

k
B, R

k, Pk, bk, uk)
1: if level k is the coarsest level then
2: solve Akuk = bk and
3: return uk

4: else
5: uk, r̃k ← pre-relax-residual(AI,uk,bk)
6: rk ← r̃k−Ak

Bu
k

7: rk+1 ← Rkrk

8: ek+1 ← V-cycle(Ak+1
I ,A

k+1
B ,R

k+1,Pk+1,rk+1)
9: uk ← Pkek+1+uk

10: b̃k ← bk−ABuk

11: uk ← post-relax(AI,uk, b̃k)
12: end if

consumes less bandwidth between different memory levels. In addition, many

modern processor architectures, including GPUs, have much better throughput

for single precision operations than for double precision operations. For example,

NVIDIA’s Fermi GPUs’ single precision operations are around twice as fast as

double precision [71]. Thus, researchers have been trying to find ways to use

single precision operations as much as possible without sacrificing the overall

accuracy. [21] and [33] point out that for a preconditioned Krylov-subspace

method, the preconditioner can be single precision without affecting the accuracy.

This is important for our proposed solver since we are trying to load the matrices

associatedwith themultigrid levels into fast, but limited size, local memory spaces.

In our implementation, the multigrid associated matrices and floating point vector

are in single precisionwhile all other floatingpoint numbers are indouble precision.

We store an extra copy of the finest level matrix Af ine in double precision, and this

matrix is used for the matrix vector multiplication in the PCG iteration. Af ine

is not used for any blocked operation so it is stored in a general sparse matrix

data structure called Hybrid, which is particularly efficient for unstructured sparse

matrix (e.g., [12]).

5.6 Numerical Results
To show the characteristics of our proposed method and the performance of

the implementation, we conduct a set of systematic experiments with various



98

unstructured meshes and numerical set-ups. We compare our implementation

against our optimized serial CPU version for the assembly step and compare

our linear system solver against the state-of-the-art multigrid-based GPU and

CPU solvers, namely the CUSP [70] and Hypre [63] libraries. We refer to these

solvers as CUSP-PCGAMG and Hypre-PCGAMG, respectively, and we call our

solver patchPCGAMG. All experiments are executed on a Linux (OpenSuse 11.4)

computer equipped with an Intel i7 965 Extreme CPU running at 3.2 GHz and

a NVIDIA GeForce GTX 580 GPU. The GPU is equipped with 1.5 GBytes of

memory and 16 streaming multiprocessors, where each multiprocessor consists

of 32 SIMD computing cores that run at 1.544 GHz. Each streaming multiprocessor

has configurable 16 or 48 KBytes of on-chip sharedmemory for quick access to local

data. Computation on the GPU means running a kernel with a batch process of a

large group of fixed size thread blocks. NVCC 4.0.1 and gcc 4.3 are used to compile

the CUDA and CPU codes, respectively, and -O3 flag is used in the compiling.

The unstructured meshes we use in our tests are listed in Table 5.1. The

Regular mesh is generated by the following process: subdivide a 4× 4× 4 cube

into 512 0.5×0.5×0.5 small cubes and then cut each small cube into six tetrahedra

resulting in an initial tetrahedral mesh containing 729 nodes and 3072 elements. We

then subdivide each tetrahedron of this initial tetrahedral mesh into eight smaller

tetrahedra by connecting the midpoints of the edges. We perform this midpoint

subdivision three times to produce the final Regular mesh shown in Table 5.1.

In this process, a series of tetrahedral meshes is generated with each finer mesh

doubling the resolution of the coarser mesh. This series of meshes is used in

our scalability experiment in Section 5.6.2.2. The Irregular mesh is generated by

tetrahedralizing a 4× 4× 4 cube. The Heart and Brain meshes are visualized in

Figure 5.2. The Blobs mesh has two regions, inside of the blobs and outside of the

blobs, which are color coded differently in Figure 5.3. This mesh is used in the

heterogeneous domain experiment in Section 5.6.2.4 where the two regions have

different coefficients (σ in Equation 5.4). The proposed assembly and linear system

solution methods extend naturally to 2D triangular meshes with some parameter

tuning. Therefore, we only report the 3D tetrahedral mesh result in this section.
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Table 5.1. The meshes used in our experiments.
mesh names node number element number min valance max valance

Regular 274,625 1,572,864 3 18
Irregular 197,561 1,122,304 3 25
Heart 437,355 2,306,717 5 36
Brain 322,497 1,805,242 6 34
Blobs 277,657 1,650,105 5 46

Figure 5.2. Surface rendering of the exterior surfaces of theHeart andBrainmeshes.

Figure 5.3. A cross section and the volume visualization of the Blobs mesh.
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5.6.1 Assembly Performance

We show the performance of our GPU assembly by assembling for the linear

system of the Helmholtz equation (Equation 5.1 with λ = 1) from all the meshes

mentioned above and comparing the running time against our optimized serial

CPU implementation which is based on Algorithm 5.1. Both implementations

compute the global matrix A as in Equation 5.4 using double precision. The results

are shown in Table 5.2. Our GPU implementation of the assembly step is up to 87

time faster than the CPU implementation.

5.6.2 Linear System Solution Numerical Experiments

We conduct a series of experiments to show the properties of our method

and the performance of our implementation. We compare the result against the

state-of-the-art GPU and CPUmultigrid-based linear solver: CUSP-PCGAMG and

Hypre-PCGAMG. For Hypre-PCGAMG, the hybrid Gauss-Seidel method is used

for the relaxation and PMIS is chosen for coarsening. We use mixed precision

strategy for patchPCGAMG and CUSP-PCGAMGand double precision for Hypre-

PCGAMG as our experiment shows that single precision and double precision

performance difference is very small on CPU. The CUSP-PCGAMG uses the same

smoothed aggregation multigrid method as ours while the Hypre library uses the

BoomerAMG-basedmultigrid preconditioner. For all the experiments, the solution

is considered converged if the relative error ε = ‖r‖
‖b‖ < 1e−8, where r is the residual

and b is the right-hand side of the linear system whose entries are all set to one, i.e,

(φi, f ) = 1 in Equation 5.3. ‖x‖ denotes the l2 norm of a vector x. We show the result

of tolerance 1e−8, but the trend is the same for smaller tolerances.

Table 5.2. Assembly performance (double precision): GPU and CPU running time
(in seconds) comparison.

meshes GPU CPU speedup
Regular 0.0298 1.080 36
Irregular 0.0229 1.010 44
Heart 0.0465 3.114 67
Brain 0.0355 3.077 87
Blobs 0.0319 2.525 79
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5.6.2.1 Multigrid Set-up Stage Performance

Table 5.3 shows the running time of the multigrid set-up stage for all meshes

with the result compared to the set-up stages of CUSP-PCGAMG and Hypre-

PCGAMG. S1 and S2 are the speedups in contrast with Hypre-PCGAMG and

CUSP-PCGAMG, respectively, and negative values denote when patchPCGAMG

is slower.

Compared to CUSP-PCGAMG, our AMG set-up stage has an extra partitioning

step as described in Section 5.5.2.1, and hence its performance is worse. As shown

in the table above, patchPCGAMG is 1.2× to 1.3× slower. On the other hand,

patchPCGAMG achieves up to 3.2× speedup for the set-up stage when compared

with Hypre-PCGAMG.

5.6.2.2 Scalability with Problem Size

Multigrid-preconditioned Krylov subspace methods are known to have linear

scalability with the matrix size for structured problems, and thus, the convergence

rate (number of CG iterations) should not change with the matrix size. In this

section, we show how our AMG preconditioned CG linear system solver scales

when the mesh resolution increases using the series of regular tetrahedral meshes

mentioned before. FEM is used to solve the Helmholtz equation with natural

boundary condition on these meshes. We solve the associated linear system with

our AMG preconditioned CG linear solver and show the scalability of the solver

by measuring the number of global (PCG) iterations needed to converge. The

result is compared to the other two AMG preconditioned CG linear solvers(CUSP-

Table 5.3. Multigrid set-up stage running time in seconds. S1 and S2 are the
speedups comparing patchPCGAMG to Hypre-PCGAMG and CUSP-PCGAMG.
Speedup number is in parentheses when patchPCGAMG is slower.

meshes patchPCGAMG Hypre-PCGAMG S1 CUSP-PCGAMG S2
Regular 0.519 1.10 2.0 0.420 (1.2)
Irregular 0.385 0.665 1.7 0.292 (1.3)
Heart 0.813 2.51 3.2 0.604 (1.3)
Brain 0.591 1.68 2.9 0.451 (1.3)
Blobs 0.569 1.27 2.1 0.431 (1.3)
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PCGAMG and Hypre-PCGAMG) and a pure CG solver (CUSP-CG) (see the plot

in Figure 5.4).

As shown in Figure 5.4, our solver demonstrates good scalability with problem

size although not perfectly linear. It is slightly better than the other two PCG-AMG

solvers. In addition, our solver needs only about half the number of iterations

to converge compared to CUSP-PCGAMG. This difference is mainly due to the

difference of the relaxation method since both are using SAMG method and the

aggregate partition strategy is similar. The inexact block Jacobi relaxation we use

shows clear advantage over the Jacobi method used by CUSP-PCGAMG. We can

also see from the plot that all three PCG-AMG solvers scales much better than the

pure CG solver, which confirms the claim that MG generally has good scalability

with problem size.

5.6.2.3 Inner Iteration Influence on Convergence Rate

As mentioned earlier, we use the inexact weighted block Jacobi method for

the relaxation step in the multigrid method. Multiple inner Jacobi iterations are

performed to approximate the inverse of the matrix block Aii according to patch i.

Figure 5.4. The plot for number of degrees of freedom against global iteration
number.
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The reasons why we compute the inverse inexactly are two-fold: first, the inverse

computation for the matrix blocks are different if we compute exactly, which leads

to imbalanced work loads for the CUDA blocks. Second, we are using the block

Jacobi as the relaxation to smooth out the high-frequency error and there is no need

to compute the inverse exactly. Figure 5.5 shows how the number of inner iterations

is related to the global (PCG) iteration number needed to converge for the meshes.

It can be seen from the plot that larger inner iteration number generally lead to

less global iterations but after around three inner iterations, the global iteration

number does not change any more or changes very little. Although the inner

iteration is relatively cheap as we load the matrix blocks into fast memory space

(registers or shared memory), it is not totally free. Larger inner iteration number

leads to poorer per-iteration relaxation performance. Our experiments show that

three inner iteration is generally the sweet spot for overall performance.

5.6.2.4 HeterogeneousMedia InfluenceonConvergenceRate

This experiment shows how the method performs when the domain is hetero-

geneous, i.e., the coefficients of the Laplacian operator in Equation 5.2 σ = σ(x) is

not the same for all x. This happens when a simulation is done on a multimaterial

Figure 5.5. Plot of inner iteration number against global iteration number.
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domain as the σ is usually different in different materials. Table 5.4 shows how

the method performs when the meshes have two different materials and one of the

materials hasσ= 1 and the othermaterial’sσ is 1, 10, 100, respectively, and compares

to CUSP and Hypre and the unpreconditioned conjugate gradient method from

CUSP library whichwe call CUSP-CG. As shown in the table, all methods converge

slowerwith increased heterogeneity. The patchPCGAMGandCUSP-PCGAMGare

becoming worse at roughly the same rate (the convergence rate ratio of the two

is roughly the same with different heterogeneity). This means the patch partition

used patchPCGAMG is not affecting the performance for heterogeneous problem.

5.6.2.5 Running Times for All Meshes Comparison

Table 5.5 compares the running times and (number of iterations) for our linear

solver alongwithCUSP-PCGAMGandHypre-PCGAMG.Wealso include twopure

(unpreconditioned) conjugate gradient implementations: a GPU implementation

from the CUSP libraray (CUSP-CG) and a CPU implementation in Hypre (Hypre-

CG). S1 and S2 are the speedups of patchPCGAMG compared to Hypre-PCGAMG

and CUSP-PCGAMG. S3 is the speedup of the CUSP-CG compared to the Hypre-

CG.

Also shown in Table 5.6, the patchPCGAMG achieves up to 51× speedup

compared to the state-of-the-artCPUPCG-AMGimplementationHypre-PCGAMG

while porting the pure CG method to GPU gains only up to 9× speedup. This is

indicative that CG is not particularly well-suited for the GPU many-core architec-

tures. Although adding AMG as the preconditioner makes the solver much more

complicated than pure CG, it is worth the extra effort considering the performance

Table 5.4. Heterogeneousmediaperformance comparison for theBlobsmesh: (m,n)
means the σ values for the two materials in the domain are m and n, respectively.
The numbers reported are the global iteration numbers.

Methods (1,1) (1,10) (1,100)
patchPCGAMG 23 31 60
CUSP-PCGAMG 50 60 122
Hypre-PCGAMG 28 30 40

CUSP-CG 1048 2419 7071
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Table 5.5. Running times in seconds (global iteration number) for all meshes: S1
and S2 are the speedups of patchPCGAMG compared to Hypre-PCGAMG and
CUSP-PCGAMG. S3 is the speedup of the CUSP-CG compared to the Hypre-CG.

meshes patch Hypre- S1 CUSP- S2 CUSP- Hypre- S3
PCGAMG PCGAMG PCGAMG CG CG

Regular 0.139(19) 3.86(25) 28 0.175(36) 1.3 0.680(329) 3.73(329) 5
Irregular 0.167(31) 3.02(29) 18 0.216(56) 1.3 2.43(1639) 14.8(1639) 6
Heart 0.218(20) 11.2(31) 51 0.631(46) 2.9 4.64(1148) 33.8(1131) 7
Brain 0.165(19) 7.78(27) 47 0.432(45) 2.6 8.15(1838) 60.4(1810) 9
Blobs 0.172(23) 5.70(28) 33 0.409(50) 2.4 3.34(1048) 16.0(1030) 5

Table 5.6. Per global iteration running times in milliseconds for all meshes: S1
and S2 are the speedups of patchPCGAMG compared to Hypre-PCGAMG and
CUSP-PCGAMG. Speedup number is in parentheses when patchPCGAMG is
slower.

meshes patch Hypre- S1 CUSP- S2
PCGAMG PCGAMG PCGAMG

Regular 7.31 154 21 4.68 (1.6)
Irregular 5.40 104 19 3.86 (1.4)
Heart 10.9 361 33 13.7 1.3
Brain 8.71 288 33 9.60 1.1
Blobs 7.49 204 27 8.18 1.1

improvement on the GPU. In addition, the patchPCGAMG achieves 1.3× to 2.9×

speedup comparing to the CUSP-PCGAMG on the same GPU. The global iteration

numbers in the table demonstrate that our block Jacobi relaxation greatly improves

the convergence rate compared to Jacobimethodused inCUSP-PCGAMG.Table 5.6

shows the per global iteration performance of the three PCGAMGmethods. Com-

paring to theCUSP-PCGAMG, theper iteration running timeof the patchPCGAMG

is comparable although the block Jacobi relaxation used in the patchPCGAMG

performs much more computation than the Jacobi method. This confirms our

claim that our relaxation method increases the computational density and better

balances the memory bandwidth and computations. It can also be noted from

Table 5.6 that for the simpler meshes, Regular and Irregular, where the valance

is relatively not variable, the CUSP has better per iteration performance because

it uses the Hybrid sparse matrix data structure that performs better when the

matrix is regular ([11]). For the other meshes, which are more representative of
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real-life data, the patchPCGAMG performs similarly or even better. As expected,

both GPU implementations have much better per iteration performance than the

Hypre-PCGAMG.

5.7 Conclusions and Future Work
In this chapter, we present the complete pipeline of a parallel FEM solver for

unstructured meshes that performs verywell on themany-core parallel processors.

The proposed GPU assembly performs up to 87× better than an optimized CPU

implementation, and the proposed multigrid preconditioned CG solver achieves a

speedup of up to 51× compared to the state-of-the-art CPU implementations. These

speedups compare very favorably against other attempts at GPU-accelerated linear

solvers, many of which report lackluster results [19]. The algorithms and data

structures need not be changed to run on newer generation hardware (e.g., Kepler

GPU) efficiently. However, some parameter might need to be tuned to obtain the

best performance, such as the patch size and inner iteration number.

We choose to use a geometry-informed AMG as the preconditioner for the

CG method to solve the linear system from the FEM. The proposed AMG pre-

conditioner dramatically speeds up the convergence rate of the CG method and

changes the computational bulk of the work from the CG iteration to the AMG

preconditioner—a solver methodology which adapts very well to the many-core

parallel architecture with proposed parallelism scheme and data structures. This

is juxtaposed with the typical CG implementation on the GPU, which suffers from

excessive communication and low computational density. This is borne out in the

experimental data, which shows dramatically better speed ups for AMG on the

GPU vs the CPU. Thus, the corresponding improvements in AMG performance

on the GPU make it a particularly attractive option for taking advantage of the

significant compute power offered by these devices.

Unfortunately, AMG presents some challenges, particularly in the aggregation,

restriction, and prolongation methods, that are sometimes problem-dependent;

thus, it is more difficult to imagine a completely general software solution for

the linear solve, as one would typically expect with a CG solver. We have
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included some preliminary results for the heterogeneous media and those results

are very encouraging, but further investigation is needed to fully understand how

the heterogeneity influences the performance when the partitions (aggregate and

patch) do not align with the heterogeneity. Anisotropy is likely to present further

challenges. In this chapter, we focused on solving the FEM problems with a single

GPU. However, there are circumstances that single GPU is not enough for a given

problem, either because the problem size is too large to fit into the memory of a

single GPU, or the performance of the problem on a single GPU is not satisfactory.

Therefore, an important area of futureworkwouldbe solvers that use anout-of-core

paradigm for memory handling/shuffling to the GPU or solvers that scale across

multiple GPUs or GPU clusters.



CHAPTER 6

AN EFFICIENT PARALLEL ALGORITHM FOR

SOLVING THE LEVELSET EQUATIONS ON

UNSTRUCTURED DOMAINS

6.1 Introduction
The levelset method uses a scalar function φ = φ(x(t), t) to implicitly represent a

surface or a curve, S= {x(t) |φ(x(t))}= k, hereafter referenced as a surface. The surface

or curve deformation is captured by numerically solving the associated nonlinear

partial differential equation (levelset equation) on φ. The levelset method has

a wide array of application areas, ranging from geometry, fluid mechanics, and

computer vision to manufacturing processes [89] and virtually any problem that

requires interface tracking. The method was originally proposed by Osher and

Sethian [73] for regular grids, and early levelset computations used finite difference

approximations on fixed, logically rectilinear grids. Such techniques have the

advantages of a high degree of accuracy and programming ease. However, in

some situations, a triangulated domain with finite element type approximations is

more appropriate. Barth and Sethian have cast the levelset method into the finite

element framework and extended it to unstructured meshes in [9]. Since then,

the levelset method has been widely used in applications that involve complex

geometries and require the use of unstructured mesh for simulation. For example,

in medical imaging, the levelset method on brain surfaces is used for automatic

sulcal delineation, which is important for investigating brain development and

disease treatment [53]. In computer graphics, researchers have been using the

levelset methods for feature detection and mesh cutting via geodesic curvature

flow [108]. Yet another application of the levelsetmethod on unstructured domains

is the simulation of solidification and crystal growth processes [98].
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Many studies have been conducted to develop efficient levelset solvers. In [4],

Adalstein and Sethian propose a narrowband scheme to speed up the computation.

This approach is based on the observation that one is typically only interested in a

particular interface, and in this case, only the computation around the interface is

necessary. Whitaker proposes the sparse field method in [106], which employs the

narrowband concept and maintains a narrowband containing only the wavefront

nodes and their neighbors to further save computation. Some other studies in

the literature are focused on memory efficiency of the levelset method. Bridson

proposes the sparse block grid method in [18] to dynamically allocate and free

memory and achieves suboptimal storage complexity. Strain [96] proposes the

octree levelset method that is also efficient in terms of storage. Houston et al. [48]

apply the run-length encoding (RLE) scheme to compress regions away from the

narrowband to adjust their sign representation while storing the narrowband with

full precision. This scheme further improves the storage efficiency over the octree

approach. A number of recent works [61, 50, 36] address the parallelism strategies

for solving the levelset equation on CPU-based and GPU-based parallel systems.

However, these works have been focused on regular grids, and the parallelism

schemes do not readily extend to unstructured meshes.

Recently, there has been growing interest in floating point accelerators. These

accelerators are devices that perform arithmetic operations concurrently with or

in place of the CPU. Two solutions received special attention from the high-

performance computing community: GPUs, originally developed for video cards

to render graphics, that are nowused for very demanding computational tasks, and

the newly released Intel Xeon Phi, which employs verywide (512 bit) SIMDvectors

on the same X86 architecture as other Intel CPUs and promises high-performance

and little programming difficulty. Relative to CPUs, the faster growth curves of

these accelerators in the speed and power efficiency have spawned a new area of

development in computational technology. Now, many of the top supercomputers

are equipped with accelerators such as the current top one, Titan [66]. Developing

efficient code for these accelerators is a very important building block of fully

utilizing these supercomputers. In this chapter, we present efficient parallel
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algorithms for solving the levelset equations on unstructured meshes on both

CPU-based and GPU-based parallel processing systems.

The use of unstructured meshes makes the levelset method more flexible with

respect to computational domains. However, solving the levelset equation on

unstructuredmeshes poses a number of challenges for efficient parallel computing.

First, there is no natural partition of the domain for parallelism, and the use of a

graph partitioner to decompose the mesh may result in uneven partition sizes,

which in turn leads to a load balancing problem. Second, for regular meshes, the

valence of the nodes is the same, and hence nodal parallelism is typically employed

that assigns each node to a thread. However, for unstructured meshes, the nodes

have varying valences and neighborhood structures, which leads to irregular data

structures and unbalanced workload for nodal parallelism. Third, the boundary

communications among partitions typically require additional computations and

separate data structures to find and store the boundary locations.

In this chapter, we present a new parallelism strategy for solving the levelset

equation on unstructuredmeshes that combines a narrowband scheme anddomain

decomposition. We propose the narrowband fast iterative method (nbFIM) to

compute the distance transform by solving an eikonal equation in a narrowband

around the wavefront and the patched narrowband scheme (patchNB) to evolve

the levelset. We use unified domain partitioning for both distance transform and

levelset evolution to ensure minimal setup time. For unstructured meshes, the

update of the value on each node depends on values of its neighboring nodes, and

thedifferentvalences can leads to loadbalancing issues. This is especially inefficient

for GPUs and other streaming architectures, which employ SIMD-like architecture

andprefer regular computations. To address this, wepropose elemental parallelism

instead of nodal parallelism to mitigate load balancing problem. However, the

elemental parallelism approachmay lead to contention, because multiple elements

will try to update the value of the same node simultaneously. Typically, atomic op-

erations are used to solve this problem. However, atomic operations are expensive

especially onGPUs, and can result in significant numbers of threads blockingwhile

waiting for access to variables. Therefore, we propose a new lock-free algorithm
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(and associated data structures) to enforce data compactness and locality for both

shared memory CPU systems and GPUs. We call this approach hybrid gathering.

Our algorithm converts the contention problem to a sorting problem that is efficient

on parallel systems, including GPUs [86]. Both the distance transform (part of

maintaining the narrowband) and the levelset evolution benefit from this lock-free

update scheme. In this chapter, we describe the data structure and algorithm,

and present systematic experimental results to demonstrate the efficiency of the

proposed method on both shared memory CPU system and the GPU.

This chapter proceeds as follows. In Section 6.2, we introduce levelset equation

and the proposed methods and algorithms. In Section 6.3, we discuss implementa-

tion details and data structures. In Section 6.4, we discuss the performance of both

CPU and GPU implementations of the proposed method, using several 2D and 3D

examples as a benchmark. In Section 6.5, we summarize the results and discuss

future research directions related to this work.

6.2 Mathematical and Algorithmic Description
In general, the levelset equation solver with narrowband scheme has two

main building blocks: the distance transform recomputation (reinitialization) and

interface evolution according to the levelset equation (evolution). In this section,

we give themathematical description of the levelset equations, andwe describe the

numerical algorithms. Wefirst introduce the necessarynotation anddefinitions and

then describe the narrowband scheme and the associated reinitialization algorithm.

Finally, we present the numerical scheme for the evolution step and lastly present

the novel hybrid gathering parallelism scheme and lock-free update algorithm.

6.2.1 Notation and Definitions

The levelset method relies on an implicit representation of a surface by a scalar

function

φ :Ω(x)→R, (6.1)

whereΩ ∈Rn,n ∈ {2,3} is the domain of the surface model, which can be a 2D plane,

a 3D volume or a manifold. Thus, a surface S is
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S = {x | φ(x) = k}. (6.2)

The choice of k is arbitrary, and we call φ the embedding. The surface S is referred to

as an isosurfaceofφ. Surfaces defined in thiswaypartitionΩ into inside andoutside,

and such surfaces are always closed provided they do not intersect the boundary

of the domain. The embedding φ is approximated on a discrete tessellation of

the domain. The levelset method uses a one-parameter family of embeddings, i.e.,

φ(x, t) changes over time t with x remaining on the k levelset of φ as it moves, and

k remaining constant. The behavior of φ is obtained by setting the total derivative

of φ(x(t), t) = k to zero. Thus,

φ(x(t), t) = k =⇒
∂φ

∂t
+∇φ ·v = 0. (6.3)

Let F denote the normal speed, F = v · ∇φ|φ| . The level set equation, given by

Equation 6.3, then can be written as

∂φ

∂t
+F|∇φ| = 0. (6.4)

We define the initial condition as φ(x, t = 0) = g(x). In general, F can be a more

complicated function of x and ∇x: F = F(x,∇φ,∇2φ, ...). In this chapter, we consider

the levelset equation with

F = α(x) · ∇φ+ ε(x)|∇φ|+β(x)∇ ·
∇φ

|∇φ|
|∇φ|, (6.5)

where α(x), ε(x), and β(x) are user defined coefficient functions. We call these

three terms of F the advection term, eikonal term, and curvature term, respectively.

This form of levelset equation is used widely in many applications such as image

processing, computer vision, etc.

We approximate the domain Ω by a triangulation ΩT, which consists of non-

overlapping simplices that we call elements. Based upon this triangulation, we

form a piecewise linear approximation of the solution by maintaining the values

of the approximation on the set of vertices V and employing linear interpolation

within each element inΩT. The total number of vertices inV is denoted |V|, and the

total number of elements in ΩT is denoted |ΩT |. We use vi to denote the ith vertex
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in V An edge is a line segment connecting two vertices (vi, vj) in Rd,d ∈ {2,3} and is

denoted by ei, j. The vector from vertex vi to vertex vj is denoted by ei, j = x j−xi.

In this chapter, we consider both 2D and 3D cases, and ΩT consists of triangles

or tetrahedra, respectively. A triangle, denoted Ti, j,k, is a set of three vertices vi,

vj, vk that are pairwise connected by an edge. Similarly, a tetrahedron is denoted

Ti, j,k,l. The set of vertices adjacent to vertex vi is called one-ring neighbors of vi and

is denoted byNi, while the set of adjacent elements is called one-ring elements of vi

and is denoted by Ai. We denote the discrete approximation of the solution φ at

vertex vi by Φi. The area or volume of an element T is denoted meas(T).

6.2.2 Narrowband Scheme and Distance Transform Recomputation

Many applications require only a single surface model. In these cases, solving

the equation over the whole domain for every time-step is unnecessary and com-

putationally inefficient. Fortunately, levelsets evolve independently (to within the

error introduced by the discrete triangulation) and are not affected by the choice

of embedding. Furthermore, the evolution of φ is important only in the vicinity of

that levelset. Thus, one should perform calculations for the evolution of φ only in

a neighborhood of the surface expressed by Equation 6.2. In the discrete setting,

there is a particular subset of mesh nodes whose values define a particular levelset.

Of course, as the surface moves, that subset of mesh nodes must change according

to the new position of the surface.

In [4], Adalsteinson and Sethian propose a narrowband scheme that follows

this line of reasoning. The narrowband scheme constructs an embedding of the

evolving curve or surface via a signed distance transform. The distance transform

is truncated: computed over a finite number of nodes that lie no further than a

specified distance from the levelset. This truncation defines the narrowband and

the remaining points are set to constant values to indicate that they lie outside

the narrowband. The evolution of the surface is computed by calculating the

embedding only within the narrowband. When the evolving levelset approaches

the edge of the narrowband, the new distance transform and the new embedding

are calculated, and the process is repeated. This algorithm relies on the fact that
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the embedding is not a critical aspect of the evolution of the levelset. That is,

the embedding can be transformed or recomputed at any point in time, as long

as such transformation does not change the position of the kth levelset, and the

evolution will be unaffected by this change in the embedding. Following the

strategy in [106], most inplementations keep a list of nodes in the narrowband.

However, this approach is not efficient for GPUs and unstructured meshes because

the nodes in the narrowband will have arbitrary order, and the memory access

is effectively random. We propose the patched narrowband (patchNB) scheme to

enforce memory locality and improve performance on GPUs. This scheme keeps a

list of patches inside the narrowband instead of nodes, and each patch is assigned to

a GPU streaming multiprocessor with values of nodes in each patch being updated

in parallel by GPU cores. In this way, the data (geometry information, values,

intermediate data) of each patch can be stored in fast shared memory, and global

memory access is coalesced and reduced. We describe the scheme in more detail

in Section 6.3.

This narrowband scheme requires the computation of the distance transform

(reinitialization). We propose a modified version of the patched fast iterative

method [37], that we call nbFIM, to compute the distance transform by solving

the eikonal equation with the value of speed function set to one. The nbFIM

restricts the computational domain to the a narrowband around the levelset that

significantly reduce computational burden. Also, we propose new algorithm and

data structures to further improve the performance.

Specifically, the nbFIM employs a domain decomposition scheme that partitions

the computational domain into patches and iteratively updates the node values of

the patches near the levelset until all patches are either converged (not changing

anymore) or far away from the levelset. The algorithm maintains an active list

that stores the patches that require an update. The active list initially contains

the patches that intersect with the levelset, and then it is updated by removing

convergent patches and adding their neighboring patches if they are within a

certain distance from the levelset. The distance of a patch is defined as the minimal

value of all the node values in this patch. In this way, the patches that are far
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from the levelset are not updated at all, which saves computation. Also, it is

guaranteed that all the nodes with values smaller than narrowband width are in

the new narrowband list. The details of the implementation will be described in

Section 6.3.

The node value update process calculates the newvalue of a node by computing

potential values from the one-ring elements and take the minimal of the potential

values as the newvalue. We call the computation of the potential value of a node the

local solver, which requires geometric information of one of the one-ring elements

and the values of other nodes in the element.

6.2.3 Levelset Evolution and PatchNB

The numerical schemewe use to discretize Equation 6.4 in space is based on [9].

We adopt the positive coefficient scheme for the first-order terms of the levelset

equation (the advection and the eikonal terms):

H j(∇φ) =

∑|ΩT |
l=1 α̃

l
jH(∇φ)

∑|ΩT |
l=1 α̃

l
jmeas(Tl)

, (6.6)

whereH denotes the advection or eikonal term, which are first order homogeneous

functions of ∇φ, and α̃lj are non-negative constant coefficients that are defined as

follows:

α̃lj ←
max(0,αlj)∑d+1
k=1 max(0,αlk)

. (6.7)

The coefficients αlj are defined as:

Qj ←∇H · ∇Nimeas(T), (6.8)

Q−
j ←min(0,Qj), (6.9)

Q+j ←max(0,Qj), (6.10)

δ j ←Q+j (
d+1∑
l=1

Q+l )
−1

d+1∑
i=1

Q−
i (φi−φ j), (6.11)

αlj ←
δ j

HTl

, (6.12)

whereHTl =
∫
Tl
Hdx, and Ni is the linear basis function satisfying Ni(x j) = δi j.
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We adopt the Finite Element Method (FEM) for the curvature term that is

approximated at each node vi as:

(K|∇φ|)i =

∑
j∈Ni

Wi
j(φ j−φi)∑

T∈Ai
meas(T)

∣∣∣∣∣∣∣

∑
T∈Ai

meas(T)
∑d+1

j=1 ∇Njφ j∑
T∈Ai

meas(T)

∣∣∣∣∣∣∣ , (6.13)

where Wi
j =
∑
{T|ei j∈T}

∇Ni·∇Njmeas(T)
|∇φ| .

Equations 6.6–6.13 show that the computation of the new value φi at node vi

requires values from its one-ring neighbors and geometric data from the one-ring

elements. Algorithm 6.1 shows a typical serial algorithm, and AH1, AH2, AV1,

AV2, V, PV, CV are temporary arrays that store the intermediate results. Similar

to the reinitialization, we use elemental parallelism for better load balancing and

hybrid gathering scheme to avoid contention.

6.2.4 Hybrid Gathering Parallelism and Lock-free Update

In both of the reinitialization and the evolution steps, we need to update the

values of the nodes in themesh, and these updates canbeperformed independently.

The natural way to parallelize the computation is to assign each nodal update to a

thread. We call this approach nodal parallelism, and it can be represented as a sparse

matrix-vector operation, as shown in Figure 6.1 (left). The operator
⊗

denotes a

generic operation defined on the degrees of freedom corresponding to �’s. The

advantage of this scheme is that it naturally avoids contention, because each nodal

computation has an associated thread. However, it can introduce unbalanced load

when the nodes have widely varying valance. These irregular computations and

data structures are not efficient on GPUs that use SIMD streaming architecture.

An alternative parallelism scheme is to distribute the computations among threads

according to the elements. We call such approach elemental parallelism; it is more

suitable for GPUs, because it gives regular local operators and corresponding data

structures. Figure 6.1 (right) depicts the matrix representation of this approach. In

this matrix representation, the matrix is a block matrix in terms of local operators

according to the elements. The matrix blocks can overlap each other, and the

vector of degrees of freedom is segmented but has overlaps. Each block matrix-

vector operation represents a set of local computations that are performed by a



117

Algorithm 6.1 Evolution(Φ, B) (Φ: values of the nodes, B: narrowband)
for all p ∈ B do
for all Ti, j,k ∈ p do
compute meas(T)
compute ∇Ni, ∇Nj, ∇Nk
∇φ = ∇Ni ∗φi+∇Nj ∗φ j+∇Nk ∗φk
compute Q for the advection term: Q1

i , Q
1
j , Q

1
k

compute Q for the eikonal term: Q2
i , Q

2
j , Q

2
k

(H1)T =Q1
i ∗φi+Q

1
j ∗φ j+Q1

k ∗φk

(H2)T =Q2
i ∗φi+Q

2
j ∗φ j+Q2

k ∗φk
compute Q+ and Q−

compute α̃1i , α̃
1
j , α̃

1
k , α̃

2
i , α̃

2
j , α̃

2
k

AH1[i]+ = α̃1i ∗ (H
1)T, AH[j]+ = α̃1j ∗ (H

1)T, AH[k]+ = α̃1k ∗ (H
1)T

AH2[i]+ = α̃2i ∗ (H
2)T, AH[j]+ = α̃2j ∗ (H

2)T, AH[k]+ = α̃2k ∗ (H
2)T

AV1[i]+ = α̃1i ∗meas(T), AV[j]+ = α̃1j ∗meas(T), AV[k]+ = α̃1k ∗meas(T)

AV2[i]+ = α̃2i ∗meas(T), AV[j]+ = α̃2j ∗meas(T), AV[k]+ = α̃2k ∗meas(T)
V[i]+ =meas(T), V[j]+ =meas(T), V[k]+ =meas(T)
PV[i]+ = ∇φ ∗meas(T), PV[j]+ = ∇φ ∗meas(T), PV[k]+ = ∇φ ∗meas(T)

CV[i]+ = ∇Ni·∇Ni∗meas(T)
|∇φ| +

∇Ni·∇Nj∗meas(T)
|∇φ| +

∇Ni·∇Nk∗meas(T)
|∇φ|

CV[j]+ =
∇Nj·∇Nj∗meas(T)

|∇φ| +
∇Nj·∇Ni∗meas(T)

|∇φ| +
∇Nj·∇Nk∗meas(T)

|∇φ|

CV[k]+ = ∇Nk·∇Nk∗meas(T)
|∇φ| +

∇Nk·∇Ni∗meas(T)
|∇φ| +

∇Nk·∇Nj∗meas(T)
|∇φ|

end for
for all vi ∈ B do
φi− = α

AH1[i]
AV1[i] + ε

AH2[i]
AV2[i] +β

|CV[i]|PV[i]
V[i]2

end for
end for

thread. This parallelism scheme may result in contention as multiple threads may

be updating the same degree of freedom due to the overlapping. The conventional

solution to this problems is to use atomic operations. However, this is not suitable

for GPUs as the atomic operations on GPUs are quite expensive, especially for

double precision floating number operations, which are widely used in scientific

computing.

We have developed a novel parallelism scheme that we call hybrid gathering

to combine the advantages of both the nodal and elemental parallelism schemes.

In the hybrid gathering parallelism scheme, the computation is decomposed into
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Figure 6.1. Matrix representations of the parallelism schemes. On the left, we
present the nodal parallelism scheme. The �’s denote nonzero values or some
operators. On the right, we present the elemental parallelism scheme. The matrix
is blocked, and the blocks can be overlapping each other.

two stages (two matrix-vector operations): (1) performs local operations on the

associated element and stores intermediate result and (2) fetches and assembles

intermediate result data according to the gathering matrix. The symbols
⊗

and⊙
in Figure 6.2 represent the operations in these two stages, respectively. In

the first stage, matrix blocks and vector segments are not overlapping, and the

matrix-block-vector-segment operations can be assigned to different threads, thus

avoiding the contention. This stage decomposes the computations according to the

elements with regular local operators, after which each thread fetches intermediate

result data according to the gathering matrix to assemble the value for the degrees

of freedom. In practice, the two stages are implemented in a single kernel function,

and fast GPU cache (shared memory or registers) is used to store the intermediate

data, which makes the gathering stage very efficient.

The computation of the gathering matrix is a key part of the hybrid gathering

parallelism scheme. The degrees of freedom are associated with the nodes, and

the computations are performed on elements. Therefore, the gathering matrix

should represent a topological mapping from elements to nodes, and this mapping

describes thedata dependency for eachdegree of freedom. Inpractice, themapping

from elements to nodes is typically given as an element list, denoted E, which

consists of node indices. The location indices of this list correspond to the memory
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Figure 6.2. Matrix representations of the Elemental Gathering scheme.

location of the data that is required by the threads. We create a sequence list S that

records thememory locations ofE. Then, we sortE and permute S according to the

sorting. Now, in the sorted list E′, the node indices are grouped, and the permuted

sequence list, denoted S′, stores the datamemory location in original element listE.

The E′ and S′ together indicate the locations of the �’s in the gathering matrix and

form the coordinate list (COO) sparse matrix representation [12] of the gathering

matrix. In this way, we convert the contention problem to a sorting problem. Here,

list E has fixed length keys, which allows it to be sorted very efficiently on GPUs

with radix sorting [86]. Essentially, sorting allows us to take full advantage of the

GPU computing power and avoid the weakness of the architecture in the form of

addressing contention.

6.3 Implementation
In this section, we describe the details of the implementation of our method

to solve the levelset equation on parallel systems, including shared memory CPU-

based computers and GPU-based systems. The pipeline consists of two stages: the

set-up stage and the time-stepping stage. The set-up stage includes the partitioning

of the mesh into patches, preparation of the geometrical data for the following

computation, and generation of the gathering matrix Λ. We choose the METIS

software package [55] to perform the partitioning. METIS partitions the mesh into
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nonoverlapping node patches and outputs a list showing the partition index of each

node. The data preparation step permutes the node coordinate list and rearranges

the element list according to the partitioning. The time-stepping stage iteratively

updates the node values until the desired number of time steps is reached. In

each iteration, a reinitialization and multiple evolution steps are performed. We

describe the detailed implementations and data structures for the set-up stage,

the reinitialization step, and the evolution step, respectively, in the following

subsections.

6.3.1 Set-up

During the set-up stage, the mesh is partitioned into patches, each of which

consists of a set of nodes and a set of elements according toMETIS output. The sets

of nodes are mutually exclusive, and the element sets are one-layer overlapping:

the boundary elements are duplicated. The vertex coordinate list and the element

list are then permuted according to the partitioning so that the vertex coordinates

and the element vertex indices are grouped together, and hence the global memory

access is coalesced.

As described in Section 6.2, we use the hybrid gathering scheme to decompose

the computation. Therefore, we must generate the gathering matrix Λ during the

set-up stage. Here, we describe a simple example, with a triangular mesh, to

demonstrate the generation of the matrix Λ generation. First, consider the simple

mesh displayed in Figure 6.3. This mesh consists of two triangles, e0 and e1,

which include four degrees of freedom in the solution: φ0 through φ3. During

the solution process, the thread corresponding to element e0 will be updating the

values of φ0, φ1 and φ2, while the thread corresponding to element e1 will be

updating the values of φ0, φ3 and φ1. The corresponding data flow is shown in

Figure 6.4. We store the intermediate data in a separate array that has one-to-one

correspondence to the element list. Therefore, the element list indices are the same

as the memory locations, from which the degrees of freedom require data. For our

example, computations involving φ0 require data from the element list memory

locations 0 and 3. If we create an auxiliary sequence list {0,1,2,3,4,5}, sort the
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Figure 6.3. Mesh with two elements: e0 and e1.

Figure 6.4. Data flow for the simple mesh example.

element list, and permute the sequence list according to the sort, we get two new

lists: sorted element list {0,0,1,1,2,3} and permuted auxiliary list {0,3,1,5,2,4}.

These two lists now contain the row indices and column indices of the � entries

of matrix Λ. In practice, we convert this to compressed sparse row (CSR) matrix

format [12] for storage by a reduction operation and a prefix summation operation

on the sorted element list. The � entries in the matrix actually represent certain

operators: minimum and summation in the reinitialization and evolution stages

correspondingly. Hence, we do not have the value array in a typical CSR format.

The final CSR representation of the gathering matrix for our two-triangle example

is shown in Figure 6.5.
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Figure 6.5. The CSR representation of gathering matrix for the two-triangle
example. The box containing “X” denotes a memory location outside the bounds
of the column indices array.

6.3.2 Reinitialization

In the reinitialization step, we use the nbFIM algorithm to compute the distance

transform of the levelset. In this algorithm, the node value update step comprises

the bulk of the work. This step updates the values of the nodes in the active patches

multiple times (we call these inner updates) using the hybrid gathering scheme and

records the convergence status of each active node. During each of the inner

updates, each thread computes all the values on the nodes of the corresponding

element and stores values in an intermediate array in the fast GPU sharedmemory.

Then, we apply the gathering matrix to the intermediate array to compute the new

value of each node. In this operation, each row of the gatheringmatrix corresponds

to a node in themesh, and column indices of the� entries in each row represent the

location of required data in the intermediate array. We assign each row to a thread,

which fetches the data from the intermediate array and calculates the minimum

that is taken as the new value of the node. In practice, the elemental update and the

gathering operation are performed in one kernel so that the intermediate values

do not need to be written back to or read from global memory, which is expensive.

As mentioned before, the node coordinates and element list are grouped according

to the partitioning, and stored in an interleaved linear array so that the memory

access is coalesced. Before the update computation, each thread needs to fetch node

coordinates and old values for the corresponding element, and the memory access

is virtually random. We use the fast sharedmemory to hold these data temporarily,

and then each thread reads data from the shared memory instead of directly from
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the global memory.

We use an improved cell-assembly data structure in the nbFIM, originally pro-

posed in [37]. The new cell-assembly data structure includes five arrays, labeled

COORD, VAL, ELE , OFFSETS, and COL. COORD and VAL store per-node

coordinates and per-node value, respectively. ELE stores the per-element node

indices. OFFSETS and COL form the CSR sparse matrix representation of the

gathering matrix, except that we do not have the value array like in a regular CSR

matrix.

In summary, assuming that every patch hasN nodes andM elements (normally

M > N), the reinitialization kernel function on the GPU (or SIMD parallelism)

proceeds as follows:

1. If thread index i < N, load the coordinates and value of node i into shared

memory array SHARE.

2. If thread index i <M, load the node indices for element i from ELE into

registers. Fetch the node coordinates and values from SHARE to registers.

3. If thread index i <M, write node values of element i to shared memory

SHARE.

4. If thread index i <M, call local solver routine to compute the potential values

of each node in element i, and store these values in SHARE.

5. If thread index i <N, load the column indices for the ith row of the gathering

matrix, COL[OFFSETS[i]] through COL[OFFSETS[i+ 1]]. Then fetch data from

SHARE, compute the minimal value, and broadcast the minimal value to SHARE

according to the column indices.

6. If thread index i<N, if the minimal value is the same as the old value (within

a tolerance), node i is labelled convergent.

7. Repeat steps 4 through 6 multiple times.

8. If thread index i <N, write the minimal value back to global memory VAL.

For the CPU-based shared memory parallel system, the implementation is

generally similar butwemake severalmodifications from theGPU implementation

to suit the CPU architecture. First, we still use the nbFIM scheme, but we maintain

an active segment list instead of an active patch list. Each segment in the list
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stores the active nodes in its corresponding patch. The patched update strategy is

suitable for GPU because it provides the fine-grained parallelism required by GPU

architecture, but it also leads to extra computation [37]. The active segment list

stores segments of active nodes, and each segment corresponds to a patch. Second,

in the computation that updates the active node values, we assign each segment

to a thread that updates all the active node values in the segment. In addition,

we use the nodal parallelism to avoid any contention. Each thread computes the

potential values of an active node from the one-ring elements, and then calculates

the minimal value among the potential values. Specifically, the value update

function in the reinitialization proceeds in the following steps for each thread t

(here P denotes the number of patches):

1. Load the coordinates and value φa of an active node a of the t-th patch into

registers.

2. Find one of the one-ring elements of a and load the coordinates and values

into registers.

3. Call the local solver to compute a potential new value φtmp of node a and

perform φa =min(φa,φtmp).

4. Repeat step 2 and 3 until all one-ring elements of a are processed and write

the final φa back to memory.

5. Repeat step 1 – 4 until all active nodes in patch t are processed.

6.3.3 Evolution

The evolution step updates the values of the nodes in the narrowband according

to the equations presented in Section 6.2. As shown in Algorithm 6.1, we compute

the approximation of the three terms of F and then update the node values. Similar

to the reinitialization step, we need to deal with mixed types of parallelism: nodal

parallelism and elemental parallelism as elemental computations are suitable for

GPUs, but the degrees of freedom we want to solve for live on the nodes. The

hybrid gathering scheme is again used to solve this problem. The update of a

node value depends on multiple elemental computations corresponding to speed

function F, and the computations for the three terms of F all require the same
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geometric information and node values. Therefore, we want to perform all the

computations in one kernel function to avoid repeated global memory accesses.

The hybrid gathering scheme is based on the assumption that the gathering

can be performed on fast shared memory, and using one single kernel means that

we need to store all the elemental intermediate results (AH1, AH2, AV1, AV2, V,

PV, CV arrays in Algorithm 6.1) in shared memory, which usually is not large

enough to accommodate all this data. We solve this problem by reusing the shared

memory space and carefully arranging the memory load order so that the data

memory footprint is small enough to fit in the GPU shared memory. Specifically,

we store the elemental intermediate results in SAH1, SAH2, SAV1, SAV2, SV, PV,

SCV arrays for each patch, which are all in shared memory, and then assemble

the intermediate results according to the gathering matrix and store them in fast

registers. The evolution kernel function processes in the following steps (assuming

every patch has N nodes andM elements):

1. If thread index t < N, load the coordinates and value of node t into shared

memory array SHARE.

2. If thread index t <N, load the column indices for the tth row of the gathering

matrix, COL[OFFSETS[t]] through COL[OFFSETS[t+1]] into registers.

3. If thread index t <M, load the node indices for element t from ELE into

registers. Fetch the node coordinates and values from SHARE to registers.

4. If thread index t <M, perform elemental computation of triangle Ti, j,k for

(H1)T, (H2)T and α̃1i , α̃
1
j , α̃

1
k , α̃

2
i , α̃

2
j , α̃

2
k .

5. If thread index t <M, compute SAH1[t*M+0] = α̃1i ∗ (H
1)T, SAH1[t*M+1] =

α̃1j ∗ (H
1)T, SAH1[t*M+2] = α̃1k ∗ (H

1)T.

6. If thread index t <N, fetch data from SAH1 according to the column indices

for the tth row of the gathering matrix, compute the summation, and store the

result in registers.

7. If thread index t <M, compute SAH2[t*M+0] = α̃2i ∗ (H
2)T, SAH2[t*M+1] =

α̃2j ∗ (H
2)T, SAH2[t*M+2]= α̃2k ∗ (H

2)T. Note here that if SAH2 overlap SAH1 in the

shared memory space, the values of SAH2 are completely rewritten. In this way,

the shared memory footprint is not increased as the size of SAH2 is the same as
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SAH1.

8. If thread index t <N, fetch data from SAH1 according to the column indices

for the tth row of the gathering matrix, compute the summation, and store the

result in registers.

9. Repeat step 7 through 8 for SAV1, SAV2, SV, SPV, SCV arrays.

10. If thread index t <N, compute the new value of node t.

Similarly, for the CPU implementation of the evolution step, we make some

modification from the GPU implementation to suit the CPU architecture. We keep

a list of elements that are inside the narrowband and perform the computation only

on these elements. This is different from the GPU implementation, which updates

all elements in a patch as long as any element in the patch is inside the narrowband.

We assign the computations of the elements of each patch to a thread instead of each

node to a thread to provide a coarse-grained parallelism for CPU. Also, we find

that for CPU, atomic operations are efficient enough, so hybrid gathering scheme

is not used.

6.3.4 Adaptive Time-step Computation

After each reinitialization step, we perform n update steps for the levelset

evolution. In this process, we need to make sure that the evolving levelset does not

cross the boundary of the narrowband. According to the Courant-Friedrichs-Lewy

condition, the levelset evolution distance of each time-stepΔx≤ 2maxi<M(ri), where

ri denotes the inscribed circle or sphere of the ith element and M is the number

of elements in the narrowband. Denoting the narrowband width as w, we take a

conservative n as w
4maxi<M(ri)

so that the levelset evolves at most half of w. Since the

narrowband is changing, max(ri) is also changing. Hence, we compute the max(ri)

adaptively at the beginning of each reinitialization step. ri are precomputed and

stored in an array and the max(ri) is computed with a reduction operation. In the

evolution step, the time-step Δt is dictated by the three terms of F in Equation 6.4.

We define the time-step as:

Δt =min
i<M

(
2ri

d(|α|+ |ε|)
,
2r2i
d|κ|

). (6.14)
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6.4 Results and Discussion
In this section, we present numerical experiments to demonstrate the perfor-

mance of the proposed algorithms. We use a collection of 2D and 3D unstructured

meshes having variable sizes and complexity to illustrate the performance of both

CPU and GPU implementations. The performance data as well as implementation

related details are provided in the following order: 1) CPU implementation dis-

cussion, 2) GPU implementation discussion, followed by 3) the comparison of the

two. For consistency of evaluation, double precision is used in all algorithms and

for all experiments presented below.

The meshes for the numerical experiments are as follows:

RegSquare: A2D512 by 512 square domain regularly triangulatedwith 524,288

triangles whose maximum valence is six;

IrregSquare: An 2D 512 by 512 square domain irregularly triangulated with

1,181,697 vertices and 2,359,296 triangles whose maximum valence is 14;

Sphere: A triangulated sphere surface with 1,023,260 vertices and 2,046,488

triangles whose maximum valence is 11;

Brain: Triangulated left hemisphere of human brain cortex surface with 631,187

vertices and 1,262,374 triangles (Figure 6.6) whose maximum valence is 19;

RegCube: A 3D regularly tetrahedralized cube with 1,500,282 tetrahedra (63×

63×63 regular grid) whose maximum valence is 24; and

IrregCube: A 3D irregularly tetrahedralized cube with 197,561 vertices and

1,122,304 tetrahedra whose maximum valence is 54.

These meshes include 2D planar meshes, manifold (surface) meshes, and 3D

meshes. They exhibit different geometrical complexity, mesh quality, and maxi-

mum nodal valance. Using various meshes allows us to assess the effect that mesh

properties have on the algorithm performance.

The numerical simulation setup is as follows: we solve the levelset equation
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂φ

∂t
+α(x) · ∇φ+ ε(x)|∇φ|+β(x)∇ ·

∇φ

|∇φ|
|∇φ| = 0,

φ(x, t = 0) = g(x),
(6.15)

where α(x) is a user-defined vector function and ε(x) and β(x) are user-defined

scalar functions. g(x) is the initial condition, which defines the values in the
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Figure 6.6. Left hemisphere of human brain cortex surface mesh.

domain when time t = 0. Computationally, the choice of these constant coefficients

makes little difference. In the following numerical experiments, we set the constant

coefficients α, ε, and β to be (1,0,0), 0.0, and 0.0, respectively, for nonmanifold

meshes (RegSuqare, IrregSquare, RegCube, IrregCube). Figure 6.7 shows the result

for the RegSquare mesh with these coefficients. The color map indicates the signed

distance from the interface. Because the advection term is not well defined on the

manifolds, we set the coefficients to be (0,0,0), 0.0, and 1.0 for manifold meshes

(Sphere and Brain). Solving the levelset equation with these coefficients gives

the geodesic curvature flow, which is widely used in many image processing and

computer vision applications [108, 53]. Figure 6.8 shows the geodesic curvature

flow on a human brain cortex. The left image demonstrates the initial interface and

the right image shows the interface after evolution. We use the numerical scheme

presented in [108] to discretize the curvature term on manifolds. Computationally,

this scheme is almost the same as the numerical scheme we use for 2D and 3D

meshes.

6.4.1 CPU Implementation Results and Performance Analysis

We conduct systematic experiments on a CPU-based parallel system to show

the effectiveness and characteristics of our proposed method. We test our CPU

implementation on a workstation equipped with two Intel Xeon E5-2640 CPU (12

cores in total) running at 2.5 GHz with turbo boost and hyperthreading enabled
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Figure 6.7. The interface on the RegSquare mesh. The left image shows the initial
interface and the right image shows the interface after evolution.

Figure 6.8. The interface on the Brain mesh. The left image shows the initial
interface and the right image shows the interface evolution.

and 32GB DDR3 memory shared by the CPUs. The computer is running openSuse

11.4, and the code is compiled with gcc 4.5 using optimization option -O3. Firstly,

we run our multithreaded CPU implementation as described in Section 6.3 on

the workstation to demonstrate scalability of the proposed method. We compare

the result with a naive parallel implementation without patched update schemes

(nbFIM and patchNB). In this naive implementation, the nodal computations in

the reinitialization and the elemental computations in the evolution are distributed

amongst threads and performed in parallel. These computations are not grouped

according to patches.

The plots in Figure 6.9 show the strong scaling comparison between the mul-

tithreaded CPU implementations with the proposed schemes (Patched) and the
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Figure 6.9. Performance comparison between nonpatched CPU implementation
and patched implementation.

naive parallel implementation (Nonpatched). We perform this test with two 2D

triangular meshes (RegSquare and IrregSquare) and two 3D tetrahedral meshes

(RegCube and IrregCube). As shown from the plots, our proposed multithreaded

implementation scales up to 12 cores and achieves up to 7× speedup with 12

cores against the serial implementation (with 1 core). By contrast, the nonpatched

implementation scales poorly when running with more than four cores, and it does

not scale when running with more than eight cores. This supports our claim that

with the patched update schemes, each thread accesses data mainly from a single

patch (except for boundaries), and in this way, the implementation enforces data

locality and achieves better cache performance. In addition, the results show that

the proposed implementation scales better on the tetrahedral meshes than on the

triangular meshes. This is because for tetrahedral meshes, the number of active
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nodes inside each patch is larger in the reinitialization step. The data required

by these active node updates are very likely in cache already since each patch is

assigned to a thread. Similarly, in 3Dcases, the narrowband containsmore elements

in the evolution step, and each patch within the narrowband has more elements,

which leads to more cache hit. Also, for the tetrahedral meshes, the computation

is more complicated, and hence the computational density is higher.

For the patched update scheme, the patch size is a factor that may influence

the overall performance as it affects how the data are loaded into the cache. With

larger patch size, each patch has more active nodes in the reinitialization step, and

thus there are more elements inside the larger narrowband for update during the

evolution step. These nodes and elements are updated by a single thread, and

after a thread updates the first node or element in the patch, the data needed for

the following updates are very likely in cache already. However, large patch size

may lead to load balancing issue as the workloads of the threads, each updating a

corresponding patch, can be very different. Also, if the patch is too large to fit into

the cache, the number of cache misses will increase. Table 6.1 shows how the patch

size affects the performance of our patched multithreaded CPU implementation.

It can be seen from the table that there is a sweet spot for the patch size, which

achieves the best balance between the cache performance and load balancing. In

our parallel system, this sweet spot is around 64 for all the test meshes, and the

CPU results reported in the following subsection (Section 6.4.2) are all with patch

size 64.

Table 6.1. Running times (in seconds) to showpatch size influence on performance.
Bold numbers denote the sweet spot for the patch size.

size 32 size 64 size 128 size 256
RegSquare 15.40 14.78 15.35 18.78
IrregSquare 14.89 13.22 15.42 19.22

Sphere 18.15 15.02 15.66 17.86
Brain 157.75 142.39 140.03 141.89

RegCube 33.08 29.07 29.05 30.11
IrregCube 12.89 10.63 11.24 11.78
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6.4.2 GPU Performance Results

To demonstrate the performance of our proposed schemes on SIMD parallel

architectures, we have implemented and tested on an NVIDIA Fermi GPU using

the NVIDIA CUDA API [68]. The NVIDIA GeForce GTX 580 graphics card has

1.5 GBytes of global memory and 16 streaming multiprocessors (SM), where each

SM consists of 32 SIMD computing cores that run at 1.544 GHz. Each computing

core has a configurable 16 or 48 KBytes of on-chip shared memory, for quick access

to local data. All codes are compiled with NVCC 4.2. Computation on the GPU

entails running a kernel function with a batch process of a large group of fixed size

thread blocks, which maps well to the our patched update scheme that employs

patch-based update methods, where a single patch is assigned to a CUDA thread

block. In this section, we compare ourGPU implementationwith themultithreaded

CPU implementation with patched update scheme.

As described in Section 6.2, the narrowband scheme requires to recompute the

distance transform to the zero levelset every few time-steps, and the number of

time-steps performed between reinitialization is related to the narrowband width.

This width greatly affects the performance of our implementation. When the

narrowbandwidth is large, the reinitialization step requires more time to converge,

andeachevolution stepneeds toupdatemorenodes that are inside thenarrowband.

However, with a larger narrowband width, the program needs to perform fewer

reinitialization to reach the user-specified total number of time-steps. Table 6.2

shows how performance is related to the narrowband width for the IrregSquare

and IrregCube meshes. As seen from the table, there is a narrowband width sweet

spot for both CPU and GPU performance that achieves the best balance between

the narrowband width and reinitialization frequency. For the CPU, this sweet

spot is around five, and for the GPU, it is approximately ten for the IrregSquare

mesh. We obtain similar ideal narrowband width for all other triangular meshes.

As described in Section 6.3, the reinitialization maintains active patch list instead

of active node list, and this makes our GPU reinitialization efficient for larger

narrowband width. When the narrowband width is smaller than the patch size,

those nodes with values larger than narrowband width are not updated in the
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Table 6.2. Running time (in seconds) to show narrowband width influence on
performance.

2 3 5 10 20
IrregSquare CPU 14.90 14.88 13.22 13.33 15.57

GPU 3.13 3.14 2.75 2.12 2.46
IrregCube CPU 13.81 12.90 15.33 55.22 —

GPU 6.13 5.75 4.94 4.48 7.01

evolution step, and hence their distance values need not to be computed in the

reinitialization step. This explains why our GPU implementation prefers a larger

narrowband width relative to CPU implementation. For the tetrahedral mesh,

although the GPU performance sweet spot is the same, five is no longer the

optimal narrowband width for the CPU. For 3D tetrahedral meshes, the cost of the

reinitialization is dramatically increased, and smaller narrowband width leads to

fewer local solver computations. Although with smaller narrowband width, the

frequency of reinitialization is increased, performance improvement from fewer

local solver call per iteration outweighs the increased reinitialization frequency. In

the following testing results, CPU running times are measured with bandwidth

five for triangular meshes and three for tetrahedral meshes, respectively, while

GPU running times are measured with narrowband width of ten for both triangle

and tetrahedral meshes.

Table 6.3 shows the performance comparison for the time-stepping stage of

the levelset equation solver. We present the performance comparison for the

reinitialization, evolution and the total running times separately to demonstrate

the performance of the proposed schemes for each step. For the reinitialization

with the nbFIM scheme, our proposed GPU implementation performs up to 10×

faster than the multithreaded CPU implementation running on a 12-core system.

For the evolution, the GPU implementation achieves up to 44× speedup over the

same 12-core system. The total running times shown here include CPU-GPU data

transfer and time-step computation described in Section 6.3.4. In addition, from

this table and the tables in Section 6.4.1, we can see that in CPU implementations,

the reinitialization step takes a small portion of the total running timewhile it takes
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Table 6.3. Running times (in seconds) for the reinitialization, evolution, and total,
respectively. The numbers in the parentheses are the speedups compared against
the CPU.

Reinitialization
RegSquare IrregSquare Sphere Brain RegCube IrregCube

GPU(regular) 0.27(9.7×) — — — 3.03(7.3×) —
GPU(METIS) 0.65(4.0×) 1.25(3.5×) 1.20(3.8×) 4.91(3.4×) 5.73(3.9×) 3.22(1.4×)

CPU 2.62 4.38 4.53 16.88 22.22 4.53
Evolution

GPU(regular) 0.26(44×) — — — 1.02(6.4×) —
GPU(METIS) 0.28(41×) 0.61(14×) 0.46(17×) 2.32(13×) 2.10(3.1×) 1.26(6.3×)

CPU 11.54 8.46 7.90 30.04 6.54 7.93
Total

GPU(regular) 0.69(21×) — — — 4.33(6.7) —
GPU(METIS) 1.09(14×) 2.02(6.5×) 1.73(7.6×) 7.48(6.5×) 7.83(3.7×) 4.48(2.9×)

CPU 14.78 13.22 13.13 48.39 29.07 12.90

a large portion in the GPU implementation. This is due to the active-patch scheme

for the eikonal solver for GPU as described in Section 6.3, and as a result, the

GPU is doing more work than in the CPU implementation for the reinitialization.

In addition, the meshes we choose to use in our tests have different maximum

valence. Among the triangular meshes, we achieve the greatest GPU over CPU

speedup on the RegSquare mesh, because this mesh is regular and has smallest

maximum valence. On the other hand, we observe the worst speedup on the

IrregSquare and Brain mesh that have larger maximum valences. What is more,

we can note from the table that the performance for the 3D tetrahedral meshes is

generally worse for both implementations than that for triangular meshes. This is

due to the much higher node valence of the tetrahedral meshes and much more

complex computations especially in the reinitialization step. We also found that for

tetrahedral meshes, the kernel functions for the value update in the reinitialization

and evolution steps require more registers than available in hardware, so some

local storage is spilled into local memory space that has much higher latency than

registers. However, overall, ourproposedmethod suitsGPUarchitecture verywell,

and our GPU implementation achieves large performance speedup comparing to

optimized parallel CPU implementation regardless of mesh complexity.

Asmentioned in Section 6.3, lock-free algorithm is usually achievedwith atomic
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operations. However, on GPU, the atomic operations are expensive. Currently

NVIDIA GPU does not support native double precision atomic addition and

atomic minimum. We have to rely on atomic compare and swap (atomicCAS)

operation to implement the atomic addition and atomic minimum as suggested by

[68]. Table 6.4 shows the effectiveness of our lock-free scheme on GPU. This table

compares the running times of the GPU implementations with hybrid gathering

and atomic operations to solve contention, respectively. This table shows that the

implementation with hybrid gathering gives much better performance than the

version with atomic operations.

Finally, Figure 6.10 shows how the CPU and GPU implementation scale with

differentmesh sizes. We start from a coarsemeshwith 2048 triangles and subdivide

it by connecting the midpoints of each triangle. We do this four times and obtain

five meshes with different mesh sizes. The largest mesh is the RegSquare mesh.

It can be seen from the plot that as the mesh size increases, the performance gap

widens between the CPU implementation and the GPU implementation. The

number of computations per time-step increases with mesh size, which makes the

GPU operations more efficient. At lower mesh sizes, the performance difference is

not as great due to the low computational density per kernel call.

6.5 Conclusions
This work proposes the nbFIM and patchNB schemes to efficiently solve the

levelset equation on parallel systems. The proposed schemes combine narrowband

scheme and domain decomposition to reduce the computation workload and

enforce data locality. Also, combined with our proposed hybrid gathering scheme

and novel data structure, these schemes suit the GPU architecture very well and

Table 6.4. Running times (in seconds) for the GPU implementations with hybrid
gathering and atomic operations. HG denotes hybrid gathering.

RegSquare IrregSquare Sphere Brain RegCube IrregCube
atomic 2.71 6.03 6.03 14.32 17.24 12.25

HG 0.69 2.12 1.73 6.48 7.83 4.48
speedup 3.9× 2.8× 3.5× 2.2× 2.2× 2.7×
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Figure 6.10. Performance comparison between CPU andGPU implementations for
different problem sizes.

achieve great performance in a wide range of numerical experiments. The hybrid

gathering scheme avoids contention without using atomic operations that are

costly on GPUs, and this scheme can be applied to more general problems where

data dependency is dictated by a graph structure, and one can choose multiple

parallelism strategies corresponding to different graph components to solve these

problems. We will explore such problems in our future work. In addition, for

many real scientific and engineer applications, a single node computer does not

have enough storage for the data or computing power to perform computations

efficiently, and thus we will work on extending of the levelset equation solver to

multiple GPUs or GPU clusters.



CHAPTER 7

CONCLUSION AND FUTURE WORK

This dissertation describes efficient PDE solvers on unstructured body-fitting

meshes for massively-parallel SIMD processors such as GPUs. Unstructured

meshes pose challenges for the SIMD architecture, and these challenges are largely

unaddressed in the literature. This dissertation has introduced techniques to

overcome these challenges and obtained impressive performance gain, comparing

to the state-of-the-art CPU or GPU implementations.

This dissertation introduces two general strategies, the domain decomposition

and the hybrid gathering, for designing efficient PDE solvers. Based on these

strategies, we propose novel algorithms and data structures to efficiently solve

two types of PDEs: hyperbolic and elliptic equations. Specifically, this dissertation

introduces efficient solvers for the eikonal equation, the Helmholtz equation and

the levelset equation. Parabolic PDEs can be also be solved as with our elliptic PDE

solver with implicit temporal discretization.

This dissertation focuses on single-GPU solution of PDEs. However, in many

practical science and engineering applications, the problem sizes may be too large

to fit into a single GPU memory, or the computations are so complicated that

running on a single GPU is too slow. Therefore, it would be very useful to

develop out-of-core strategy to handle large data on a single GPU. Another way

to deal with large problems is to use multiple GPUs or GPU clusters. The domain

decomposition strategy used in the PDE solvers proposed in this dissertation has

good potential to perform efficiently on multi-GPUs or GPU clusters by mapping

multiple subdomains to a GPU.
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