7,056 research outputs found

    Processing Metonymy: a Domain-Model Heuristic Graph Traversal Approach

    Full text link
    We address here the treatment of metonymic expressions from a knowledge representation perspective, that is, in the context of a text understanding system which aims to build a conceptual representation from texts according to a domain model expressed in a knowledge representation formalism. We focus in this paper on the part of the semantic analyser which deals with semantic composition. We explain how we use the domain model to handle metonymy dynamically, and more generally, to underlie semantic composition, using the knowledge descriptions attached to each concept of our ontology as a kind of concept-level, multiple-role qualia structure. We rely for this on a heuristic path search algorithm that exploits the graphic aspects of the conceptual graphs formalism. The methods described have been implemented and applied on French texts in the medical domain.Comment: 6 pages, LaTeX, one encapsulated PostScript figure, uses colap.sty (included) and epsf.sty (available from the cmp-lg macro library). To appear in Coling-9

    Decision-making in a fuzzy environment

    Get PDF
    Decision making where goals or constraints are not sharply defined boundaries and fuzzy using dynamic programmin

    Reconstruction of the Shapes of Gold Nanocrystals using Coherent X-ray Diffraction

    Get PDF
    Inverse problems arise frequently in physics: The magnitude of the Fourier transform of some function is measurable, but not its phase. The “phase problem” in crystallography arises because the number of discrete measurements (Bragg peak intensities) is only half the number of unknowns (electron density points in space). Sayre first proposed that oversampling of diffraction data should allow a solution, and this has recently been demonstrated. Here we report the successful phasing of an oversampled hard x-ray diffraction pattern measured from a single nanocrystal of gold
    corecore