8 research outputs found

    User-centric power-friendly quality-based network selection strategy for heterogeneous wireless environments

    Get PDF
    The ‘Always Best Connected’ vision is built around the scenario of a mobile user seamlessly roaming within a multi-operator multi-technology multi-terminal multi-application multi-user environment supported by the next generation of wireless networks. In this heterogeneous environment, users equipped with multi-mode wireless mobile devices will access rich media services via one or more access networks. All these access networks may differ in terms of technology, coverage range, available bandwidth, operator, monetary cost, energy usage etc. In this context, there is a need for a smart network selection decision to be made, to choose the best available network option to cater for the user’s current application and requirements. The decision is a difficult one, especially given the number and dynamics of the possible input parameters. What parameters are used and how those parameters model the application requirements and user needs is important. Also, game theory approaches can be used to model and analyze the cooperative or competitive interaction between the rational decision makers involved, which are users, seeking to get good service quality at good value prices, and/or the network operators, trying to increase their revenue. This thesis presents the roadmap towards an ‘Always Best Connected’ environment. The proposed solution includes an Adapt-or-Handover solution which makes use of a Signal Strength-based Adaptive Multimedia Delivery mechanism (SAMMy) and a Power-Friendly Access Network Selection Strategy (PoFANS) in order to help the user in taking decisions, and to improve the energy efficiency at the end-user mobile device. A Reputation-based System is proposed, which models the user-network interaction as a repeated cooperative game following the repeated Prisoner’s Dilemma game from Game Theory. It combines reputation-based systems, game theory and a network selection mechanism in order to create a reputation-based heterogeneous environment. In this environment, the users keep track of their individual history with the visited networks. Every time, a user connects to a network the user-network interaction game is played. The outcome of the game is a network reputation factor which reflects the network’s previous behavior in assuring service guarantees to the user. The network reputation factor will impact the decision taken by the user next time, when he/she will have to decide whether to connect or not to that specific network. The performance of the proposed solutions was evaluated through in-depth analysis and both simulation-based and experimental-oriented testing. The results clearly show improved performance of the proposed solutions in comparison with other similar state-of-the-art solutions. An energy consumption study for a Google Nexus One streaming adaptive multimedia was performed, and a comprehensive survey on related Game Theory research are provided as part of the work

    Channelization, Link Adaptation and Multi-antenna Techniques for OFDM(A) Based Wireless Systems

    Get PDF

    Cognitive Radio Systems

    Get PDF
    Cognitive radio is a hot research area for future wireless communications in the recent years. In order to increase the spectrum utilization, cognitive radio makes it possible for unlicensed users to access the spectrum unoccupied by licensed users. Cognitive radio let the equipments more intelligent to communicate with each other in a spectrum-aware manner and provide a new approach for the co-existence of multiple wireless systems. The goal of this book is to provide highlights of the current research topics in the field of cognitive radio systems. The book consists of 17 chapters, addressing various problems in cognitive radio systems

    Flexible Application-Layer Multicast in Heterogeneous Networks

    Get PDF
    This work develops a set of peer-to-peer-based protocols and extensions in order to provide Internet-wide group communication. The focus is put to the question how different access technologies can be integrated in order to face the growing traffic load problem. Thereby, protocols are developed that allow autonomous adaptation to the current network situation on the one hand and the integration of WiFi domains where applicable on the other hand

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin
    corecore