6,535 research outputs found

    An inexact proximal majorization-minimization Algorithm for remote sensing image stripe noise removal

    Full text link
    The stripe noise existing in remote sensing images badly degrades the visual quality and restricts the precision of data analysis. Therefore, many destriping models have been proposed in recent years. In contrast to these existing models, in this paper, we propose a nonconvex model with a DC function (i.e., the difference of convex functions) structure to remove the strip noise. To solve this model, we make use of the DC structure and apply an inexact proximal majorization-minimization algorithm with each inner subproblem solved by the alternating direction method of multipliers. It deserves mentioning that we design an implementable stopping criterion for the inner subproblem, while the convergence can still be guaranteed. Numerical experiments demonstrate the superiority of the proposed model and algorithm.Comment: 19 pages, 3 figure

    Alternating Direction Methods for Latent Variable Gaussian Graphical Model Selection

    Full text link
    Chandrasekaran, Parrilo and Willsky (2010) proposed a convex optimization problem to characterize graphical model selection in the presence of unobserved variables. This convex optimization problem aims to estimate an inverse covariance matrix that can be decomposed into a sparse matrix minus a low-rank matrix from sample data. Solving this convex optimization problem is very challenging, especially for large problems. In this paper, we propose two alternating direction methods for solving this problem. The first method is to apply the classical alternating direction method of multipliers to solve the problem as a consensus problem. The second method is a proximal gradient based alternating direction method of multipliers. Our methods exploit and take advantage of the special structure of the problem and thus can solve large problems very efficiently. Global convergence result is established for the proposed methods. Numerical results on both synthetic data and gene expression data show that our methods usually solve problems with one million variables in one to two minutes, and are usually five to thirty five times faster than a state-of-the-art Newton-CG proximal point algorithm

    On the Convergence of Alternating Direction Lagrangian Methods for Nonconvex Structured Optimization Problems

    Full text link
    Nonconvex and structured optimization problems arise in many engineering applications that demand scalable and distributed solution methods. The study of the convergence properties of these methods is in general difficult due to the nonconvexity of the problem. In this paper, two distributed solution methods that combine the fast convergence properties of augmented Lagrangian-based methods with the separability properties of alternating optimization are investigated. The first method is adapted from the classic quadratic penalty function method and is called the Alternating Direction Penalty Method (ADPM). Unlike the original quadratic penalty function method, in which single-step optimizations are adopted, ADPM uses an alternating optimization, which in turn makes it scalable. The second method is the well-known Alternating Direction Method of Multipliers (ADMM). It is shown that ADPM for nonconvex problems asymptotically converges to a primal feasible point under mild conditions and an additional condition ensuring that it asymptotically reaches the standard first order necessary conditions for local optimality are introduced. In the case of the ADMM, novel sufficient conditions under which the algorithm asymptotically reaches the standard first order necessary conditions are established. Based on this, complete convergence of ADMM for a class of low dimensional problems are characterized. Finally, the results are illustrated by applying ADPM and ADMM to a nonconvex localization problem in wireless sensor networks.Comment: 13 pages, 6 figure

    Distributed Basis Pursuit

    Full text link
    We propose a distributed algorithm for solving the optimization problem Basis Pursuit (BP). BP finds the least L1-norm solution of the underdetermined linear system Ax = b and is used, for example, in compressed sensing for reconstruction. Our algorithm solves BP on a distributed platform such as a sensor network, and is designed to minimize the communication between nodes. The algorithm only requires the network to be connected, has no notion of a central processing node, and no node has access to the entire matrix A at any time. We consider two scenarios in which either the columns or the rows of A are distributed among the compute nodes. Our algorithm, named D-ADMM, is a decentralized implementation of the alternating direction method of multipliers. We show through numerical simulation that our algorithm requires considerably less communications between the nodes than the state-of-the-art algorithms.Comment: Preprint of the journal version of the paper; IEEE Transactions on Signal Processing, Vol. 60, Issue 4, April, 201
    • …
    corecore