2 research outputs found

    Topological Complexity of Sets Defined by Automata and Formulas

    Get PDF
    In this thesis we consider languages of infinite words or trees defined by automata of various types or formulas of various logics. We ask about the highest possible position in the Borel or the projective hierarchy inhabited by sets defined in a given formalism. The answer to this question is called the topological complexity of the formalism.It is shown that the topological complexity of Monadic Second Order Logic extended with the unbounding quantifier (introduced by Boja艅czyk to express some asymptotic properties) over 蠅-words is the whole projective hierarchy. We also give the exact topological complexities of related classes of languages recognized by nondeterministic 蠅B-, 蠅S- and 蠅BS-automata studied by Boja艅czyk and Colcombet, and a lower complexity bound for an alternating variant of 蠅BS-automata.We present the series of results concerning bi-unambiguous languages of infinite trees, i.e. languages recognized by unambiguous parity tree automata whose complements are also recognized by unambiguous parity automata. We give an example of a bi-unambiguous tree language G that is analytic-complete. We present an operation 蟽 on tree languages with the property that 蟽(L) is topologically harder than any language in the sigma-algebra generated by the languages continuously reducible to L. If the operation is applied to a bi-unambiguous language than the result is also bi-unambiguous. We then show that the application of the operation can be iterated to obtain harder and harder languages. We also define another operation that enables a limit step iteration. Using the operations we are able to construct a sequence of bi-unambiguous languages of increasing topological complexity, of length at least 蠅 square.W niniejszej rozprawie rozwa偶ane s膮 j臋zyki niesko艅czonych s艂贸w lub drzew definiowane poprzez automaty r贸偶nych typ贸w lub formu艂y r贸偶nych logik. Pytamy o najwy偶sz膮 mo偶liw膮 pozycj臋 w hierarchii borelowskiej lub rzutowej zajmowan膮 przez zbiory definiowane w danym formalizmie. Odpowied藕 na to pytanie jest nazywana z艂o偶ono艣ci膮 topologiczn膮 formalizmu.Przedstawiony zosta艂 dow贸d, 偶e z艂o偶ono艣ci膮 topologiczn膮 Logiki Monadycznej Drugiego Rz臋du rozszerzonej o kwantyfikator Unbounding (wprowadzony przez Boja艅czyka w celu umo偶liwienia wyra偶ania w艂asno艣ci asymptotycznych) na s艂owach niesko艅czonych jest ca艂a hierarchia rzutowa. Obliczone zosta艂y r贸wnie偶 z艂o偶ono艣ci topologiczne klas j臋zyk贸w rozpoznawanych przez niedeterministyczne 蠅B-, 蠅S- i 蠅BS-automaty rozwa偶ane przez Boja艅czyka i Colcombet'a, oraz zosta艂o podane dolne ograniczenie z艂o偶ono艣ci wariantu alternuj膮cego 蠅BS-automat贸w.Zaprezentowane zosta艂y wyniki dotycz膮ce j臋zyk贸w podw贸jnie jednoznacznych, tzn. j臋zyk贸w rozpoznawanych przez jednoznaczne automaty parzysto艣ci na drzewach, kt贸rych dope艂nienia r贸wnie偶 s膮 rozpoznawane przez jednoznaczne automaty parzysto艣ci. Podany zosta艂 przyk艂ad podw贸jnie jednoznacznego j臋zyka drzew G, kt贸ry jest analityczny-zupe艂ny. Zosta艂a wprowadzona operacja 蟽 na j臋zykach drzew taka, 偶e j臋zyk 蟽(L) jest topologicznie bardziej z艂o偶ony ni偶 jakikolwiek j臋zyk nale偶膮cy do sigma-algebry generowanej przez j臋zyki redukuj膮ce si臋 w spos贸b ci膮g艂y do j臋zyka L. W wyniku zastosowania powy偶szej operacji do j臋zyka podw贸jnie jednoznacznego otrzymujemy j臋zyk podw贸jnie jednoznaczny. Zosta艂o pokazane, 偶e kolejne iteracje aplikacji powy偶szej operacji daj膮 coraz bardziej z艂o偶one j臋zyki. Zosta艂a r贸wnie偶 wprowadzona druga operacja, kt贸ra umo偶liwia krok graniczny iteracji. U偶ywaj膮c obydwu powy偶szych operacji mo偶na skonstruowa膰 ci膮g d艂ugo艣ci 蠅 kwadrat z艂o偶ony z j臋zyk贸w podw贸jnie jednoznacznych o coraz wi臋kszej z艂o偶ono艣ci

    Using automata to characterise fixed point temporal logics

    Get PDF
    This work examines propositional fixed point temporal and modal logics called mu-calculi and their relationship to automata on infinite strings and trees. We use correspondences between formulae and automata to explore definability in mu-calculi and their fragments, to provide normal forms for formulae, and to prove completeness of axiomatisations. The study of such methods for describing infinitary languages is of fundamental importance to the areas of computer science dealing with non-terminating computations, in particular to the specification and verification of concurrent and reactive systems. To emphasise the close relationship between formulae of mu-calculi and alternating automata, we introduce a new first recurrence acceptance condition for automata, checking intuitively whether the first infinitely often occurring state in a run is accepting. Alternating first recurrence automata can be identified with mu-calculus formulae, and ordinary, non-alternating first recurrence automata with formulae in a particular normal form, the strongly aconjunctive form. Automata with more traditional B眉chi and Rabin acceptance conditions can be easily unwound to first recurrence automata, i.e. to mu-calculus formulae. In the other direction, we describe a powerset operation for automata that corresponds to fixpoints, allowing us to translate formulae inductively to ordinary B眉chi and Rabin-automata. These translations give easy proofs of the facts that Rabin-automata, the full mu-calculus, its strongly aconjunctive fragment and the monadic second-order calculus of n successors SnS are all equiexpressive, that B眉chi-automata, the fixpoint alternation class Pi_2 and the strongly aconjunctive fragment of Pi_2 are similarly related, and that the weak SnS and the fixpoint-alternation-free fragment of mu-calculus also coincide. As corollaries we obtain Rabin's complementation lemma and the powerful decidability result of SnS. We then describe a direct tableau decision method for modal and linear-time mu-calculi, based on the notion of definition trees. The tableaux can be interpreted as first recurrence automata, so the construction can also be viewed as a transformation to the strongly aconjunctive normal form. Finally, we present solutions to two open axiomatisation problems, for the linear-time mu-calculus and its extension with path quantifiers. Both completeness proofs are based on transforming formulae to normal forms inspired by automata. In extending the completeness result of the linear-time mu-calculus to the version with path quantifiers, the essential problem is capturing the limit closure property of paths in an axiomatisation. To this purpose, we introduce a new \exists\nu-induction inference rule
    corecore