1,182 research outputs found

    Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations

    Full text link
    We consider an initial-boundary value problem for tutα2u=f(t)\partial_tu-\partial_t^{-\alpha}\nabla^2u=f(t), that is, for a fractional diffusion (1<α<0-1<\alpha<0) or wave (0<α<10<\alpha<1) equation. A numerical solution is found by applying a piecewise-linear, discontinuous Galerkin method in time combined with a piecewise-linear, conforming finite element method in space. The time mesh is graded appropriately near t=0t=0, but the spatial mesh is quasiuniform. Previously, we proved that the error, measured in the spatial L2L_2-norm, is of order k2+α+h2(k)k^{2+\alpha_-}+h^2\ell(k), uniformly in tt, where kk is the maximum time step, hh is the maximum diameter of the spatial finite elements, α=min(α,0)0\alpha_-=\min(\alpha,0)\le0 and (k)=max(1,logk)\ell(k)=\max(1,|\log k|). Here, we generalize a known result for the classical heat equation (i.e., the case α=0\alpha=0) by showing that at each time level tnt_n the solution is superconvergent with respect to kk: the error is of order (k3+2α+h2)(k)(k^{3+2\alpha_-}+h^2)\ell(k). Moreover, a simple postprocessing step employing Lagrange interpolation yields a superconvergent approximation for any tt. Numerical experiments indicate that our theoretical error bound is pessimistic if α<0\alpha<0. Ignoring logarithmic factors, we observe that the error in the DG solution at t=tnt=t_n, and after postprocessing at all tt, is of order k3+α+h2k^{3+\alpha_-}+h^2.Comment: 24 pages, 2 figure

    Spectral methods for CFD

    Get PDF
    One of the objectives of these notes is to provide a basic introduction to spectral methods with a particular emphasis on applications to computational fluid dynamics. Another objective is to summarize some of the most important developments in spectral methods in the last two years. The fundamentals of spectral methods for simple problems will be covered in depth, and the essential elements of several fluid dynamical applications will be sketched

    High‐order ADI orthogonal spline collocation method for a new 2D fractional integro‐differential problem

    Get PDF
    This is the peer reviewed version of the following article: Qiao L, Xu D, Yan Y. (2020). High-order ADI orthogonal spline collocation method for a new 2D fractional integro-differential problem. Mathematical Methods in the Applied Sciences, 1-17., which has been published in final form at https://doi.org/10.1002/mma.6258. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.We use the generalized L1 approximation for the Caputo fractional deriva-tive, the second-order fractional quadrature rule approximation for the inte-gral term, and a classical Crank-Nicolson alternating direction implicit (ADI)scheme for the time discretization of a new two-dimensional (2D) fractionalintegro-differential equation, in combination with a space discretization by anarbitrary-order orthogonal spline collocation (OSC) method. The stability of aCrank-Nicolson ADI OSC scheme is rigourously established, and error estimateis also derived. Finally, some numerical tests are give

    Spectral methods for partial differential equations

    Get PDF
    Origins of spectral methods, especially their relation to the Method of Weighted Residuals, are surveyed. Basic Fourier, Chebyshev, and Legendre spectral concepts are reviewed, and demonstrated through application to simple model problems. Both collocation and tau methods are considered. These techniques are then applied to a number of difficult, nonlinear problems of hyperbolic, parabolic, elliptic, and mixed type. Fluid dynamical applications are emphasized
    corecore