7 research outputs found

    Alternate marking-based network telemetry for industrial WSNs

    Get PDF
    For continuous, persistent and problem-free operation of Industrial Wireless Sensor Networks (IWSN), it is critical to have visibility and awareness into what is happening on the network at any one time. Especially, for the use cases with strong needs for deterministic and real-time network services with latency and reliability guarantees, it is vital to monitor network devices continuously to guarantee their functioning, detect and isolate relevant problems and verify if all system requirements are being met simultaneously. In this context, this article investigates a light-weight telemetry solution for IWSNs, which enables the collection of accurate and continuous flowbased telemetry information, while adding no overhead on the monitored packets. The proposed monitoring solution adopts the recent Alternate Marking Performance Monitoring (AMPM) concept and mainly targets measuring end-to-end and hopby-hop reliability and delay performance in critical application flows. Besides, the technical capabilities and characteristics of the proposed solution are evaluated via a real-life implementation and practical experiments, validating its suitability for IWSNs

    Multipoint passive monitoring in packet networks

    Get PDF
    Traffic monitoring is essential to manage large networks and validate Service Level Agreements. Passive monitoring is particularly valuable to promptly identify transient fault episodes and react in a timely manner. This paper proposes a novel, non-invasive and flexible method to passively monitor large backbone networks. By using only packet counters, commonly available on existing hardware, we can accurately measure packet losses, in different segments of the network, affecting only specific flows. We can monitor not only end-to-end flows, but any generic flow with packets following several different paths in the network (multipoint flows). We also sketch a possible extension of the method to measure average one-way delay for multipoint flows, provided that the measurement points are synchronized. Through various experiments we show that the method is effective and enables easy zooming in on the cause packet losses. Moreover, the method can scale to very large networks with a very low overhead on the data plane and the management plane

    Adaptive monitoring and control framework in Application Service Management environment

    Get PDF
    The economics of data centres and cloud computing services have pushed hardware and software requirements to the limits, leaving only very small performance overhead before systems get into saturation. For Application Service Management–ASM, this carries the growing risk of impacting the execution times of various processes. In order to deliver a stable service at times of great demand for computational power, enterprise data centres and cloud providers must implement fast and robust control mechanisms that are capable of adapting to changing operating conditions while satisfying service–level agreements. In ASM practice, there are normally two methods for dealing with increased load, namely increasing computational power or releasing load. The first approach typically involves allocating additional machines, which must be available, waiting idle, to deal with high demand situations. The second approach is implemented by terminating incoming actions that are less important to new activity demand patterns, throttling, or rescheduling jobs. Although most modern cloud platforms, or operating systems, do not allow adaptive/automatic termination of processes, tasks or actions, it is administrators’ common practice to manually end, or stop, tasks or actions at any level of the system, such as at the level of a node, function, or process, or kill a long session that is executing on a database server. In this context, adaptive control of actions termination remains a significantly underutilised subject of Application Service Management and deserves further consideration. For example, this approach may be eminently suitable for systems with harsh execution time Service Level Agreements, such as real–time systems, or systems running under conditions of hard pressure on power supplies, systems running under variable priority, or constraints set up by the green computing paradigm. Along this line of work, the thesis investigates the potential of dimension relevance and metrics signals decomposition as methods that would enable more efficient action termination. These methods are integrated in adaptive control emulators and actuators powered by neural networks that are used to adjust the operation of the system to better conditions in environments with established goals seen from both system performance and economics perspectives. The behaviour of the proposed control framework is evaluated using complex load and service agreements scenarios of systems compatible with the requirements of on–premises, elastic compute cloud deployments, server–less computing, and micro–services architectures
    corecore