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Multipoint Passive Monitoring in Packet Networks
Mauro Cociglio, Giuseppe Fioccola, Guido Marchetto, Amedeo Sapio, and Riccardo Sisto

Abstract—Traffic monitoring is essential to manage large net-
works and validate Service Level Agreements. Passive monitoring
is particularly valuable to promptly identify transient fault
episodes and react in a timely manner. This paper proposes a
novel, non-invasive and flexible method to passively monitor large
backbone networks. By using only packet counters, commonly
available on existing hardware, we can accurately measure packet
losses, in different segments of the network, affecting only
specific flows. We can monitor not only end-to-end flows, but
any generic flow with packets following several different paths
in the network (multipoint flows). We also sketch a possible
extension of the method to measure average one-way delay
for multipoint flows, provided that the measurement points are
synchronized. Through various experiments we show that the
method is effective and enables easy zooming in on the cause
of packet losses. Moreover, the method can scale to very large
networks with a very low overhead on the data plane and the
management plane.

Index Terms—Passive network monitoring, alternate marking,
multipoint flows.

I. INTRODUCTION

NETWORK measurements are crucial to manage today’s
large networks. Providers of backbone networks rely

on accurate measurements to validate their performance tar-
gets from Service Level Agreements (SLAs), since failing to
meet SLA guarantees results in significant revenue losses.
Packet loss ratio and average one-way delay (OWD) are
two important Key Performance Indicators (KPIs) used for
the definition of performance targets. In fact, a large number
of losses heavily affects a wide range of Internet applications
and large end-to-end delays have a substantial impact on the
performance of TCP- and UDP-based communication.

While lossless networks are available in datacenters [1],
in backbone networks packet losses cannot be completely
avoided due to the intrinsic dynamics of packet switched
networks, which heavily rely on buffers to deal with bursty
traffic and congestion. Similarly, network congestion heavily
affects the time packets spend in buffers and, as a consequence,
the perceived OWD.

Typically, traffic measurements methods are classified in
active and passive approaches. With active measurements
additional probe traffic is injected into the network (e.g., the
ubiquitous PING utility) and the characteristics of this traffic
are measured, while passive methods are non-intrusive, as
no additional traffic is introduced and the quality of actual
customer traffic is directly evaluated. With passive methods,
live traffic features can also be monitored with different granu-
larities, from single packets to traffic summaries and statistics.
Moreover, to reduce the size of these summaries, traffic data
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are commonly aggregated in network flows [2], [3] (i.e., sets of
packets defined by common values in certain header fields).
Flow monitoring allows to identify problems affecting only
packets with certain characteristics (e.g. involving individual
applications). Packets of a single flow can follow multiple,
dynamic, paths, therefore flow monitoring requires a relatively
large per-flow state (e.g., packet digests) to track the trajectory
of the packet to accurately monitor the flow [4]. As a result,
it is challenging to monitor a large number of flows in large
networks without having a huge reporting traffic.

In this paper we present a new approach for accurate passive
network monitoring of live traffic in backbone networks.
Our method has been designed around three objectives. First
comes flexibility, as we can tune the monitoring resolution
in terms of time interval, monitored packets and network
devices. Second is easiness of implementation on existing
networking hardware currently deployed in large networks.
Third is the ability to monitor not only end-to-end flows (i.e.,
packets with the same 5-tuple), but any generic flow, which
can include packets from different sources and to different
destinations, following several different paths in the network
(multipoint flow). The ability to monitor multipoint flows in
backbone networks is of great interest for service providers,
which want to evaluate SLA compliance for single customers.
A single multipoint flow can identify all the traffic towards
an Online Service Provider data center, the traffic coming
from one eNodeB in an LTE network or all the traffic of one
VPN with multiple terminators throughout the network. This
would instead require to monitor a large number of point-to-
point flows, generating significant reporting traffic and post-
processing overhead.

Our method is inspired by the flow conservation rule in a
portion of the network (segment): in a lossless network the
amount of packets entering any network segment is equal to
the amount of packets leaving the same network segment,
as long as the network segment does not contain packet
sources and sinks (e.g., hosts). In case of packet losses,
the difference between the number of packets entering the
segment and leaving the segment is equal to the amount
of lost packets. This rule stands for unicast flows, while it
is not valid for multicast flows (packets can be duplicated
by network devices). Multicast flows can be measured using
existing methods [5], therefore are not subject of the present
paper.

Leveraging interface counters, available ubiquitously from
routers through SNMP measurement points (MPs), we can
measure packet losses in any network segment by applying the
flow conservation rule. If the MPs are accurately synchronized
(e.g., via low cost GPS receivers [6]) we can also apply the
same principle to measure the average OWD. This method
is well-suited to monitor (i) a network segment of any size,
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from a single link to the entire network, and (ii) a generic
multipoint flow, entering/leaving the segment from/to several
different points.

However, to compare counters correctly across different
devices, a form of synchronization is required. In fact, in
one measurement period, all the devices must count the same
set of packets, upon entering and leaving the segment. A
simple and effective solution to this problem is given by the
Alternate Marking method [5], [7], which splits the flow into
consecutive blocks by marking the packets of the same block
in the same way. The duration of a block is a parameter that
can be adjusted to the required temporal resolution of the
measurement. This work leverages the same synchronization
technique to monitor multipoint flows, while the original
method can only be applied to a single point-to-point flow.

Considering that (i) one counter is dedicated to a single
monitored flow, (ii) there are potentially a large number of
monitored flows and (iii) the number of counters that one
device can deploy is limited, we expect that not all the
flows can be measured by all the devices. Therefore, our
method considers that only a subset of devices/interfaces in
the network are actively counting packets of one specific
flow. As a result, we propose a new approach to model
the monitored network, i.e., the network containing only the
monitored interfaces. If counters are not deployed on all the
interfaces, it is not possible to identify the exact link or device
causing the measured losses or delay. To address this problem,
we propose a novel algorithm that can be used to converge on
the smallest identifiable subnetworks where losses or OWD
can be measured. We name these subnetworks Clusters.

The contributions of this paper are: (i) the design of a novel
solution for passive monitoring of multipoint flows in packet
networks, (ii) a technique to model the monitored network,
(iii) an algorithm to identify the clusters, (iv) the validation of
the method for packet loss measurements through experiments
and (iv) the analysis of the features and recurrent patterns of
these subnetworks in real backbone networks.

The rest of the paper is organized as follows: Section II
briefly describes the alternate marking method. Section III
presents the modeling approach (III-A), the computation of
the amount of lost packets per block (III-B), the clustering
algorithm (III-C), and the evaluation of average OWD (III-D).
Section IV summarizes one possible method to implement this
technique on existing network devices. Section V validates
the method (V-A), analyzes the size of the model (V-B), the
features of the clusters (V-C) and the execution time of the
proposed algorithms (V-D). Section VI surveys related works
and Section VII concludes the paper. Finally, Appendix A
delves into the algorithm to generate the monitored network
model.

II. ALTERNATE MARKING METHOD

This section gives an overview of the alternate marking
method, upon which our work is based. This method is aimed
at coordinating live traffic monitoring to measure the amount
of lost packets in a given interval, the one-way and round-
trip forwarding delays, and the interarrival jitter. Considering

a single unicast flow, a straightforward method to measure
lost packets is to compare the number of packets entering and
leaving the monitored network. Additionally, packets can be
counted by multiple network devices along the path to identify
the specific devices or links that are causing the losses. This
comparison can be performed periodically and requires some
form of synchronization in order to count at any measurement
point the same sets of packets.

The alternate marking method provides this synchronization
by splitting a long-lived flow into consecutive blocks, where
each block represents a measurable entity unambiguosly rec-
ognizable by all the network devices along a path, so that they
can count packets belonging to the same block and compare
the measurements to define the number of lost packets among
the various measurement points. The ingress network devices
define these blocks by equally marking all the packets in the
same block, while consecutive blocks are characterized by a
different mark. To simplify the implementation on existing
network devices, a single bit is used for packet marking. This
bit has the same value in packets belonging to the same block
and a different value in packets of consecutive blocks. In
common routers, packet marking can be easily implemented,
without software modifications, using bits of the DSCP field of
the IP header, as demonstrated by the operational experiment
presented in [5] (see Section IV).

According to the alternate marking method, the ingress
devices switch the value of the marking bit at regular intervals
of T seconds, requiring a loose synchronization of the clock of
such devices (e.g., NTP-based synchronization). Specifically,
two endpoints, whose measurements are compared, must have
a maximum clock displacement of A seconds, such that:

T > 2(A + Dmax −Dmin) (1)

where Dmin and Dmax denote respectively the lower and
upper bounds of the network delay between the two network
devices. As a result, the duration T of a block is chosen,
according to equation (1), considering the maximum synchro-
nization error and the maximum and minimum delay between
the endpoints. This delay must be considered to account for
out of order packets. In fact, the values of packet counters
are not read immediately after the end of a block, since
there could be delayed packets arriving out of order. On the
contrary, the counters are read after half a block period (T/2
seconds), to minimize the possibility that a packet of that
block arrives afterwards. The estimation of lower/upper bound
of delay between nodes is required only at setup time, so
it can be performed using ad-hoc methods (active probing,
GPS-based time synchronization). Since this delay can change
depending on network conditions (e.g., time that packets
spend in buffers), the duration of a block should be chosen
conservatively. Moreover, the block duration must be chosen
as a trade-off between the resolution of the measurement and
the size of the reporting traffic. A larger block interval reduces
the frequency of reports, but it also causes a higher delay in
identifying loss events.

This technique adds a very small overhead to network
devices. In fact, each measuring node needs to keep only
2 counters per interface, one for each value of the marking
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bit. All packet losses happening within 2 different counters
are detected, given the difference between the counters. This
comprises losses occurring on links, in packer buffers and
within network devices. Additionally, the alternate marking
method can also be used to measure the one-way delay
between 2 network devices. However, this requires that the
network devices are synchronized, so that the timestamps
recorded by different nodes are comparable. To perform one-
way delay measurements, the two endpoints save a timestamp
when they receive the first packet of a block. The difference
between the two timestamps corresponding to the same block
provides the one-way delay between the two nodes. However,
in this case a measurement is valid only if the first packet of a
block is not lost and is not received out of order. Alternatively,
to have a one-way delay measurement that tolerates lost and
out-of-order packets, network devices can perform mean delay
measurements. In this case they take the timestamp of all the
packets in a block and compute the mean timestamp, which
is used to measure the mean delay between the 2 endpoints.
Moreover, in case of symmetric paths, the mean delay in the
2 directions can be summed to measure the round-trip delay.
In this last case, the constraint on the devices synchronization
is relaxed, since the synchronization error (which is equal and
opposite in the two directions) is canceled by the sum. To
measure the round-trip time the requirement on number of
counters per interface is increased to 4, since two counters
are needed for each direction. Similarly, the measurements
of the one-way delay can be used to measure absolute and
average interarrival jitter, by evaluating the delay variation of
consecutive samples.

Since this method is based on packet counters, it relies
on the assumption that packets are not split or aggregated
between two measurement points. As a result, fragmentation
should be carefully addressed. This is not a concern in IPv6
networks (where fragmentation is performed by the source)
and is practically irrelevant in IPv4 networks of a single
operator (where fragmentation most commonly happens at the
network edge [8]). In networks managed by multiple operators,
fragmentation can be addressed simply by adding 2 mea-
surement points where fragmentation can occur (e.g., at the
border of networks with different MTUs). The management
plane is responsible for adding counters whenever there is a
configuration change that could cause fragmentation on a link.

The correlation of counters and timestamps of different
nodes can be performed by a centralized entity in the Net-
work Operation Center (NOC) using a Network Management
System, or using a different protocol to distribute the mea-
surements.

III. MULTIPOINT PERFORMANCE MONITORING

The alternate marking method presented in the previous
section can be applied only to unicast flows (e.g., one TCP
connection) because it assumes that all the packets of the flow
measured on one node are measured again by a single second
node. In this section we generalize this method to measure any
kind of flow, whose packets can follow several different paths
in the network, as shown in Figure 1. In fact, the definition of
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Fig. 1. Examples of graphlets resulting from flow paths.

the term ’flow’ present in the IPFIX standard [2] (i.e., all the
packets having a set of common properties) is more general
than a single TCP connection. As an example, we can define
as a flow all the packets sharing the same source IP address.
Clearly, packets belonging to this flow follow different paths
in the network to reach their intended destination.

Following this definition, we consider that a flow can be
defined by a set of selection rules used to match a subset
of the packets processed by the network device. These rules
specify a set of headers fields (Identification Fields) and the
relative values that must be found in matching packets. The
choice of the identification fields directly affects the type of
paths that the flow would follow in the network. In fact, it is
possible to relate a set of identification fields with the pattern
of the resulting graphs, as listed in Figure 1. A TCP/IP 5-tuple
usually identifies flows following either a single path or a one-
to-one multipath (in case of load balancing). On the contrary,
a single source address most probably selects flows following
a one-to-many multipath, while a many-to-one multipath can
be the result of a matching on a single destination address. It
is worth noting that a selection rule and its reverse are used
for bidirectional measurements, therefore they can correspond
to a one-to-many multipath in one direction and a many-to-
one multipath in the opposite direction. While the alternate
marking method is applicable only to a single path (and
partially to a one-to-one multipath), the extension proposed in
this paper is suitable also for the most general case of many-
to-many multipath, which embraces all the other patterns.

These selection rules can be implemented using commonly
available features of network devices, such as ACLs (see
Section IV), which guarantee packet matching at line rate.
The number of rules that can coexist, and thus the number
of possible monitored flows, depends on the capability of
the device. However, it is worth noting that the use of few
match-action rules to monitor multipoint flows is by far more
scalable than existing solutions, which require one rule for
each point-to-point flow [2]. When needed, multipoint flows
can be defined to aggregate multiple rules with a common
feature (e.g., same source IP) to reduce the number of counters
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deployed, at the cost of coarser measurement granularity.

A. Monitored network
In this section we provide a model of the monitored

network based on the assumption that each network interface
can separately count packets in both the incoming and the
outgoing directions. We model the entire monitored network
as a directed network G = (N,A) defined by a set N of n
nodes and a set A of m directed arcs. Each network interface i
is modelled by two nodes, ii ∈ N and io ∈ N , corresponding
to the incoming and the outgoing directions, respectively.

Each physical link connecting two interfaces i and j, is
modelled by two directed arcs, (io, ji) ∈ A and (jo, ii) ∈
A, corresponding to the two directions. To model the routing
process, we also consider one directed arc (mi, no) ∈ A for
each ingress node mi and egress node no corresponding to two
interfaces m,n on the same physical device. This comprises
also directed arcs (mi,mo) ∈ A connecting the ingress and
egress nodes corresponding to the same physical interface, in
order to model the possibility that a packet enters and leaves
from the same interface.

As a result, if there are p links in the network and q network
devices in total, each one with ri active interfaces, with i ∈
{1, . . . q}, the number of nodes n and the number of arcs m
are:

n = 2×
q∑

i=1

ri (2) m = 2× p +

q∑
i=1

r2
i (3)

As a requirement, all the border interfaces of the monitored
network must be configured to separately count incoming and
outgoing packets matching the chosen identification fields. On
the other hand, only a subset of the internal network interfaces
can be selected to monitor the traffic. As a consequence, we
consider a directed network Ḡ = (N̄ , Ā) where:
• N̄ is the subset of N containing only the nodes cor-

risponding to a monitored interface;
• Ā is a set of arcs, where an arc (i, j) ∈ Ā corresponds

to a possible directed path in G between two nodes i ∈
N̄ ⊆ N and j ∈ N̄ ⊆ N , not crossing any other node in
N̄ .

Figure 2 shows the directed network corresponding to a simple
network with only 3 devices and 3 monitored interfaces.

To find all the arcs in Ā, it is important to avoid the
search for all the simple paths in G. In fact, the number
of simple paths in G can be very large, O(n!) in the worst
case [9]. However, we can check the existence of a single
path using Dijkstra’s algorithm with worst-case performance
O(m + n log n) [10]. Therefore, to verify the existence of a
path in G between i ∈ N̄ and j ∈ N̄ that does not contain
inner nodes in N̄ , we search for the shortest path in the graph
G∗ with nodes N∗ = N − N̄ + {i, j} and as arcs A∗ all the
arcs in A connecting nodes in N∗. This algorithm, described
in the Appendix A, has complexity polynomial in m,n and n̄,
as shown in Section V-D.

We define the set of input nodes (or sources) of Ḡ as the
set of nodes in N̄ without incoming arcs:

I = {j ∈ N̄ |@(i, j) ∈ Ā ∀i ∈ N̄} (4)
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Fig. 2. A simple network model. The monitored interfaces are illustrated as
full dots.

and the set of output nodes (or sinks) of Ḡ as the set of nodes
in N̄ without outgoing arcs:

O = {i ∈ N̄ |@(i, j) ∈ Ā ∀j ∈ N̄} (5)

In the example presented in Figure 2 these sets are I =
{ai, fi} and O = {ao, fo}.

B. Packet loss monitoring

According to the alternate marking method, every monitored
physical interface has to keep four counters, two counters for
incoming packets with the two different marks, and similarly
two counters for outgoing packets. After some time following
the mark switch (e.g. T/2 time units if T is the duration of
each block with the same mark), it is possible to read the
still counters associated with the previous block. Consequently
we associate with each node i ∈ N̄ a non-negative integer
number b(i) ≥ 0 representing the number of packets counted
on the corresponding interface and direction. Considering the
example in Figure 2, b(ci) is the value of the still counter
measuring the incoming packets in the interface c, while b(co)
is the value of the still counter measuring the outgoing packets
in the same interface.

Since all the packets of the considered flow leaving the
network have previously entered the network, the number of
packets Bin counted by all the input nodes is always greater
or equal than the number of packets Bout counted by all the
output nodes:

Bin =
∑
i∈I

b(i) ≥
∑
i∈O

b(i) = Bout (6)

In particular, in a lossless network, we would have

Bin = Bout (7)

while, in presence of packet loss, the number of packets lost
in the monitored network (of the monitored flow in the last
period T ) would be:

L = Bin −Bout (8)

C. Network Clustering

Using the equation (8), we can determine the number of
packets lost globally in the monitored network, exploiting only
the data provided by the counters in the input and output
nodes. In addition we can also leverage the data provided by
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Fig. 3. Clusters deriving from the network in Figure 2.

the other counters in the network to converge on the smallest
identifiable subnetworks where the losses occur (clusters).

A cluster G̃ = (Ñ , Ã) is a minimal subnetwork of Ḡ that
still satisfies the equation (8) where L in this case is the
number of packets lost in the cluster. For this reason a cluster
must contain all the arcs emanating from its input nodes and
all the arcs terminating at its output nodes. This ensures that
we can count all the packets (and only those) exiting an input
node again at the output node, whatever path they follow.

In a completely monitored network (a network where every
network interface is monitored), each network device corre-
sponds to a cluster and each physical link corresponds to two
clusters (one for each direction). In fact, when two monitored
interfaces i and j are the endpoints of a physical link, one clus-
ter would be made of Ñ = {io, ji} and Ã = {(io, ji)}, while
a second cluster would have Ñ = {ii, jo} and Ã = {(jo, ii)}.
This is reasonable, since, on a physical link, all the packets
leaving one interface either reach the other endpoint or are lost.
However, in general, two monitored interfaces can be far apart
and divided by one or multiple non-monitored devices, thus
making more complex the task of identifying a cluster (i.e., a
subnetwork where all the packets can be counted exactly twice,
upon entering and leaving). Figure 3 shows the 2 clusters
deriving from the network in Figure 2. Considering, as an
example, the cluster C1 in Figure 3a, if:

Bin = b(ai) + b(co) > b(ao) + b(ci) = Bout

there is a packet loss:

L = b(ai) + b(co)− b(ao)− b(ci)

but it is not possible, by looking at the counters, to identify
exactly the link where the losses occur, therefore the cluster
is minimal.

A simple algorithm to identify the clusters is defined by the
following steps:

1) Compose the sets Ãi ∀i ∈ N̄ containing all the arcs
(i, j) ∈ Ā with the common tail i ∈ N̄ ;

2) Join all the sets Ãi and Ãj containing at least one arc
(i, z) ∈ Ãi and one arc (j, z) ∈ Ãj with a common head
z ∈ N̄ ;

3) Each one of the composed sets of arcs, together with the
nodes that acts as their endpoints, constitutes a cluster.

The corresponding pseudocode is presented in the Algo-
rithm 1. Note that the line 5 must iterate also on the arcs
of Ãi added in the process.

It is worth noting that, while the most common cluster is the
one with only one hop between ingress and egress nodes, it is

Algorithm 1: Iterative clustering algorithm
Input: N̄ and Ā
Output: Clusters Ãi

1 n̄← |N̄ |
2 forall (i, j) ∈ Ā do . Group arcs by the tail
3 Ãi ← Ãi ∪ {(i, j)}

4 forall Ãi do
5 forall (i, j) ∈ Ãi do
6 for i′ ← i + 1, n̄ do
7 forall (i′, j′) ∈ Ãi′ do
8 if j = j′ then
9 Ãi ← Ãi ∪ Ãi′

10 Ãi′ ← ∅
11 break . Go to the next Ãi′

bi eo

ai do

ci fo

(a) Common one-hop
cluster.

c

eo

ai do

b

(b) Multi-hop cluster.

Fig. 4. Cluster layouts.

possible to have clusters with multiple hops. Figure 4a shows
the typical one-hop cluster layout, while Figure 4b shows an
example of multi-hop cluster. The value of the counters of
intermediate nodes in a multi-hop cluster (e.g., nodes b and
c in Figure 4b) are unusable because they count an unknown
fraction of the packets from/to the ingress/egress nodes.

In the worst case, when each cluster is made of only one
arc (the network N̄ is a path), Algorithm 1 needs m̄ iterations
(where m̄ is the number of arcs in Ā) to compose the groups
according to the arc tail, and

m̄−1∑
i=1

(m̄− i)

iterations to test if any groups should be joined. As a result
the total number of iterations in the worst case is:

m̄ +

m̄−1∑
i=1

(m̄− i) = m̄ +
m̄(m̄− 1)

2
(9)

and the complexity of the algorithm is O(m̄2).
Leveraging the node-node adjacency matrix representa-

tion [11], it is also possible to apply a recursive algorithm
to identify the clusters in the network Ḡ. The node-node
adjacency matrix representation stores the network Ḡ as an
n̄ × n̄ matrix M = {hij}. The matrix has a row and a
column corresponding to every node, and its entry hij equals
1 if (i, j) ∈ Ā and equals 0 otherwise. The matrix has n̄2

elements, only m̄ of which are nonzero. We can obtain the
arcs emanating from node i by scanning the i-th row: if the
j-th element in this row has a nonzero entry, (i, j) is an arc
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Algorithm 2: Recursive clustering algorithm
Input: N̄ and M = {hij} . Node-node adjacency matrix
Output: Clusters Ãi

1 forall i ∈ N̄ do
2 Ãi ← ∅
3 InspectRow(i,Ãi)

4 Function InspectRow(i,C)
5 forall j ∈ N̄ do . Scan row i
6 if hij = 1 then
7 C ← C ∪ {(i, j)}
8 hij ← 0
9 forall i′ ∈ N̄ do . Scan column j

10 if hi′j = 1 then
11 C ← C ∪ {(i′, j)}
12 hi′j ← 0
13 InspectRow(i′,C)

of the network Ḡ. Similarly, we can obtain the arcs entering
node j by scanning the j-th column: if the i-th element of this
column has a nonzero entry, (i, j) is an arc of the network
Ḡ. With these steps we can to identify all the outgoing or
incoming arcs of a node in time proportional to n̄.

Using the adjacency matrix, for each arc (i, j) ∈ Ā we
can form a cluster by grouping all the outgoing arcs of i,
all the incoming arcs of j and, recursively, all the outgoing
and incoming arcs of the newly added nodes. The detailed
pseudocode is presented in the Algorithm 2. This algorithm
requires a full scan of the adjacency matrix M (n̄2 operations)
and a row or column scan for every arc (i, j) ∈ Ā. As a result
the total number of iterations is, in any case:

n̄2 + n̄× m̄ (10)

In the event that m̄ � n̄, the complexity of Algorithm 2
is O(n̄ × m̄), which makes this algorithm preferable to
Algorithm 1. If m̄ and n̄ are comparable in size, Algorithm 1
is faster on average.

By applying to each cluster G̃ = (Ñ , Ã) the equations (4)
and (5) (to select the input and the output nodes of the cluster)
and the equation (8), we can determine how many packets are
lost in the cluster. By identifying the cluster(s) that have a
relevant packet loss, we can select the corresponding devices
and links that need maintenance.

While it is not possible to identify exactly what link or
device in a cluster is causing the losses, we can assign to each
non-ingress node the number of packets probabilistically lost
in the paths from the ingress nodes towards the node itself.
First we can define the loss probability of a cluster as the
number of packets lost in the cluster over the total number of
packets received by the cluster:

Pr(loss) =
L

Bin
=

Bin −Bout

Bin
(11)

Since in a cluster we do not have specific measurements for a
single arc entering a node, we assume that all of the possible
paths in the cluster have the same probability Pr(loss) to lose
packets. As a result, we can associate with each non-ingress
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Fig. 5. Example of loss probabilities.

node i in a cluster C a non-negative value lus(i) corresponding
to the number of packets probabilistically lost in the paths
leading to that node (upstream to the node). The value of
lus(i) is given by the product between the loss probability
and the number of packets sent towards that node. The latter
number corresponds to both the packets counted by the node
and probabilistically lost in the paths upstream:

lus(i) = [b(i) + lus(i)]× Pr(loss) =⇒

lus(i) = b(i)× Pr(loss)

1− Pr(loss)
= b(i)× Bin −Bout

Bout

= b(i)× L

Bout

(12)

Equation (12) is valid for Bout 6= 0, while for Bout = 0
the cluster is losing all the packets, thus all the paths are
dropping all the packets (all the paths have the same loss
probability Pr(loss) = 1). Moreover, the upper bound of
lus(i) is L which is reached when b(i) = Bout (all the packets
are routed towards the same egress node, thus the paths to that
node are causing all the losses). As expected, the sum of the
probabilistic losses in the paths towards all the egress nodes
is equal to the total number of losses:∑

i∈O
lus(i) =

L

Bout
×

∑
i∈O

b(i) = L (13)

Symmetrically, we can define for each non-egress node i in
a cluster C a non-negative value lds(i) corresponding to the
number of packets probabilistically lost in the paths originated
from that node (downstream to the node):

lds(i) = b(i)× Pr(loss) = b(i)× L

Bin
(14)

Figure 5 shows a numerical example of the upstream and
downstream loss probabilities for the cluster C1 in Figure 3a.
The values of lus(i) and lds(i) can be used to provide a ranking
of probable causes for the losses, driving the maintenance
operation.

D. Average delay

While this paper focus is primarily on packet loss mea-
surements, in this section we present briefly how also average
delay measurements can be generalized to the case of multi-
path flows. Similarly to the original alternate marking method,
the network devices must be synchronized and they must be
able to extract a timestamp when they receive a packet. Delay
measurements relative to a single packet cannot be performed
in this scenario, since they would not be representative of
the entire flow, whose packets can follow different paths with
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various delays. However, we can compute the average one-
way delay D̄ of packets, in one block, either in a cluster or in
the entire monitored network. In fact, for each node, we can
consider the mean timestamp t̄(i) of all the packets in one
block:

t̄(i) =

b(i)∑
k=1

tk(i)

b(i)
(15)

where tk(i), k ∈ {1, . . . , b(i)} are the timestamps of the b(i)
packets in a block.

The average delay D̄ can be measured as the difference
between the weighted averages of the mean timestamps of the
sets of output and input nodes:

D̄ =

∑
i∈O

[b(i)× t̄(i)]∑
i∈O

b(i)
−

∑
i∈I

[b(i)× t̄(i)]∑
i∈I

b(i)

=

∑
i∈O

b(i)∑
k=1

tk(i)∑
i∈O

b(i)
−

∑
i∈I

b(i)∑
k=1

tk(i)∑
i∈I

b(i)

(16)

We briefly presented how the proposed technique can be
extended to average delay measurements. However, given the
space limit, an in-depth analysis of average delay measure-
ments using this method is outside the scope of the current
paper, which focuses on packet loss measurements. We will
address this aspect in future work.

IV. IMPLEMENTATION ON EXISTING DEVICES

As demonstrated by the operational experiment presented
in [5], the alternate marking method can be implemented using
features already available in common network devices. In this
section we summarize one possible method to implement this
technique. More details can be found in [5].

Packet marking requires only a single bit in the packet
header. We assume that one bit of the DSCP field of the
IP header can be reserved for this purpose, and the service
provider can still use the remaining 5 bits for QoS classifi-
cation. Per-flow packet marking using the DSCP field can be
implemented by configuring access lists (ACLs) on the device
output interfaces [12]. The ACL matches the monitored flow(s)
and applies a policy that sets the DSCP field. The policy is
periodically updated by an automatic script running on the
device to change the value of the marking bit for the next
block. This operation must be performed by devices at the
edge of the network (i.e., where the monitored flows enter
and leave the network), so that all the traffic in the monitored
network is correctly marked.

The operator must select the devices inside the network that
count marked packets. They can be configured by using an
ACL that matches specific DSCP values and counts packets
of the flow(s) being monitored. Additionally, network flow
monitoring, such as provided by IPFIX [2], can be used to
extract timestamps of the first and last packet of a batch in
order to perform delay measurements. The deployment of MPs
can be incremental. In fact, only routers at the border of the

monitored network are strictly required to mark and count
packets. Counters on internal routers can instead be deployed
progressively to reduce the size of the measuring clusters.
Moveover, the monitored network can be progressively ex-
tended when counters are deployed on new routers.

A script running on the network device can periodically
collect counters and timestamps and send them to the NOC
for processing. The NOC is responsible for packet loss calcu-
lations, performed by comparing the values of counters from
different devices. It is worth noting that the use of the DSCP
field for marking implies that the method would reliably work
only within a single management and operation domain, which
is within the scope of this work.

V. EXPERIMENTAL EVALUATION

In this section we evaluate the effectiveness of our approach
and analyze the dimensions of the networks G, Ḡ and the
clusters corresponding to real world network topologies.

Our main results are as follows:
• We show how our approach can be used to passively

monitor multipoint flows in real topologies. The results
show that, using only packet counters, we can provide
very detailed measurements that allow to identify the
exact packet loss between multiple measurement points,
while active methods require ad-hoc agents at the edge
of the network and provide measurements per path.

• We assess the sizes of the networks G and Ḡ for multiple
real topologies.

• We evaluate how the number of clusters and their size
change with the number of monitored interfaces. These
results show how the monitoring resolution increases,
together with our ability to identify the cause of packet
losses, when we increase the number of monitored nodes.

• We measure the execution time of the presented algo-
rithms to evaluate how they scale with an increasing
number of monitored interfaces.

All the details to reproduce our tests, together with the
required software, are available in our public repository1. In
our tests we use real world network topologies surveyed in [13]
leveraging data that network operators make public. We run
the experiments on a workstation with an Intel Core i7-4770
CPU (8 logical cores at 3.40GHz) and 32 GB of RAM running
Linux Fedora 25.

A. Packet loss measurements

To test our approach in a realistic scenario with realistic
traffic, we emulate two network topologies: GEANT [14],
the pan-European network for the research and education
community with 40 nodes and 61 links, and BICS [15],
the backbone network managed by its namesake company
with 33 nodes and 48 links. We choose these 2 topologies
because they have different shapes and they are the largest
ones that our testbed can manage. Additionally, they are real
backbone networks with publicly available topologies, often

1https://github.com/netgroup-polito/Multipoint-monitoring

https://github.com/netgroup-polito/Multipoint-monitoring
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Fig. 6. Packet loss measurements on the GEANT topology.
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Fig. 7. Packet loss measurements on the BICS topology.

used in networks research [13], [16], [17]. Larger topologies
are analyzed with simulations in the subsequent sections.

Using Mininet [18] and Open vSwitch [19], we deploy two
bridges and one host (a linux namespace) for each node in
the topology (see Figure 8). We need two bridges for each
node because one is used for packet marking and one to count
the packets. We observed that if we use a single bridge for
both operations, the newly marked packets are occasionally

Mininet topology

Physical topology

Fig. 8. Example of physical and emulated topology.

not counted because of Open vSwitch flow caching [20].
One bridge is connected only to the host and to the second
bridge to mark packets from the host, while the second bridge
is connected according to the topology. We also use tc to
artificially drop 1% of the packets on each link to emulate
packet losses.

An OpenFlow controller connected to all the bridges takes
care of: (i) pushing the forwarding rules according to the short-
est path for each source and destination pair, (ii) periodically
push the rules on the bridges directly connected to the hosts
to mark external packets that match the chosen Identification
Fields with an alternating value (we use one bit in the TOS
IP field for the mark), (iii) push the rules to count internal
marked packets on each interface in both directions, and (iv)
periodically read and reset the still counters and correlate the
measurements from multiple nodes. To validate the method,
in this test we are deploying one counter per direction on
each interface (i.e., all the interfaces are monitored) , while in
Section V-C we evaluate the clustering algorithm varying the
ratio of monitored nodes.

Since we are interested in measuring multipoint traffic, in
a first experiment we use as identification field the source IP
to measure one-to-all flows. In a second experiment we count
all the packets to measure all-to-all traffic. To have a complete
mesh background traffic, we run a packet generator in every
host that sends/receives UDP packets to/from all the other
hosts. At the end of the test every packet generator instance
sends a report to a central collector with the number of packets
sent and received for each source and destination pair. We use
these reports to measure the amount of lost packets on each
path (from one host to the other).

We observed that, in every path, the number of lost packets
reported by the traffic generator is equal to the sum of the
losses reported by the controller for all the links in the path
for values of the period T greater than 20 seconds. Below
this value, it is possible that packets are miscounted and
the measurements are not accurate. This parameter must be
adapted to the specific deployment scenario considering: (i)
the lower and upper bounds of the network delay between
two network devices, (ii) the synchronization error among the
devices, and (iii) the overall number of measurements that the
NOC can process per minute. Considering that there are two
measurements (one per direction) per monitored interface per
period, the number of measurements to process can be large
for sizable topologies (see Section V-B).

Figure 6 and Figure 7 show the measured packet loss per
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Fig. 9. Relation between the physical topology and G.

link and per period as reported by the controller for GEANT
and BICS, respectively. The x-labels report the names of the
links in the topology. The number of losses on each link
is proportional to the amount of traffic on that link, which
depends on how many shortest paths between nodes contain
that link.

Figure 6a shows the measurements obtained when select-
ing the flow with source IP corresponding to the IT node
in GEANT, while Figure 7a is obtained measuring packets
generated by the Milan node in BICS. These figures show
only the links with nonzero reports, which are the ones in the
single-source shortest paths from the selected node to all the
other nodes. Figure 6b and Figure 7b show the measured losses
of the all-to-all flow in all the links in the two topologies.
While the packet generator provides only the total number of
packets lost in a path between one source and one destination,
our method provides a fine grained measurement per link per
time period.

B. Graph size

In this section we evaluate the size of the network G and Ḡ
for real topologies. The number of nodes n in G depends on
the number of devices in the real topology and on the number
of interfaces per device (Equation 2), while the number of arcs
m in G depends also on the number of links (Equation 3).
The nodes N̄ in Ḡ correspond to the interfaces that are
chosen to count packets, while the arcs Ā correspond to the
paths between monitored interfaces, and are computed using
Algorithm 3.

To evaluate the trend of n and m we compute the network
G for all the 261 topologies in [13]. The smallest topology
in this set has 4 nodes and 4 arcs and the largest has 754
nodes and 899 arcs. Figure 9 shows the resulting values of
n and m. Specifically, in Figure 9a we show the value of n
compared to the number of nodes in the original topology.
We observe that the relation is close to linear. In fact, the
first degree least squares polynomial (LSPoly) fit has a small
root-mean-square error (RMSE), equal to 57.3. Similarly, in
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Fig. 10. Relation between the number of monitored interfaces (i.e., |N̄ |) and
the number of arcs in Ā.

Figure 9b we show the value of m compared to the number
of arcs and we measure that the linear fit has a RMSE of
279.9, while the quadratic fit has a RMSE of 269.98. Given
the very small improvement, the linear fit can be considered
a valid approximation, proving that the model scales well and
an increase in the size of the physical topology will cause a
comparable increase in the size of the model.

To evaluate the size of Ḡ, that depends on the choice of
monitored interfaces, we consider two real IP topologies, (i)
Colt [21], a European network with 153 nodes and 191 links
and (ii) Cogent [22], a multinational ISP network with 197
network nodes and 245 links. The interface-level network G
generated from the Colt topology has 764 nodes and 1814
arcs, while the one generated from Cogent has 980 nodes
and 1906 arcs. To build the network Ḡ, we randomly select,
with different sampling ratios, subsets of nodes in G as
monitored interfaces and build the corresponding network Ḡ
using Algorithm 3. We repeated the test 100 times for each
ratio of monitored nodes to evaluate how the size of Ā varies
with different selections of monitored interfaces.

Figure 10 shows the number of arcs in Ḡ for different
ratios of monitored nodes for the Colt and Cogent networks.
The whiskers in all the boxplots in this paper span the 99%
of the points, while the outliers are shown separately. In a
completely monitored network (with 100% monitored nodes)
the networks Ḡ and G are equivalent, therefore the number of
arcs in Ḡ is exactly equal to the above mentioned values for
G in all the tests. With few monitored interfaces we observe
that there is a large variability. The number of paths between
monitored interfaces (i.e., |Ā|) can be both lower or higher
than the number of arcs in A. However, |Ā| > |A| is more
frequent because with fewer monitored interfaces the paths
between them are closer to a full-mesh, thus it is common that
the number of paths exceeds the number of underlying arcs.
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Fig. 11. Number of clusters for different ratios of monitored nodes.

We show an example of this behavior concerning clusters in
Section V-C.

C. Clusters dimensions

In this section we study the dimensions and shape of the
clusters resulting from the algorithms 1 or 2 (both algorithms
provide the same results). We run the same tests described
in the previous section and, in all the executions, we apply
to Ḡ the clustering algorithm to compute all the clusters
G̃. Figure 11 shows the number of clusters for obtained for
different sampling ratios and the second degree LSPoly fit,
which shows a quadratic relation between the number of
monitored nodes and the number of clusters.

We observe that the variability is very low and decreases
when increasing the number of monitored nodes. This suggests
that the different positioning of monitored nodes has a rela-
tively low effect on the resulting clusters, therefore, in most
cases, a random selection (or a selection based on external
constraints) can be as effective as a more complex, intelligent
selection aimed at finding the optimal counters distribution
that provides the maximum number of smallest clusters. Ad-
ditionally, a simple and effective strategy is to iteratively add
counters in the portion of the network corresponding to the
larger clusters, until the required monitoring resolution (i.e.,
maximum cluster size) is reached. Similarly, small clusters
can be joined together to compose larger clusters, removing
the counters from shared nodes. The same small variability
can be seen in the other dimensions of the clusters, although
with a larger tail.

Figure 13 shows the features of the clusters, obtained
by running the test until 20000 clusters for each sampling
ratio are generated. We show only the results for the Cogent
network. However, we also performed these tests with different
topologies, obtaining comparable results. In fact, our tests
show that clusters have similar features regardless of the initial
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Fig. 12. Example of cluster where the number of paths between monitored
nodes is greater than the number of arcs making those paths (nodes d and e
are not monitored).

topology. Figure 13a and Figure 13b show the number of
nodes and arcs in the clusters respectively. They show that a
cluster with only two nodes and one arc is the most recurrent
(corresponding to both the first quartile and the median).
However, clusters can rarely reach hundreds of nodes and
thousands of arcs . To further study the shape of the clusters
we show in Figure 13c the diameter of the cluster. Given that
clusters are feed-forward, non-connected graphs, we consider
a slightly relaxed definition of diameter. We define diameter as
the greatest finite distance between any pair of vertices. We
observe that more than 75% of the clusters have the layout
shown in Figure 4a (diameter equal to one) and multi-hop
clusters (up to 19 hops) rarely occur. Multi-hop clusters are
usually undesirable because the counters in the intermediate
nodes are useless, as described in Section III-C.

Next, we analyze the physical size of the clusters, namely
the size of the clusters considering also the non-monitored
interfaces that are in the paths between monitored ones. In gen-
eral, all the physical nodes (i.e., monitored and non-monitored
interfaces) can be responsible for packet losses in a cluster.
Figure 13d shows the total number of nodes (i.e., physical
interfaces) per cluster while Figure 13e shows the total number
of arcs (i.e., physical links). Even considering non-monitored
nodes, the most common clusters have 2-6 nodes and 1-7 arcs.
However, if we consider the 99th percentile, the number of
nodes per cluster increases when considering non-monitored
nodes. Counterintuitively, the number of arcs decreases. This
happens because there are cases where the number of paths
between monitored nodes (i.e., arcs in Ā) is greater than the
number of arcs in A making those paths (see Figure 12).

Finally, Figure 13f shows the diameter of the clusters con-
sidering also non-monitored nodes. As with logical clusters,
physical clusters have one hop in the majority of cases, while
rarely they can have up to 3 physical hops. This result suggests
that, even with only 10% monitored nodes, most of the clusters
correspond to a single link or device, therefore this deployment
allows to pinpoint where the losses occur in most of the cases.
The maximum amount of hops in a cluster decreases when we
increase the ratio of monitored nodes, as expected. In fact, if
all the interfaces are monitored, all the clusters have only one
hop and correspond to either one link or one network device.
In a real deployment, the number of monitored nodes has to
be chosen according to the capabilities of the devices and the
granularity of the measurement required.

D. Execution time
In this section we report on the execution time of the pro-

posed algorithms. We evaluate the execution time to provide
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(b) Number of arcs per clusters.

1

101

102

98 196 294 392 490 588 686 784 882 980

10 20 30 40 50 60 70 80 90 100

C
lu

st
e
rs

 d
ia

m
e
te

r

Monitored nodes

Monitored nodes (%)

(c) Clusters diameter (only monitored nodes).
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(d) Number of nodes per clusters considering
non-monitored interfaces.
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(e) Number of arcs per clusters considering
non-monitored interfaces.
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Fig. 13. Clusters dimensions with the Cogent topology.
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Fig. 14. Execution time of Algorithm 3.

a general understanding of the timescale and how these novel
algorithms scale with an increasing number of nodes. As
mentioned in Section III-A, the computation of the arcs Ā can
be expensive. However, Algorithm 3 described in Appendix A
can find all the arcs in Ā with polynomial complexity. In fact,
in our tests the execution time of Algorithm 3, reported in
Figure 14, shows a quadratic trend relative to the number of
monitored nodes n̄.

In our implementation we use the single-threaded networkx
pure-python library [23] to perform basic graph processing,
such as finding the shortest path. Given the sequential nature
of the Dijkstra’s shortest path algorithm, a parallel imple-
mentation would provide very limited improvements [24],
while a more optimized C implementation can be significantly
faster [25]. The results show that, even with a commodity
workstation and a non-optimized implementation, the clus-
tering algorithms take less than a second, and the model
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Fig. 15. Execution time of Algorithm 1 (iterative clustering).

is computed in few minutes. These are reasonable values
for any practical deployment, since these algorithms can be
executed offline, in the NOC, and only when the location of
the monitored interfaces changes, which we expect to be a
rare event.

Both clustering algorithms take substantially less time than
Algorithm 3. In fact, in our tests they require always less than
0.5 seconds. Figure 15 and Figure 16 show the execution time
for the iterative (Algorithm 1) and recursive (Algorithm 2)
clustering algorithm, respectively. As showed in Figure 10, m̄
can be up to 8 times greater than n̄ therefore the recursive
algorithm is faster than the iterative in all the tests.

VI. RELATED WORK

PING is the most popular tool for network troubleshooting
and to measure packet losses and round trip time. It is a basic
tool that works by transmitting specific ICMP packets, so the
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Fig. 16. Execution time of Algorithm 2 (recursive clustering).

main drawbacks are that it is invasive, probe packets can be
dropped or rate-limited, works only between two hosts (end-
to-end) and thus cannot measure multipoint flows.

Many previous works propose methods for active measure-
ments of packet losses and end-to-end delay [26]–[29]. The
IETF has also standardized active methods for loss and delay
measurements through the IPPM working group [30]–[32].
Badabing [26] and Zing [28] estimate end-to-end packet
losses sending UDP probe packets between two cooperative
hosts. The former sends packet at specified intervals while
the latter uses poisson-modulated intervals with fixed mean
rate. Poisson-modulated probes have been shown to provide
unbiased network measurements in theory [31], [33], while in
practice this implies that measurements must be taken either
in a long period of time or with high average rate [26]. A
different approach is taken by Sting [29] which measures
packet losses between a client and any existing TCP-based
server by first sending a series of TCP data packets and
then analyzing the loss recovery algorithms of TCP. While
these tools enhance the basic functionality of PING, none of
them solves the abovementioned drawbacks. In particular, due
to the discrete sampling nature of the probe process, active
monitoring methods should run frequently to measure bursty
and occasional packet losses, generating a large number of
packets (especially considering that losses on the Internet are
typically rare events [34]). High probe rates sensibly change
the state of the network, therefore the measurement becomes
non-representative of the real network dynamics. As a result,
these methods must find a trade-off between measurement
accuracy, impact on the network (probe rate) and timeliness
of results.

Passive measurements are usually based on full traffic
collection [35], [36] or statistical sampling [3], [37]. Tstat
is a tool to passively monitor packets that flow on a link. It
provides traffic statistics, obtained through offline data cor-
relation between incoming and outgoing traffic. The analysis
of network traces is usually time-consuming, therefore cannot

be used to identify and rapidly react to problems threatening
SLA compliance. As a result, statistical sampling is used to
reduce the amount of data to process. As an example, the tool
proposed in [37] analyzes a sample of TCP packets and applies
a heuristic to the sequence numbers to detect losses, within
a certain error. As with active probes, sampling necessarily
introduces a measurement error, thus occasional losses can
be missed. The method proposed in this paper counts all the
packets of the measured flow, avoiding the sampling error.

Methods leveraging packet counters have been pro-
posed [38], [39], particularly in the contest of high speed
Data Center Networks (DCNs). PcktLoss [38] measures
packet losses by comparing counters in different parts of the
network only when the considered flow is expired. A flow is
considered expired if no packet has arrived for that particular
flow within a specified timeout. With this method it is not
possible to explicitly tune the measurement interval. Moreover,
it cannot be applied to multipoint flows that, in general, can
be always active, since they can correspond to different end-
to-end connections.

Other solutions [39]–[41] leverage the different nature of
DCNs, due to the different type of network equipments
used, the limited geografic distribution and the availability
of cheap and large bandwidth. These methods are based
on specialized data structures (Invertible Bloom Filter, CM-
Sketch) to reduce the memory required to monitor a large
number of flows. They benefit from the introduction of data
plane programmability [42] on new network devices [43].
As an example, LossRadar [39] is a loss detection system
for DCNs which leverages programmable dataplane devices
to deploy counters to collect data on the forwarded packets.
These data are aggregated in digests that are sent to an external
collector. The collector correlates the digests to measure packet
losses and the affected flows. Our solution, while it can be
easily implemented on programmable switches, is tailored
for backbone networks, which are usually characterized by
heterogeneous, legacy devices and high bandwidth cost. As
a result, we reduce the amount of collected data to only
values of packet counters, we consider that not all the devices
in the network can deploy such counters and we exploit
functionalities already available in widely deployed network
devices.

VII. CONCLUSION

This paper has presented a novel method to passively mon-
itor backbone networks. One chief contribution is the ability
to monitor multipoint flows including packets from different
sources and to different destinations, following several paths
in the network. By deploying counters commonly available
on existing hardware, it is possible to accurately measure
packet losses within the monitored network. If the network
devices are synchronized (using commodity equipment) it is
also possible to measure average OWD for multipoint flows.

We introduced a technique to model the monitored network
considering the location of the measurement points. This
model can be used by the proposed clustering algorithm to
extract the smallest subnetworks where performance can be
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measured. Within these subnetworks, the measurement can be
statistically split among the links and devices, to find the cause
of a fault, driving the maintenance process.

The presented experiments validated the method and
showed that the model grows linearly with the size of the
physical network. We determined that, in a real scenario, clus-
ters present recurrent patterns and that, with high probability,
they are simple one-hop networks. By distributing the loss
probability among the nodes of the cluster, the identification
of the causes of the losses becomes a simple task. The
experiments showed also that a random distribution of the
measurement points usually generates small clusters, and thus
a more complex distribution algorithm would provide limited
benefits. Such algorithm and an evaluation of the benefits will
be subject of future work. Moreover, the distribution of MPs
can be driven by specific policies, e.g., in networks spanning
multiple ASes, it can be useful for troubleshooting to have
MPs at the AS borders.

The considerably greater complexity of Algorithm 3 com-
pared to the clustering algorithms suggests that future work
should consider it for possible improvements. One possible
solution would be an incremental version of this algorithm.
Starting from a distribution plan for the counters, a reasonable
strategy is to determine the clusters and then move or add
only a small number of counters to reduce the size of the
large clusters. An incremental version of the algorithm could
leverage the previous execution and reuse the partial results
of the computation that are not affected by the new changes.

We are currently working, within the IETF IPPM Working
Group, to push this method toward standardization [44].

APPENDIX A
ALGORITHM TO BUILD Ā

To build the monitored network Ḡ, we have to find all the
paths in G between two monitored nodes i ∈ N̄ and j ∈ N̄ .
These paths must not contain inner nodes in N̄ . Since the
number of simple paths in G is O(n!), we cannot iterate on all
the paths and ignore the ones with inner nodes in N̄ . Instead,
for each pair of nodes i ∈ N̄ , j ∈ N̄ we find the shortest path
in the graph G∗ with nodes N∗ = N−N̄ +{i, j}. The arcs of
G∗ are all the arcs in A connecting nodes in N∗. As a result,
the shortest path between i ∈ N̄ and j ∈ N̄ (if exists) does
not traverse other nodes in N̄ .

This solution, detailed in Algorithm 3, has complexity
polynomial in m,n and n̄. First, for each node in N̄ we
save the incoming and outgoing arcs in A. We also initialize
N∗init ← N − N̄ and A∗init with all the arcs in A connecting
nodes in N∗init. Then for each pair i ∈ N̄ , j ∈ N̄ we build
G∗ by adding the pair to N∗init and by adding to A∗init all the
arcs incident to nodes in N∗. Finally, we add (i, j) to Ā if
one path between them exists in G∗.
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