4 research outputs found

    Mapping the Effect of Interictal Epileptic Activity Density During Wakefulness on Brain Functioning in Focal Childhood Epilepsies With Centrotemporal Spikes

    Get PDF
    Childhood epilepsy with centrotemporal spikes (CECTS) is the most common type of \u201cself-limited focal epilepsies.\u201d In its typical presentation, CECTS is a condition reflecting non-lesional cortical hyperexcitability of rolandic regions. The benign evolution of this disorder is challenged by the frequent observation of associated neuropsychological deficits and behavioral impairment. The abundance (or frequency) of interictal centrotemporal spikes (CTS) in CECTS is considered a risk factor for deficits in cognition. Herein, we captured the hemodynamic changes triggered by the CTS density measure (i.e., the number of CTS for time bin) obtained in a cohort of CECTS, studied by means of video electroencephalophy/functional MRI during quite wakefulness. We aim to demonstrate a direct influence of the diurnal CTS frequency on epileptogenic and cognitive networks of children with CECTS. A total number of 8,950 CTS (range between 27 and 801) were recorded in 23 CECTS (21 male), with a mean number of 255 CTS/patient and a mean density of CTS/30 s equal to 10,866 \ub1 11.46. Two independent general linear model models were created for each patient based on the effect of interest: \u201cindividual CTS\u201d in model 1 and \u201cCTS density\u201d in model 2. Hemodynamic correlates of CTS density revealed the involvement of a widespread cortical\u2013subcortical network encompassing the sensory-motor cortex, the Broca's area, the premotor cortex, the thalamus, the putamen, and red nucleus, while in the CTS event-related model, changes were limited to blood\u2013oxygen-level-dependent (BOLD) signal increases in the sensory-motor cortices. A linear relationship was observed between the CTS density hemodynamic changes and both disease duration (positive correlation) and age (negative correlation) within the language network and the bilateral insular cortices. Our results strongly support the critical role of the CTS frequency, even during wakefulness, to interfere with the normal functioning of language brain networks

    Decreased functional connectivity within a language subnetwork in benign epilepsy with centrotemporal spikes

    Get PDF
    Objective: Benign epilepsy with centrotemporal spikes (BECTS, also known as Rolandic epilepsy) is a common epilepsy syndrome that is associated with literacy and language impairments. The neural mechanisms of the syndrome are not known. The primary objective of this study was to test the hypothesis that functional connectivity within the language network is decreased in children with BECTS. We also tested the hypothesis that siblings of children with BECTS have similar abnormalities. Methods: Echo planar magnetic resonance (MR) imaging data were acquired from 25 children with BECTS, 12 siblings, and 20 healthy controls, at rest. After preprocessing with particular attention to intrascan motion, the mean signal was extracted from each of 90 regions of interest. Sparse, undirected graphs were constructed from adjacency matrices consisting of Spearman's rank correlation coefficients. Global and nodal graph metrics and subnetwork and pairwise connectivity were compared between groups. Results: There were no significant differences in graph metrics between groups. Children with BECTS had decreased functional connectivity relative to controls within a four‐node subnetwork, which consisted of the left inferior frontal gyrus, the left superior frontal gyrus, the left supramarginal gyrus, and the right inferior parietal lobe (p = 0.04). A similar but nonsignificant decrease was also observed for the siblings. The BECTS groups had significant increases in connectivity within a five‐node, five‐edge frontal subnetwork. Significance: The results provide further evidence of decreased functional connectivity between key mediators of speech processing, language, and reading in children with BECTS. We hypothesize that these decreases reflect delayed lateralization of the language network and contribute to specific cognitive impairments

    Analysis of Sub-Cortical Morphology in Benign Epilepsy with Centrotemporal Spikes

    Get PDF
    RÉSUMÉ Au Canada, l’épilepsie affecte environ 5 Ă  8 enfants par 3222 ĂągĂ©s de 2 Ă  37 ans dans la population globale. Quinze Ă  47 % de ces enfants ont une Ă©pilepsie bĂ©nigne avec des pointes centrotemporelles (BECTS), ce qui fait de BECTS le syndrome Ă©pileptique focal de l’enfant bĂ©nin le plus frĂ©quent. Initialement, BECTS Ă©tait considĂ©rĂ© comme bĂ©nin parmi les autres Ă©pilepsies car il Ă©tait gĂ©nĂ©ralement rapportĂ© que les capacitĂ©s cognitives ont Ă©tĂ© prĂ©servĂ©es ou ramenĂ©es Ă  la normale pendant la rĂ©mission. Cependant, certaines Ă©tudes ont trouvĂ© des dĂ©ficits cognitifs et comportementaux, qui peuvent bien persister mĂȘme aprĂšs la rĂ©mission. Compte tenu des diffĂ©rences neurocognitives chez les enfants atteints de BECTS et de tĂ©moins normaux, la question est de savoir si des variations morphomĂ©triques subtiles dans les structures cĂ©rĂ©brales sont Ă©galement prĂ©sentes chez ces patients et si elles expliquent des variations dans les performence cognitifs. En fait, malgrĂ© les preuves accumulĂ©es d’une Ă©tiologie neurodĂ©veloppementale dans le BECTS, peu est connu sur les altĂ©rations structurelles sous-jacentes. À cet Ă©gard, la proposition de mĂ©thodes avancĂ©es en neuroimagerie permettrait d’évaluer quantitativement les variations de la morphologie cĂ©rĂ©brale associĂ©es Ă  ce trouble neurologique. En outre, l’étude du dĂ©veloppement morphologique du cerveau et sa relation avec la cognition peut aider Ă  Ă©lucider la base neuroanatomique des dĂ©ficits cognitifs. Le but de cette thĂšse est donc de fournir un ensemble d’outils pour analyser les variations morphologiques sous-corticales subtiles provoquĂ©es par diffĂ©rentes maladies, telles que l’épilepsie bĂ©nigne avec des pointes centrotemporelles. La mĂ©thodologie adoptĂ©e dans cette thĂšse a conduit Ă  trois objectifs de recherche spĂ©cifiques. La premiĂšre Ă©tape vise Ă  dĂ©velopper un nouveau cadre automatisĂ© pour segmenter les structures sous-corticales sur les images Ă  resonance magnĂštique (IRM). La deuxiĂšme Ă©tape vise Ă  concevoir une nouvelle approche basĂ©e sur la correspondance spectrale pour capturer prĂ©cisĂ©ment la variabilitĂ© de forme chez les sujets Ă©pileptiques. La troisiĂšme Ă©tape conduit Ă  une analyse de la relation entre les changements morphologiques du cerveau et les indices cognitifs. La premiĂšre contribution vise plus spĂ©cifiquement la segmentation automatique des structures sous-corticales dans un processus de co-recalage et de co-segmentation multi-atlas. Contrairement aux approches standards de segmentation multi-atlas, la mĂ©thode proposĂ©e obtient la segmentation finale en utilisant un recalage en fonction de la population, tandis que les connaissances Ă  prior basĂ©s sur les rĂ©seaux neuronaux par convolution (CNNs) sont incorporĂ©es dans la formulation d’énergie en tant que reprĂ©sentation d’image discriminative. Ainsi, cette mĂ©thode exploite des reprĂ©sentations apprises plus sophistiquĂ©es pour conduire le processus de co-recalage. De plus, Ă©tant donnĂ© un ensemble de volumes cibles, la mĂ©thode proposĂ©e calcule les probabilitĂ©s de segmentation individuellement, puis segmente tous les volumes simultanĂ©ment. Par consĂ©quent, le fardeau de fournir un sous-ensemble de vĂ©ritĂ© connue appropriĂ© pour effectuer la segmentation multi-atlas est Ă©vitĂ©. Des rĂ©sultats prometteurs dĂ©montrent le potentiel de notre mĂ©thode sur deux ensembles de donnĂ©es, contenant des annotations de structures sous-corticales. L’importance des estimations fiables des annotations est Ă©galement mise en Ă©vidence, ce qui motive l’utilisation de rĂ©seaux neuronaux profonds pour remplacer les annotations de vĂ©ritĂ© connue en co-recalage avec une perte de performance minimale. La deuxiĂšme contribution vise Ă  saisir la variabilitĂ© de forme entre deux populations de surfaces en utilisant une analyse morphologique multijoints. La mĂ©thode proposĂ©e exploite la reprĂ©sentation spectrale pour Ă©tablir des correspondances de surface, puisque l’appariement est plus simple dans le domaine spectral plutĂŽt que dans l’espace euclidien conventionnel. Le cadre proposĂ© intĂšgre la concordance spectrale Ă  courbure moyenne dans un plateforme d’analyse de formes sous-corticales multijoints. L’analyse expĂ©rimentale sur des donnĂ©es cliniques a montrĂ© que les diffĂ©rences de groupe extraites Ă©taient similaires avec les rĂ©sultats dans d’autres Ă©tudes cliniques, tandis que les sorties d’analyse de forme ont Ă©tĂ© crĂ©Ă©es d’une maniĂšre Ă  rĂ©duire le temps de calcul. Enfin, la troisiĂšme contribution Ă©tablit l’association entre les altĂ©rations morphologiques souscorticales chez les enfants atteints d’épilepsie bĂ©nigne et les indices cognitifs. Cette Ă©tude permet de dĂ©tecter les changements du putamen et du noyau caudĂ© chez les enfants atteints de BECTS gauche, droit ou bilatĂ©ral. De plus, l ’association des diffĂ©rences volumĂ©triques structurelles et des diffĂ©rences de forme avec la cognition a Ă©tĂ© Ă©tudiĂ©e. Les rĂ©sultats confirment les altĂ©rations de la forme du putamen et du noyau caudĂ© chez les enfants atteints de BECTS. De plus, nos rĂ©sultats suggĂšrent que la variation de la forme sous-corticale affecte les fonctions cognitives. Cette Ă©tude dĂ©montre que les altĂ©rations de la forme et leur relation avec la cognition dĂ©pendent du cĂŽtĂ© de la focalisation de l’épilepsie. Ce projet nous a permis d’étudier si de nouvelles mĂ©thodes permettraient de traiter automatiquement les informations de neuro-imagerie chez les enfants atteints de BECTS et de dĂ©tecter des variations morphologiques subtiles dans leurs structures sous-corticales. De plus, les rĂ©sultats obtenus dans le cadre de cette thĂšse nous ont permis de conclure qu’il existe une association entre les variations morphologiques et la cognition par rapport au cĂŽtĂ© de la focalisation de la crise Ă©pileptique.----------ABSTRACT In Canada, epilepsy affects approximately 5 to 8 children per 3222 aged from 2 to 37 years in the overall population. Fifteen to 47% of these children have benign epilepsy with centrotemporal spikes (BECTS), making BECTS the most common benign childhood focal epileptic syndrome. Initially, BECTS was considered as benign among other epilepsies since it was generally reported that cognitive abilities were preserved or brought back to normal during remission. However, some studies have found cognitive and behavioral deficits, which may well persist even after remission. Given neurocognitive differences among children with BECTS and normal controls, the question is whether subtle morphometric variations in brain structures are also present in these patients, and whether they explain variations in cognitive indices. In fact, despite the accumulating evidence of a neurodevelopmental etiology in BECTS, little is known about underlying structural alterations. In this respect, proposing advanced neuroimaging methods will allow for quantitative assessment of variations in brain morphology associated with this neurological disorder. In addition, studying the brain morphological development and its relationship with cognition may help elucidate the neuroanatomical basis of cognitive deficits. Therefore, the focus of this thesis is to provide a set of tools for analyzing the subtle sub-cortical morphological alterations in different diseases, such as benign epilepsy with centrotemporal spikes. The methodology adopted in this thesis led to addressing three specific research objectives. The first step develops a new automated framework for segmenting subcortical structures on MR images. The second step designs a new approach based on spectral correspondence to precisely capture shape variability in epileptic individuals. The third step finds the association between brain morphological changes and cognitive indices. The first contribution aims more specifically at automatic segmentation of sub-cortical structures in a groupwise multi-atlas coregistration and cosegmentation process. Contrary to the standard multi-atlas segmentation approaches, the proposed method obtains the final segmentation using a population-wise registration, while Convolutional Neural Network (CNN)- based priors are incorporated in the energy formulation as a discriminative image representation. Thus, this method exploits more sophisticated learned representations to drive the coregistration process. Furthermore, given a set of target volumes the developed method computes the segmentation probabilities individually, and then segments all the volumes simultaneously. Therefore, the burden of providing an appropriate ground truth subset to perform multi-atlas segmentation is removed. Promising results demonstrate the potential of our method on two different datasets, containing annotations of sub-cortical structures. The importance of reliable label estimations is also highlighted, motivating the use of deep neural nets to replace ground truth annotations in coregistration with minimal loss in performance. The second contribution intends to capture shape variability between two population of surfaces using groupwise morphological analysis. The proposed method exploits spectral representation for establishing surface correspondences, since matching is simpler in the spectral domain rather than in the conventional Euclidean space. The designed framework integrates mean curvature-based spectral matching in to a groupwise subcortical shape analysis pipeline. Experimental analysis on real clinical dataset showed that the extracted group differences were in parallel with the findings in other clinical studies, while the shape analysis outputs were created in a computational efficient manner. Finally, the third contribution establishes the association between sub-cortical morphological alterations in children with benign epilepsy and cognitive indices. This study detects putamen and caudate changes in children with left, right, or bilateral BECTS to age and gender matched healthy individuals. In addition, the association of structural volumetric and shape differences with cognition is investigated. The findings confirm putamen and caudate shape alterations in children with BECTS. Also, our results suggest that variation in sub-cortical shape affects cognitive functions. More importantly, this study demonstrates that shape alterations and their relation with cognition depend on the side of epilepsy focus. This project enabled us to investigate whether new methods would allow to automatically process neuroimaging information from children afflicted with BECTS and detect subtle morphological variations in their sub-cortical structures. In addition, the results obtained in this thesis allowed us to conclude the existence of the association between morphological variations and cognition with respect to the side of seizure focus
    corecore