4,306 research outputs found

    Laser Chimeras as a paradigm for multi-stable patterns in complex systems

    Full text link
    Chimera is a rich and fascinating class of self-organized solutions developed in high dimensional networks having non-local and symmetry breaking coupling features. Its accurate understanding is expected to bring important insight in many phenomena observed in complex spatio-temporal dynamics, from living systems, brain operation principles, and even turbulence in hydrodynamics. In this article we report on a powerful and highly controllable experiment based on optoelectronic delayed feedback applied to a wavelength tunable semiconductor laser, with which a wide variety of Chimera patterns can be accurately investigated and interpreted. We uncover a cascade of higher order Chimeras as a pattern transition from N to N - 1 clusters of chaoticity. Finally, we follow visually, as the gain increases, how Chimera is gradually destroyed on the way to apparent turbulence-like system behaviour.Comment: 7 pages, 6 figure

    Dynamical Systems, Stability, and Chaos

    Full text link
    In this expository and resources chapter we review selected aspects of the mathematics of dynamical systems, stability, and chaos, within a historical framework that draws together two threads of its early development: celestial mechanics and control theory, and focussing on qualitative theory. From this perspective we show how concepts of stability enable us to classify dynamical equations and their solutions and connect the key issues of nonlinearity, bifurcation, control, and uncertainty that are common to time-dependent problems in natural and engineered systems. We discuss stability and bifurcations in three simple model problems, and conclude with a survey of recent extensions of stability theory to complex networks.Comment: 28 pages, 10 figures. 26/04/2007: The book title was changed at the last minute. No other changes have been made. Chapter 1 in: J.P. Denier and J.S. Frederiksen (editors), Frontiers in Turbulence and Coherent Structures. World Scientific Singapore 2007 (in press

    Almost automorphic delayed differential equations and Lasota-Wazewska model

    Full text link
    Existence of almost automorphic solutions for abstract delayed differential equations is established. Using ergodicity, exponential dichotomy and Bi-almost automorphicity on the homogeneous part, sufficient conditions for the existence and uniqueness of almost automorphic solutions are given.Comment: 16 page

    Persistence of nonautonomous logistic system with time-varying delays and impulsive perturbations

    Get PDF
    In this paper, we develop the impulsive control theory to nonautonomous logistic system with time-varying delays. Some sufficient conditions ensuring the persistence of nonautonomous logistic system with time-varying delays and impulsive perturbations are derived. It is shown that the persistence of the considered system is heavily dependent on the impulsive perturbations. The proposed method of this paper is completely new. Two examples and the simulations are given to illustrate the proposed method and results

    Coupled logistic maps and non-linear differential equations

    Full text link
    We study the continuum space-time limit of a periodic one dimensional array of deterministic logistic maps coupled diffusively. First, we analyse this system in connection with a stochastic one dimensional Kardar-Parisi-Zhang (KPZ) equation for confined surface fluctuations. We compare the large-scale and long-time behaviour of space-time correlations in both systems. The dynamic structure factor of the coupled map lattice (CML) of logistic units in its deep chaotic regime and the usual d=1 KPZ equation have a similar temporal stretched exponential relaxation. Conversely, the spatial scaling and, in particular, the size dependence are very different due to the intrinsic confinement of the fluctuations in the CML. We discuss the range of values of the non-linear parameter in the logistic map elements and the elastic coefficient coupling neighbours on the ring for which the connection with the KPZ-like equation holds. In the same spirit, we derive a continuum partial differential equation governing the evolution of the Lyapunov vector and we confirm that its space-time behaviour becomes the one of KPZ. Finally, we briefly discuss the interpretation of the continuum limit of the CML as a Fisher-Kolmogorov-Petrovsky-Piscounov (FKPP) non-linear diffusion equation with an additional KPZ non-linearity and the possibility of developing travelling wave configurations.Comment: 23 page
    • …
    corecore